SYSTEM AND METHOD FOR VESSEL ACCESS CLOSURE

- PROMED, INC.

Embodiments are described for closing vascular access ports, such as arteriotomies, which involve placement and deployment of an expandable device configured to prevent blood flow across a subject arteriotomy while also keeping disturbance of intravascular flow to a minimum. Suitable prostheses may comprise one or more frames constructed from lengths of flexible materials, such as shape memory alloys or polymers. Such frames may be coupled to sheetlike or tube-like structures configured to spread loads, minimize thrombosis which may be related to intravascular flow, and maintain hemostasis.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/974,489, filed Dec. 21, 2010, which claims the benefit under 35 U.S.C. §119 to U.S. Provisional Application Ser. Nos. 61/308,589, filed Feb. 26, 2010 and 61/353,561, filed Jun. 10, 2010. The foregoing applications are hereby incorporated by reference into the present application in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to closure of surgically created vascular access ports or holes, such as arteriotomies, and more specifically to closure technologies pertinent to relatively large surgically-created access defects.

BACKGROUND

Minimally invasive diagnostic and interventional procedure prevalence in US and foreign hospitals continues to increase, as does the demand for certain procedures which involve placement of relatively large devices into targeted locations that are initially accessed through the vasculature. For example, percutaneous prosthetic heart valve placement and abdominal aortic aneurysm stent graft procedures that are not accomplished using one or more trans-thoracic or trans-abdominal access ports generally involve one or more femoral arteriotomies which may be large in size relative to conventional femoral arteriotomies, due, at least in part, to the size of devices utilized for such procedures. Subsequent to completion of the diagnostic or interventional aspects of such treatments, any associated arteriotomies generally must be closed. While there are existing technologies for closing defects created in veins and arteries due to diagnostic and/or interventional tool access, such as those available from St. Jude Medical, Inc., Abbott Laboratories, Inc., and Access Closure, Inc. under the tradenames Angio-Seal®, StarClose®, and Mynx®, respectively, none of these are well suited for closing relatively large defects—particularly not in the arterial environment wherein relatively high flow rate and pressure are complicating factors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1E illustrate aspects of an access closure device deployment wherein a collapsed device is passed through an introducer lumen to a targeted intravascular deployment position before it is deployed.

FIGS. 1F and 1G illustrate cross sectional views of two different embodiments of deployed closure device configurations.

FIGS. 1H-1J illustrate orthogonal views of two different embodiments of deployed closure device configurations.

FIGS. 1K and 1L illustrate cross sectional views of two different embodiments of deployed closure device configurations.

FIGS. 2A-2F illustrate aspects of an access closure device deployment wherein a two-portion collapsed device is passed through an introducer lumen to a targeted intravascular deployment position before expansion.

FIGS. 2G-2I illustrate side views and an orthogonal view, respectively, of a suitable device frame configuration.

FIGS. 3A-3D illustrate orthogonal views of a device embodiment that may be rolled up into a collapsed shape, and unrolled or unfurled to an expanded shape.

FIG. 4 illustrates one embodiment of a manual operational interface configuration.

FIG. 5 illustrates various aspects of an arteriotomy closure method in accordance with the present invention.

FIGS. 6A to 6Z-1 illustrate various aspects of arteriotomy closure configurations wherein a collapsed closure device may be controllably rotated relative to an elongate deployment member to prevent withdrawal of the closure device through the arteriotomy.

FIGS. 7A-7F illustrate various aspects of an arteriotomy closure device deployment wherein a collapsed closure device may be controllably rotated relative to an elongate deployment member to prevent withdrawal of the closure device through the arteriotomy.

FIG. 8A illustrates aspects of deployment steps using a configuration such as that illustrated in FIGS. 6A-6X, wherein a foot is pre-biased to flex once released from a restraining sheath.

FIG. 8B illustrates aspects of deployment steps using a configuration such as that illustrated in FIGS. 6A-6X, wherein a foot is flexed after release from a restraining sheath, subsequent to application of a flexing load.

FIGS. 9A-9E illustrate various aspects of arteriotomy closure configurations wherein a collapsed closure device may be controllably rotated relative to an elongate deployment member to prevent withdrawal of the closure device through the arteriotomy.

FIG. 10 illustrates aspects of deployment steps using a configuration such as that illustrated in FIGS. 9A-9E, wherein a foot is pre-biased to flex once released from a restraining sheath.

