CONDUCTING TYPE INTER-PIPING FLUID THERMAL ENERGY TRANSFER DEVICE
The conducting type inter-piping fluid thermal energy transfer device has a thermal conducting structure installed between a thermal conductive casing of a first piping where the first piping has at least one fluid inlet and at least one fluid outlet for passing through a supply of water flow, and a thermal conductive casing of a second piping having at least one fluid inlet and one fluid outlet for passing through thermal conducting fluid.
This application is a divisional of U.S. application Ser. No. 12/219,408, filed on Jul. 22, 2008, the entirety of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION(a) Field of the invention
The present invention discloses that the thermal energy of supply water flow or liquid or gaseous state fluid with thermal energy is transferred to a thermal conducting fluid inside a second piping via the thermal conducting structure thereby allowing the thermal conducting fluid to be conveyed to its terminal thermal energy release device for releasing the thermal energy.
(b) Description of the Prior Art
The conventional water supply system usually discharges water flow along with the simultaneous thermal energy release.
SUMMARY OF THE INVENTIONThe present invention discloses a first piping for passing through supply water flow, or liquid or gaseous state fluid with thermal energy through the connection of thermal conducting structure to transfer the thermal energy of the water flow, or liquid or gaseous state fluid with thermal energy to the thermal conducting fluid inside second piping.
- 100: First piping
- 101: Fluid inlet
- 101′: Fluid outlet
- 103, 104: Thermal conducting fluid inlet/outlet port
- 106: Internal thermal conducting fin
- 200: Second piping
- 1000: Thermal conducting structure
The conducting type inter-piping fluid thermal energy transfer device of the present invention uses a thermal conducting structure installed between the casing of a first piping having at least one fluid inlet and at least one fluid outlet for passing through supply water flow, or liquid or gaseous state fluid with thermal energy and a casing of a second piping having at least two thermal conducting fluid inlet/outlet ports for passing through water flow, or liquid or gaseous state fluid with thermal energy, and said casings of first and second piping are made of thermal conductive material. The first piping is configured to pass through a supply flow of water, or liquid or gaseous state having thermal energy, whereas the second piping is used to pass through water flow, or other liquid or gaseous state thermal conducting fluid. The isothermal energy transfer is performed through the thermal conducting structure and the thermal energy of supply water flow, or other liquid or gaseous state fluid inside the first piping.
As shown in
The first piping (100) has a tubular structure having at least one fluid inlet (101) and at least one fluid outlet (101′) for passing through a flow of water, or liquid or gas state fluid with thermal energy, and having a pipe casing which can be made of thermal conductive material for transferring thermal energy to the internal water flow, or liquid or gaseous state thermal conducting fluid inside the second pipe casing which can be made of thermal conductive material via thermal conducting structure (1000), wherein at least one or more of the first piping (100) can be optionally selected as needed.
The second piping (200) has a tubular structure having at least two thermal conducting fluid inlet/outlet ports (103), (104) for passing through a supply of water, or liquid or gas state fluid with thermal energy for transferring isothermal energy to an internal water flow, or liquid or gaseous state thermal conducting fluid inside first pipe casing via the casing of the second piping (200) itself being made of thermal conductive material, thermal conducting structure (1000), and the first pipe casing being made of thermal conductive material, wherein at least one or more of the first piping (100) can be optionally selected as needed.
The thermal conducting structure (1000) can be made of good thermal conductive material and is connected between the first piping (100) and the second piping (200) for isothermally transferring the thermal energy between a supply of water, or gaseous or liquid state fluid with thermal energy passing through the first piping (100) and internal water flow, or gaseous or liquid state fluid inside the second piping (200) via thermal conductive casing of the first piping (100), thermal conducting structure (1000) and thermal conductive casing of the second piping (200).
The thermal conducting fluid inlet/outlet ports (103), (104) are configured to discharge or receive water flow, or liquid or gaseous thermal conducting fluid with thermal energy and for transferring the thermal energy of thermal conducting fluid inside the second piping (200) received from the supply water flow, or liquid or gaseous state fluid inside the first piping (100) to the outside target, wherein the number of thermal conducting fluid inlet/outlet ports (103), (104) can be optionally selected as needed.
