SYSTEM AND METHOD FOR CORRELATING BIOMETRIC TRENDS WITH A RELATED TEMPORAL EVENT
Systems and methods for correlating biometric trends with a related temporal event are disclosed. A preferred embodiment utilizes an implantable medical device comprising at least one sensor in electronic communication with a patient management system adapted to temporally analyze and correlate biometric data. Some embodiments of a system disclosed herein also can be configured as an Advanced Patient Management system that helps better monitor, predict and manage chronic diseases.
This application is a continuation of U.S. application Ser. No. 12/476,833, filed Jun. 2, 2009, which is a continuation of U.S. application Ser. No. 11/869,611, now issued as U.S. Pat. No. 7,554,438, filed Oct. 9, 2007, which is a continuation of U.S. patent application Ser. No. 10/335,396, now issued as U.S. Pat. No. 7,378,955, filed on Jan. 3, 2003, the specifications of which are incorporated herein by reference.
TECHNICAL FIELDThe present device relates generally to a Patient Management System and particularly, but not by way of limitation, to such a system that is adapted to correlate biometric information or trends to a specific temporal event to provide a snapshot of patient health.
BACKGROUNDManagement of patients with chronic disease consumes a significant proportion of the total health care expenditure in the United States. Many of these diseases are widely prevalent and have significant annual incidences as well. Heart failure prevalence alone is estimated at over 5.5 million patients in 2000 with incidence rates of over half a million additional patients annually, resulting in a total health care burden in excess of $20 billion. Heart failure, like many other chronic diseases such as asthma, chronic obstructive pulmonary disease (“COPD”), chronic pain, and epilepsy is event driven, where acute episodes of disease result in hospitalization. In addition to causing considerable physical and emotional trauma to the patient and family, event driven hospitalizations consume a majority of the total health care expenditure allocated to the treatment of heart failure.
An interesting fact about the treatment of acute episodes of disease is that hospitalization and treatment occurs after the acute event has happened. However, most Heart Failure patients exhibit prior non-traumatic symptoms, such as steady weight gain, in the weeks or days prior to the acute episode. If the physician is made aware of these symptoms, it is possible to intervene before the event, at substantially less cost to the patient and the health care system.
Intervention before the event is usually in the form of a re-titration the patient's drug cocktail, reinforcement of the patient's compliance with the prescribed drug regimen, or acute changes to the patient's diet and exercise. Such intervention is usually effective in preventing the acute episode and thus avoiding hospitalization. NYHA Class III and late Class II HF patients often have acute episodes three or four times annually, each episode resulting in hospital stays of three or four days.
However, many acute episodes of disease can be predicted by analyzing biometric trends. Predictive accuracy may be improved by analyzing such biometric trends in view of clinically derived algorithms. In practice, the algorithmic analysis of contemporaneous biometric information or data in reference to a temporal event can report and assist in the identification of a state of patient health or disease progression. Yet, data collection and rapid analysis is a limiting factor in effectively using clinical algorithms to report such states of patient health.
Thus, for these and other reasons, there is a need for a system and method for efficiently and effectively reporting a state of patient health or disease progression by correlating biometric information or trends with a related temporal event and alerting the patient or physician of the state of patient health or disease progression.
SUMMARYAccording to one aspect of the invention, there is provided a system and method for correlating sensed biometric information or trends using clinically derived algorithms to report a state of patient health. The report of patient health enables a patient or clinician to examine and further analyze a state of health or disease progression in view of a temporal event that may confer additional clinical meaning to or understanding of the reported state of health. The system also may deliver therapy when configured as an implantable medical device.
In one embodiment, the system comprises at least one sensor to sense biometric data, an interactive database, an analysis module to analyze the biometric data, a correlation module to correlate the biometric data with a temporal event, an electronic transmission module to transmit the output to an interactive communications network, a transformation module to transform transmitted output to a recognizable clinical result, and a display module to display the transformed output. By way of non-limiting example only, a temporal event may comprise a change in patient medication, a heart attack, physical injury, dates of personal interest, or other events.
In another embodiment, the interactive communications network comprises a sensor implanted within a patient, a host in communication with the sensor comprising means to input biometric and/or environmental data to an interactive database, an analysis module to analyze biometric data, and a delivery module that communicates the analyzed data in the form of an identified state of patient health via the communications network.
In yet another embodiment, the system comprises a plurality of interactive databases adapted to store historical and patient population data. In this embodiment, the system is adapted to provide therapy to a patient through a specially adapted implantable medical device based on the identified state of patient health. The implantable medical device may also comprise a sensor. The sensor can be internal or external. External sensors may be adapted to record environmental data. The system also may comprise a diagnostic module for diagnosing the performance of the sensor and the interactive communications network.