FIG. 11 illustrates aspects of a deployment sheath configured to assist an operator with positioning of related instrumentation adjacent an arteriotomy location.

FIGS. 12A-12D illustrate aspects of a proximal deployment interface which may be utilized with closure device deployment configurations such as those depicted in FIGS. 9A-9E.

FIGS. 13A-13D illustrate various aspects of arteriotomy closure configurations wherein a collapsed closure device may be deployed as facilitated by a catch member configured to prevent withdrawal of the closure device after insertion through the arteriotomy.

FIGS. 14A-14B illustrate various aspects of arteriotomy closure configurations wherein a collapsed closure device may be deployed as facilitated by a catch member configured to prevent withdrawal of the closure device after insertion through the arteriotomy.

FIGS. 15A-15C illustrate three views of a closure device frame configuration comprising a catch member configured to prevent withdrawal after insertion through an arteriotomy and subsequent expansion in situ.

FIGS. 16A-16K illustrate various aspects of arteriotomy closure configurations wherein a collapsed closure device may be deployed as facilitated by a catch member configured to prevent withdrawal of the closure device after insertion through the arteriotomy.

FIG. 17 illustrates various aspects of a process flow for deploying an arteriotomy closure configuration wherein a collapsed closure device may be deployed as facilitated by a catch member configured to prevent withdrawal of the closure device after insertion through the arteriotomy.

FIGS. 18A-18C illustrate various aspects of a closure device configuration wherein each structure thereof may comprise a bioresorbable material, and wherein expansion from a collapsed state to an expanded state may comprise an unfurling transformation.

FIG. 19 illustrates various aspects of a process flow for deploying an arteriotomy closure configuration wherein a collapsed closure device may be deployed and expanded in an unfurling transformation.

FIGS. 20A-20K illustrate various aspects of arteriotomy closure configurations wherein a collapsed closure device may be deployed as facilitated by a catch member configured to prevent withdrawal of the closure device after insertion through the arteriotomy, and wherein a guidewire may be left in place to facilitate easy re-access to the endovascular structures near the arteriotomy.

FIG. 21 illustrates various aspects of a process flow for deploying an arteriotomy closure configuration wherein a guidewire may be left in place to facilitate easy re-access to the endovascular structures near the arteriotomy.

FIGS. 22A-22C illustrate various aspects of embodiments configured to employ an elongate guiding member such as a guidewire to facilitate ease of re-access after closure.

FIGS. 23A-23C illustrate various aspects of embodiments configured to employ a proximal catch member to effect a hole closure, and in the embodiments of FIGS. 23B and 23C, a distal catch member as well.

FIG. 24 illustrates various aspects of a process flow for deploying an arteriotomy closure configuration wherein a guidewire may be left in place to facilitate easy re-access to the endovascular structures near the arteriotomy.

FIG. 25 illustrates various aspects of a process flow for deploying an arteriotomy closure configuration wherein a guidewire may be left in place to facilitate easy re-access to the endovascular structures near the arteriotomy.