In addition, for promoting the performance of transferring the thermal energy of the supply water flow, or liquid or gaseous state fluid inside the first piping (100) to the thermal conducting fluid inside the second piping (200), an interior of said first piping (100) can further additionally have thermal conducting fins (106) at locations near the thermal conducting structure (1000) to increase the heat conducting area.
The placement of thermal conducting fins (106) allow the transferring of thermal energy of the supply water, or gaseous or liquid state fluid with thermal energy, to the water flow, or gaseous or liquid state thermal conducting fluid inside the second piping (200). The heat transfer occurs through the thermal conducting fins (106) inside the first piping (100), the thermal conductive pipe casing of the first piping, the thermal conducting structure (1000), thermal conductive casing of second piping (200), and internal thermal conducting fins (106) inside the second piping (200) at the locations near the thermal conducting structure (1000).
Conducting type inter-piping fluid thermal energy transfer device include 1) an integral structure by casting or welding, 2) a combination structure.
The whole structure of above said conducting type inter-piping fluid thermal energy transfer device can be made of thermal conductive material such as cast iron, aluminum, copper, stainless steel, or made by thermal conductive material favorable for thermal energy transfer.
For the conducting type inter-piping fluid thermal energy transfer device of the present invention in a practical application, there can be one or more first pipings (100), and the number of second piping (200) connected to the first piping (100) by the thermal conducting structure (1000) can also be one or more.
For example,
Not only can the embodiments of the present disclosure be used for inter-piping fluid thermal energy transfer, the conducting type inter-piping fluid thermal energy transfer device of the present invention has the following applications:
1. The application of that first piping (100) is passed through by gaseous or liquid state fluid with thermal energy for transferring thermal energy to the gaseous or liquid state fluid inside second piping (200) via thermal conducting structure (1000); or
2. The application of that gaseous or liquid state fluid with thermal energy is reversely sent from outside to second piping (200) via the thermal conducting fluid inlet/outlet ports (103), (104) for transferring thermal energy to gaseous or liquid state fluid inside piping (100) via thermal conducting structure (1000).
Claims
1. A conducting type inter-piping fluid thermal energy transfer device comprising:
- a thermal conducting structure installed between a casing of at least one first piping and a casing of at least one second piping, wherein said casings of the at least one first and second piping are made of a thermal conductive material;
- the first piping is configured to pass through a supply of water, or liquid or gaseous state with thermal energy;
- the second piping is configured to pass through a thermal conducting fluid of water flow, or other liquid or gaseous state thermal conducting fluid,
- wherein, the first and second piping are configured so that an isothermal energy transfer is performed through the thermal conducting structure and the supply of water, or other liquid or gaseous state fluid, inside the first piping, and
- wherein the first and second piping comprise thermal conducting fins configured to promote the transferring of thermal energy of a supply of water or other liquid or gaseous state fluid of the first piping to a thermal conducting fluid inside the second piping.
2. The conducting type inter-piping fluid thermal energy transfer device according to claim 1, wherein the thermal conducting structure further comprises at least one inlet and at least one outlet port configured to discharge or receive the thermal conducting fluid of the second piping, and wherein the second piping is configured to transfer the thermal energy received from the thermal energy of the supply of water or other liquid or gaseous state fluid of the first piping to an outside target.
3. The conducing type inter-piping fluid thermal energy transfer device according to claim 1, wherein the inter-piping fluid thermal energy transfer device is casted or welded to form an integral structure.
4. The conducting type inter-piping fluid thermal energy transfer device according to claim 1, wherein the thermal conducting structure, first piping, and second piping are made of cast iron, aluminum, copper, stainless steel, or made by thermal conductive material favorable for thermal energy transfer.
5. The conducting type inter-piping fluid thermal energy transfer device according to claim 1, wherein the number of first piping is at least one or more than one, and the number of second piping that are connected to first piping by the thermal conducting structure is at least one or more than one.
6. A conducting type inter-piping fluid thermal energy transfer device according to claim 1, wherein the thermal conducting fluid having thermal energy is reversibly sent from an outside target to the second piping for transferring thermal energy from the thermal conducting fluid to the supply of water, or liquid or gaseous state fluid inside the first piping using the thermal conducting structure.
Type: Application
Filed: Nov 4, 2011
Publication Date: Mar 1, 2012
Inventor: Tai-Her YANG (Dzan-Hwa)
Application Number: 13/289,628
International Classification: F28D 7/16 (20060101);