In a preferred embodiment of the system and method for correlating biometric trends with a related temporal event, the identified state of patient health is made by analyzing biometric data in view of clinically derived algorithms and monitoring the success of previous identifications of a state of patient health. If warranted by the identified state of patient health, the display module displays a configurable alert for action in the form of a clinically relevant graphic or an audible signal.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the invention. Those skilled in the art will readily recognize various modifications and changes that may be made to the present invention without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the present invention, which is set forth in the following claims.
In the drawings, which are not necessarily drawn to scale, like numerals describe substantially similar components throughout the several views. Like numerals having different letter suffixes represent different instances of substantially similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments or examples. These embodiments may be combined, other embodiments may be utilized, and structural, logical, and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
The present system and method are described with respect to a system and method that is adapted to report a state of patient health by correlating biometric data or trends with a related temporal event. In this way, the system can provide appropriate therapy to a patient in its embodiment as an implantable medical device or provide a clinician with retrospective environmental and/or perceptual data in time coincidence with objective implanted sensor data. The term “biometric” generally refers to the measurement of a living, human characteristic. The term “Advanced Patient Management” refers to the process of creating and collecting patient specific information, storing and collating the information, and generating actionable recommendations to enable the predictive management of patients with chronic disease. The term “temporal event” refers to events in a patient's environment that may or may not cause a health state change. The term “correlation” refers to time coincident events that have been analyzed for causation and health consequence outcome.
In another embodiment as illustrated in
In a further embodiment as illustrated in
In a yet another embodiment as illustrated in
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments may be used in combination with each other. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including,” “includes” and “in which” are used as the plain-English equivalents of the respective terms “comprising,” “comprises” and “wherein.”
Claims
1. A method comprising:
- identifying a correlation between biometric data sensed by a medical device and an environmental event capable of causing a health state change in a patient; and
- displaying the biometric data and the correlated environmental event in a formatted human-recognizable output.
2. The method of claim 1, wherein medical device comprise an implantable medical device.
3. The method of claim 1, wherein the displaying the biometric data comprises displaying an alert.
4. The method of claim 3, wherein displaying the alert comprises displaying a graphic.
5. The method of claim 3, wherein the alert is configurable.
6. The method of claim 1, wherein the environmental event is selected from a group of events consisting of: a change in temperature, a change in atmospheric pressure, a change in humidity, a change in stress, a change in patient medication, a change in patient diet, and a change in patient emotional state.
7. The method of claim 1, comprising:
- obtaining reference data from a database comprising one or more of historical patient data, environmental data, and patient population data;
- identifying a correlation between the reference data and the biometric data to obtain a correlated output;
- transforming the correlated output to a human-recognizable format; and
- displaying the correlated output in the human- recognizable format.
8. The method of claim 1, wherein the formatted human- recognizable output indicates a state of patient health, and wherein the method comprises providing a therapy in response to the state of patient health.
9. The method of claim 8, wherein providing the therapy comprises:
- providing the therapy via the medical device.
10. The method of claim 9, wherein providing the therapy via the medical device comprises:
- providing the therapy via an implantable medical device.
11. The method of claim 1, further comprising transforming the biometric data to produce the formatted human- recognizable output.
12. A system, comprising:
- a correlation module configured to correlate the biometric data by a medical device by a medical device by a medical device with an environmental event to create a correlated output, wherein the environmental event is capable of causing a health state change in a patient; and
- a display module configured to display the correlated output in a formatted human-recognizable output.
13. The system of claim 12, wherein the medical device is an implantable medical device.
14. The system of claim 12, wherein the display module is configured to display an alert.
15. The system of claim 14, wherein the alert is configurable.
16. The system of claim 12, wherein the environmental event is selected from a group of events consisting of: a change in temperature, a change in atmospheric pressure, a change in humidity, a change in stress, a change in patient medication, a change in patient diet, and a change in patient emotional state.
17. The system of claim 12, comprising:
- an analysis module to analyze the biometric data against a reference data set to create a biometric data set,
- and wherein the correlation module is configured to identifying a correlation between reference data and the biometric data to obtain a correlated output,
- and wherein the transformation module is configured to transform the correlated output to a human-recognizable format,
- and wherein the display module is configured to display the correlated output in the human-recognizable format.
18. The system of claim 12, wherein the formatted human- recognizable output a state of patient health, and wherein the system comprises a therapy module configured to provide a therapy in response to the state of patient health.
19. The system of claim 12, wherein the therapy module incorporated into the medical device.
20. A system comprising:
- means for identifying a correlation between the biometric data sensed by a medical device and an environmental event capable of causing a health state change in a patient; and
- means for displaying biometric data and the correlated environmental event in a formatted human- recognizable output.
Type: Application
Filed: Oct 28, 2011
Publication Date: Feb 23, 2012
Inventors: Scott Thomas Mazar (Woobury, MN), Bruce H. Kenknight (Maple Grove, MN)
Application Number: 13/284,105
International Classification: G08B 1/08 (20060101); G08B 23/00 (20060101);