SUMMARY

One embodiment is directed to a method for closing a hole in a vessel, comprising: inserting through the hole an implantable closure device having proximal and distal ends and being expandable from a collapsed state to an expanded state, the expanded state providing a geometry sufficient to substantially occlude the hole; inserting a distal portion of an elongate guiding member through the hole and into a vascular lumen formed by the vessel; and controllably expanding the implantable closure device to the expanded state to occlude the hole, while leaving the distal portion of the elongate guiding member extending into the vascular lumen. The method may further comprise inserting an introducer sheath through the hole, the introducer sheath defining an introducer lumen sized to accommodate insertion of the collapsed state of the closure device. Inserting may comprise advancing the implantable closure device relative to the hole with a deployment member having a proximal portion configured for manual manipulation and a distal portion configured to be removably coupled to the implantable closure device. The method may further comprise controllably moving the collapsed closure device relative to the deployment member to place the closure device into a geometric configuration relative to the vascular lumen that is selected to prevent withdrawal of the closure device back out of the hole. Controllably moving may comprise rotating the collapsed closure device relative to the deployment member to place the closure device into a rotated orientation selected to prevent withdrawal of the closure device back out of the hole when the deployment member is withdrawn. Controllably moving may comprise translating the collapsed closure device relative to the deployment member to place the closure device into compression against a portion of the deployment member. Translating may cause the collapsed closure device to controllably rotate to a rotated orientation selected to prevent withdrawal of the closure device back out of the hole. The method may further comprise advancing an assembly of a delivery sheath and collapsed implantable closure device, at least a portion of which is removably positioned within the introducer lumen, to a deployment position within the vascular lumen wherein reconfiguration of the implantable device from the collapsed state to the expanded state is desired, and maintaining the position of the collapsed implantable device while retracting the delivery sheath to expose the collapsed implantable device to the vascular lumen. The method may further comprise selecting the deployment position based at least in part upon an indication from a bleedback indicator channel. The method may further comprise urging the expanded implantable closure device toward the hole, wherein the expanded state is configured to contact at least 90 degrees of an inner surface of the vessel adjacent the hole relative to a longitudinal axis of the vascular lumen, and to restrict fluids from exiting the vascular lumen through the hole. The closure device may be a self expanding structure configured to expand itself from the collapsed state to the expanded state when not restrained in the collapsed state. Controllably expanding may comprise moving a portion of a deployment tensile element relative to the self expanding structure to allow the self expanding structure to expand itself to the expanded state. The closure device expanded state may form a substantially cylindrical shape defining a lumen therethrough. The elongate guiding member may comprise a guidewire. Inserting the elongate guiding member through the hole may comprise advancing the elongate guiding member through a lumen defined through the deployment member. The elongate guiding member may be removably coupled to the implantable closure device. The method may further comprise decoupling the deployment member from the implantable closure device while leaving the distal portion of the elongate guiding member extending into the vascular lumen. The method may further comprise engaging the elongate guiding member to re-enter the vascular lumen in an over-the-wire configuration. The method may further comprise removing the elongate guiding member from the vascular lumen. At least the distal portion of the elongate guiding member may comprise a radioopaque material selected to be visible with fluoroscopic imaging. The implantable closure device may be inserted through the hole before the elongate guiding member or after the elongate guiding member. The implantable closure device may be inserted through the hole and over the elongate guiding member in an over-the-wire configuration.

DETAILED DESCRIPTION

Referring again to FIG. 1A, an introducer catheter (2) is shown with its distal tip (6) inserted across a hole formed in a blood vessel, such as an arteriotomy (28), which has been created in a blood vessel such as the femoral artery (22) to provide transvascular access for a procedure such as a percutaneous heart valve installation. The hole or arteriotomy (28) may have a diameter as large as 18 French or larger. In FIG. 1A, the valve deployment related tooling has been removed, and hemostasis through the lumen (4) defined through the introducer (2) may be controlled, for example, with valves integrated into the introducer or positive flush from an associated flush assembly (8). The embodiment depicted in FIG. 1A shows a closure device assembly being inserted through the introducer to facilitate execution of a controlled arteriotomy closure, the device assembly generally comprising a collapsed closure device (14), an elongate deployment member (10) having a distal portion (12) configured to removably accommodate the collapsed device (14), an insertion/retraction member (16) removably coupled with the device (14), a deployment tension member (18) configured to cause the collapsed device (14) be expandable to a deployed or expanded shape, and an attachment tension member (20) configured to pull the device proximally toward the operator of the assembly. In one embodiment the closure device (14) may be selected to span and close an arteriotomy having a diameter as large as 18 French or larger. The elongate deployment member preferably comprises a flexible material construct, such as a polymer extrusion. The deployment and attachment tension members preferably comprise relatively small diameter sutures, wires, or tensile load bearing lines made from polymers and/or metals, such as polyethylene, polyethylene terepthalate, stainless steel, titanium, nitinol, and the like. An insertion/retraction member (16) preferably is capable of not only withstanding tensile loads, but also relatively low-level compressive loads, as in a scenario wherein such structure is utilized to push a device (14) distally. Suitable materials for an insertion/retraction member (16) include the polymers and metals mentioned above in reference to the tension members (18, 20; in construction, given the desirable compressive functionality in addition to tensile, the insertion/retraction member generally will be stiffer, and potentially larger in diameter, as compared with such tension members (18, 20). The collapsed closure device (14) may comprise a plurality of flexible structural frame elements coupled together to form a collapsible and expandable member having an outer shape that is substantially cylindrical in both collapsed form and expanded form, and defining a lumen through the cylindrical expanded form, with generally no lumen defined through the generally cylindrical collapsed form. Further description of suitable closure device (14) details is featured below.

Referring to FIG. 1B, the delivery member (10) has been inserted farther through the introducer (2), and the distal portion (12) of the delivery member (10), with the collapsed device (14) confined therein, is being positioned past the distal tip of the introducer (6) and into the blood vessel (22).

Referring to FIG. 1C, with insertion of the insertion/retraction member (16) relative to the delivery member (10), the collapsed device (14) may be pushed out of the confining distal portion (12) of the delivery member (10) and into the free bloodstream space of the vessel (22). The attachment tension member (20) may then be tensioned to maintain the collapsed device in a position adjacent to the distal tip (6) of the introducer (2) as the delivery member (10) is retracted relative to the introducer (2), as shown in FIG. 1C.

Referring to FIG. 1D, with tensioning of the deployment tension member (element 18 in FIGS. 1A-1C), the device may be allowed to expand to an expanded shape (element 24 refers to the expanded form of the previously collapsed closure device, element 14) preferably substantially occupying the entire cross section of the blood vessel (22) and spanning well beyond the diameter of the arteriotomy (28) with space on either side to prevent exit of the closure device (24) through the arteriotomy (28). The deployment tension member (18) may comprise an elongate cable, suture, string, or the like configured to occupy very little cross sectional space, and to be able to withstand tensile loading sufficient, for example, to untie a knot configured to maintain the device in a collapsed configuration. One suitable tying or knot configuration comprises what is known as a “highwayman's hitch” tied around the collapsed device (element 14 in FIGS. 1A-1C); with such a configuration, a controlled tensile pull on the deployment tension member from an operator at the proximal end of the instrument assembly causes the highwayman's hitch to untie, allowing the device to expand. Expansion from a collapsed state to an expanded state may be accomplished using a self-expanding device structure configured to expand itself to a final expanded shape, or an expandable shape configured to be expanded from a collapsed state to an expanded shape with the assistance of a balloon or other expansion device which may be placed through the device. In another embodiment, an expansion device comprising an expandable balloon or other expandable member configured to controllably expand based at least in part upon thermal energy, electric energy, shape memory, and/or hydrophilic expansion may be utilized to complete expansion of a device configuration which at least partially expands on its own, but which may require assistance to expand fully. As shown in FIG. 1D, the expanded closure device (24) remains coupled to the attachment tension member (20), and the introducer remains located adjacent to the expanded device (24), holding the arteriotomy (28) open and providing a conduit for the attachment tension member to be used to make small adjustments in the positioning of the expanded device (24) relative to the blood vessel (22) structure.

Referring to FIG. 1E, with the expanded device (24) in a desirable position, the introducer catheter (2) has been removed, allowing the arteriotomy (28) to close to a greater degree as it still surrounds the attachment tension member (20) which continues to be coupled to the expanded device (24). The attachment tension member (20) may then be released or uncoupled from the deployed device (24) with a cutting tool (26), or controlled detachment configuration, such as a small mechanical latch or fitting, or a controlled release link configuration described, for example, in U.S. Pat. No. 5,122,136, which is incorporated by reference herein in its entirety. Uncoupling of the attachment tension member (20) from the device (24) allows for the arteriotomy (28) to become substantially or completely closed, leaving behind an access closure supported at least in part by the expanded device.

FIG. 1F depicts a cross sectional view of the configuration illustrated in FIG. 1E. Referring to FIG. 1F, the attachment tension member (20) is shown coupled to the expanded closure device (24) and leading out of the collapsing/closing arteriotomy (28). Subsequent to decoupling of the attachment tension member (20) from the device (24), complete hemostasis of the arteriotomy may be accomplished based upon one or more of several factors: 1) the device may be configured to bias the arteriotomy closed; 2) the vessel wall tissue defining the arteriotomy therethrough generally is self-biased to close (with a somewhat spring-like state of tissue mechanics in a vessel wall, the wall is generally biased to close when mechanically allowed to do so); 3) the device (24) may comprise a structure or materials which are specifically configured to prevent the flow of blood through the wall at the location of the arteriotomy. Many suitable construction variations may be utilized for the closure device (14, 24); for example, the device embodiment depicted in FIG. 1F, comprises a frame comprised of frame elements or structural members (30) which are coupled to a thin, sheetlike connecting material (34) configured to be substantially impermeable to blood, and therefore a blocking element is pressed adjacent the arteriotomy (28) location to facilitate hemostasis across the arteriotomy (28) until it has healed shut. The outer surface of the structural member (30)/connecting material (34) assembly may be coupled to cover structure (32), and may be relatively thick (in one embodiment having a substantially uniform thickness of about 0.015 inches) as compared with the connecting material (34), which may be further selected for its ability to facilitate hemostasis of the arteriotomy (28). In one embodiment a suitable frame may be substantially cylindrical, with a diameter of between 6 and 14 mm, more preferably between about 11 and 14 mm, and a length of between about 12 and 20 mm, more preferably about 16 mm; with such a configuration, an associated substantially rectangular cover member may have a length of between about 16 and 41 mm, more preferably between about 19 and 24 mm, and a perpendicular rectangular dimension of between about 11 and 19 mm, more preferably about 15 mm. Suitable materials for connecting material (34) and cover structures (32) include polytetrafluoroethylene (“PTFE”), expanded polytetrafluoroethylene (“ePTFE”), polyethylene terepthalate (“PET”), polyesther, polylactic acid (“PLA”), poly glycolic acid (“PGA”), poly-lactic-co-glycolic acid, fluorinated ethylene-propylene, silicone, polyethylene, polyurethane, copolymers of any of the above, other polymers, as well as porcine or equine submucosa. The structural members (30) may comprise metals, such as nitinol, or polymers, such as resorbable polymers, as described below in reference to the construction of the collapsed (14) or expanded (24) forms of suitable closure devices.

In one embodiment, a cover structure may be biased to maintain a substantially cylindrical outer surface shape, and to assist in spreading loads from the structural members (30) substantially uniformly to surrounding tissue via such substantially cylindrical outer surface shape. The closure device embodiment depicted in FIG. 1F, when in the expanded configuration as shown, forms a substantially cylindrical outer shape defining a lumen therethrough; the substantially cylindrical outer shape interfaces with substantially all (i.e., approximately 360 degrees of the circumferential inner surface 238 of the vessel 22 which defines the vessel lumen 236) of the interior surface (238) of the blood vessel (22) in the region of the arteriotomy (28), including in this embodiment, the portions of this inner surface (238) which extend along the longitudinal axis of the vessel on either side of the arteriotomy (28) for a given distance each way. In other words, if an arteriotomy is created at a position approximately midway along a two-inch-long, generally cylindrical vessel portion of interest, in one embodiment, a portion of the expanded closure device may be configured to interface with substantially all of the two-inch-long, generally cylindrical, inner surface (238). In other embodiments, an expanded closure device may be configured to interface with less than substantially all 360 degrees of this circumferential surface. For example, Referring to FIG. 1K, an embodiment is depicted that is similar to that depicted in FIG. 1F, with the exception that an expanded closure device (240) directly interfaces with approximately 90 degrees (244) of the circumferential inner surface (238) of the vessel (22). FIG. 1L depicts an embodiment wherein an expanded closure device (242) directly interfaces with approximately 135 degrees (246) of the circumferential inner surface (238) of the vessel (22). The embodiment depicted in FIG. 1G varies from that of FIG. 1F in that the cover structure (32) of FIG. 1F is configured to cover substantially the entire approximately cylindrical outer surface of the structural member (30)/connecting material (34) assembly, while the cover structure (32) of FIG. 1G is configured to cover the approximately ⅔ of the approximately cylindrical outer surface of the structural member (30)/connecting material (34) assembly closest to the arteriotomy location.

Many closure device (14) variations are suitable, with general preferred characteristics being that the device be deployable through the arteriotomy in a collapsed state, and expandable once in the targeted vessel to an expanded state which promotes closure of the hole or arteriotomy through which it was delivered. For example, in one embodiment shown in orthogonal view in FIG. 1H, the closure device may comprise a simple scaffold or frame constructed of bent and straight portions of elongate structural members (30) in a coiled, meshed, zig-zag, or other pattern coupled to a cover structure (32) positioned to promote hemostasis of the arteriotomy (28). Such structural members (30) may, for example, comprise highly flexible metallic alloys or polymeric materials, such as bioresorbable polymers. Suitable metallic alloys include nickel titanium alloys, such as the superalloy known as nitinol; other suitable materials include stainless steel, cobalt chrome, titanium, nickel, gold, tantalum, and alloys thereof. Suitable polymeric materials include those comprising poly lactic acid, poly glycolic acid, poly(lactic-co-glycolic acid), silicone, polyethylene, polyurethane, polyesther, and copolymers thereof.

In another embodiment, such as that shown in FIGS. 1I and 1J, a suitable closure device (14) may comprise merely a scaffold or frame comprising bent and/or straight portions of elongate structural member (30) material in a configuration that tends to bias an arteriotomy (28) closed when in a deployed/expanded configuration by urging adjacent vessel (22) wall tissue portions (36, 38) toward each other by means of small hooks, or high-friction or protein binding materials that are configured to attach or adhere to the inside of the vessel wall.

In another embodiment, a closure device (14) may comprise an expandable scaffold or frame such as an intraluminal stent or stentlike structure. The stent may be self-expanding or balloon-expandable and may be a stent configured for any blood vessel including coronary arteries and peripheral arteries (e.g., renal, Superficial Femoral, Carotid, and the like), a urethral stent, a biliary stent, a tracheal stent, a gastrointestinal stent, or an esophageal stent, for example. More specifically, the stent may be, for example, a stent available commercially as a Wallstent, Palmaz-Shatz, Wiktor, Strecker, Cordis, AVE Micro Stent, Igaki-Tamai, Millenium Stent (Sahajanand Medical Technologies), Steeplechaser stent (Johnson & Johnson), Cypher (Johnson & Johnson), Sonic (Johnson & Johnson), BX Velocity (Johnson & Johnson), Flexmaster (JOMED) JoStent (JOMED), S7 Driver (Medtronic), R-Stent (Orbus), Tecnic stent (Sorin Biomedica), BiodivYsio (Biocompatibles Cardiovascular), Trimaxx (Abbott), DuraFlex (Avantec Vascular), NIR stent (Boston Scientific), Express 2 stent (Boston Scientific), Liberte stent (Boston Scientific), Achieve (Cook/Guidant), S-Stent (Guidant), Vision (Guidant), Multi-Link Tetra (Guidant), Multi-Link Penta (Guidant), Multi-Link Vision (Guidant), Gianturco-Roubin FLEX-STENT®, GRII™, SUPRA-G, or V FLEX coronary stents from Cook Inc. (Bloomington, Ind.). Some exemplary stents are also disclosed in U.S. Pat. Nos. 5,292,331 to Boneau, 6,090,127 to Globerman, 5,133,732 to Wiktor, 4,739,762 to Palmaz, and 5,421,955 to Lau, each of which is incorporated by reference herein in its entirety. Suitable expandable stentlike structures are also disclosed in percutaneous valve configuration disclosures. For example, the configuration disclosed in U.S. Pat. No. 7,445,631 to Sadra Medical, Inc., absent the valve leaflets, may be suitably used in the subject application; U.S. publication 2009/0210052 to Forster et al discloses (for example, FIGS. 2A-2C) a tri-star collapsible frame configuration which may be utilized absent the valve leaflets in the subject application; each of these references is incorporated by reference herein in its entirety.

Any of the above devices, scaffolds, frames, stents, or stentlike structures may be combined with strips, sheets, or sheetlike portions of connecting material, such as PTFE or ePTFE, to form what may be referred to as a variant of a stent graft. A suitable stent graft is described, for example, in PCT Publication WO 1997-021403 to Prograft Medical, and is incorporated by reference herein in its entirety. Further, any of the aforementioned frames may be coupled to a cover structure (with or without connecting material as well) comprising a metal or polymer material positioned to assist in maintaining hemostasis of the arteriotomy, as depicted in FIGS. 1F-1H.

Referring to FIG. 2A-2I, another embodiment is depicted wherein a closure device (40) has two end portions coupled by a highly bendable midportion. Referring to FIG. 2A, a distal tip (6) of an introducer catheter (2) is positioned through an arteriotomy (28) formed in a blood vessel (22). In one embodiment, the arteriotomy may be as large as 18 French or larger in diameter. An access closure device deployment assembly is shown being advanced toward the introducer (2) in FIG. 2B, the assembly comprising an expandable device (40) removably coupled to a deployment tension member (19) and an attachment tension member (21), each of which are movably coupled through a device insertion/retraction member (16) to a proximal location where they may be manipulated or controlled by an operator.

Referring to FIG. 2C, the insertion/retraction member (16) is withdrawn relative to a delivery member (10), causing the collapsed device (40) to become disposed within the distal portion (12) of the delivery member (10). Such a configuration may be inserted into the introducer catheter (2), as shown in FIG. 2D, to dispose the collapsed device (40) past the distal tip (6) of the introducer (2). Referring to FIG. 2E, the introducer (2) may be withdrawn to urge the collapsed device (40) into a position wherein it is approximately centered adjacent the arteriotomy (28) to provide a temporarily hemostasis through the arteriotomy (28). Referring to FIG. 2F, having placed the non-expanded device (40) in a desirable position as in FIG. 2E, the deployment tension member (19) may be proximally tensioned to allow the device to expand, such as by using a highwayman's hitch as described above, and the attachment tension member (21) may be subsequently uncoupled from the expanded device (42) to allow for the arteriotomy (28) to close and for the delivery instrumentation to be removed. As shown in FIG. 2F, for example, the deployed device (42) spans across the longitudinal length of the arteriotomy (28) with extra length on both sides to provide stability and leak prevention. Referring to FIGS. 2G-2I, three views of a suitable structural member frame for the deployment paradigm illustrated in FIGS. 2A-2F are depicted to show that two substantially cylindrical end portions (44, 46) are coupled by a highly flexible mid portion (48) in this embodiment, the midportion (48) preferably being positioned directly adjacent the arteriotomy location to provide support for the closure (i.e., by urging a related cover member directly against the arteriotomy location); such preferred position/orientation of the flexible mid portion (48) may be accomplished, at least in part, by interfacing a tensile member (not shown) directly with the midportion (48), for example by tying with a knot to one of the small apertures shown in the midportion (48) embodiments of FIGS. 2G-2I. Tension on such a tensile member is likely to assist with the orientation/position selection described herein, either before or after allowing the device to reach its expanded state. Such structural members may comprise materials similar to the structural members (30) described in reference to FIGS. 1A-1J, and may be coupled to sheetlike members and/or cover members for form a substantially cylindrical expanded device surface shape (as in the embodiment shown in FIG. 2F wherein a cover member 30 extends around each of, and between (i.e., across the midportion 48 span), the two zig zag cylindrical frame sub-portions 44, 46, to span the arteriotomy 28 and play a key role in effecting the closure thereof), which also may be similar to those (34, 32) described above in reference to FIGS. 1A-1J. In other words, the embodiment shown in FIGS. 2A-2F, while delivered in a two-lobed collapsed form, may be expanded to form a substantially cylindrical shape due to a sheetlike member coupled across the frame, and/or a cover member extended across the outer surfaces of the frame.

Referring to FIGS. 3A-3D, a roll-up type expandable device (5) configuration is depicted to illustrate that suitable prostheses need not be conventionally radially expandable—they may be expanded by allowing, or mechanically facilitating (i.e., with an assisting device such as a balloon or unrolling torque tool), the unrolling or unfurling of a device that has been rolled into a smaller radial configuration, as illustrated in FIG. 3C.

Referring to FIG. 4, one embodiment of a handle is depicted for deploying and actuating configurations such as those described in reference to FIGS. 1A-1J and 2A-I. As shown in FIG. 4, an actuator handle body (56) is movably coupled to a delivery member (16) insertion/retraction actuator slide button (54) and a deployment tension member (18, 19) tension actuation pull feature (52). Such a configuration allows for an operator to hold the handle body (56) in one hand and easily control insertion and retraction of the insertion/retraction member (16) with a thumb or finger of the same hand, while also allowing for the operator to use fingers of the other hand to pull the deployment tension member (18, 19) tension actuation pull feature (52) and allow a related device to expand or be expanded.

Referring to FIG. 5, a method is illustrated wherein an arteriotomy is created, an introducer inserted, and a diagnostic or interventional tool inserted through the introducer (58) to conduct a cardiovascular procedure (60) such as a percutaneous valve replacement. After the diagnostic and/or interventional tool or tools have been retracted back through the introducer (62), it may be desirable to close the arteriotomy. A distal tip or portion of the introducer may be retracted to a position close to the arteriotomy (64) but still within the vessel, and a closure assembly comprising an expandable device configured to facilitate hemostatic of the arteriotomy may be inserted through the introducer toward the arteriotomy (66). The closure assembly distal portion may be inserted past the arteriotomy and into the vascular lumen (68), after which the device may be positioned and/or repositioned to a desired location relative to the arteriotomy and surrounding anatomy (70). The device may then be allowed to expand, or may be expanded, to cause hemostasis at the arteriotomy (72), and the closure assembly and introducer may be withdrawn away from and detached from the expanded device, leaving a closed arteriotomy (74).

Referring to FIGS. 6A-6X, various aspects of another embodiment of a closure assembly are depicted, wherein a collapsed closure device may be controllably repositioned and/or reoriented during a deployment process in a manner that geometrically prevents such device from escaping the arteriotomy as other delivery tools subsequently are removed, and also limits or reduces blood or other fluids from escaping the arteriotomy once the device has been expanded into a final configuration, thereby effectively closing the arteriotomy. Referring to FIG. 6A, a delivery assembly is depicted comprising an outer introducer sheath (2), a delivery sheath (76) placed through the working lumen of the introducer sheath (2), and a arteriotomy closure device deployment assembly threaded through the working lumen of the delivery sheath (76), the assembly being depicted in FIG. 6B without the sheaths and featuring a collapsed closure device (86) coupled to both an elongate deployment member (90) and a foot member (92), the foot member being threaded through a working lumen defined by a portion of the deployment member (90). In one embodiment, the delivery sheath (76) is configured to extend beyond the end of the introducer sheath (2) by between about 200 and about 870 mm, and more preferably about 370 mm, and may have an outer diameter between about 10Fr and about 24Fr, and more particularly about 18Fr. The closure device (86) may comprise an expandable frame, scaffold, or prosthesis with or without associated sheetlike members and/or cover members, and may be similar to those described above in reference to FIGS. 1A-3D, or below in reference to FIGS. 6K-6V. A deployment tension member (82), such as a suture or wire, is threaded through another working lumen defined by a portion of the deployment member (90) and looped around the collapsed closure device (86) as well as a portion of the foot member (92) to maintain the collapsed configuration of the closure device until the deployment tension member is tensioned, causing a releasable knot (83), such as a highwayman's hitch, to release and allow the collapsed closure device to expand or be expanded. An attachment tension member (84), such as a suture or wire that may be resorbable, akin to the attachment tension members (20, 21) described above, is threaded through a lumen or channel defined by the foot member (92) and tied to the closure device (84).

Referring to FIGS. 6C-6E, one configuration for controllably repositioning and/or reorienting a collapsed closure device (86) during deployment is configured. As shown in FIG. 6C, application of a load (100) to the elongate deployment member (90) initially will result in a compressive load at the interface (94) between the elongate deployment member (90) and the collapsed closure device (86). This compressive loading may result in translational repositioning of the closure device (86) initially until there is no more slack in the attachment tension member (84), after which a moment will be effectively applied to the closure device (86), causing it to rotate (98), or rotationally reorient, relative to the elongate deployment member, as depicted in FIGS. 6D and 6E. FIG. 6E, in particular, diagrammatically illustrates that a compressive interfacial load (94) applied along with a tensile load (96) through the attachment tension member (84) attached at a different location from the interfacial load application results in a rotation actuation. In one embodiment, rotational actuation may be accomplished by both actively tensioning the attachment tension member (84) and actively pushing the elongate delivery member (90). In other embodiments, only one of such members (84, 90) may be actively loaded, with the other kept relatively stationary. For example, referring to FIG. 6D, the attachment tension member (84) is shown grounded or anchored at a proximal location, so that rotation of the collapsed closure device (86) may be induced merely with compression or pushing upon the elongate deployment member (90) after slack in the attachment tension member (84) has been eliminated. Such rotation causes bending or hinging of a distal portion of the foot member at a predetermined hinge or bending axis (102), and the amount of rotational reorientation may be physically limited by the positions of distal portions of the elongate delivery member (90).

Referring to FIGS. 6F-6H, components of the above described delivery assembly are shown disassembled to some degree. FIG. 6F depicts a foot member (92) coupled to a collapsed closure device (86) with a deployment tension member (82) and attachment tension member (84). FIG. 6G illustrates an elongate deployment member comprising a first guide tube (104) coupled to a second guide tube (106) with a deployment member outer layer (108), as shown in the orthogonal view of FIG. 6H. Both guide tubes (104, 106) define working lumens therethrough (150, 152, respectively). In the assembly of FIG. 6C, for example, a deployment tension member (82) may be passed through the first guide tube lumen (150), and a foot member (92), which itself defines a lumen through which an attachment tension member (84) may be passed, may be placed through the second guide tube lumen (152).

Referring to FIGS. 6I and 6J, orthogonal side views of a foot member (92) embodiment are depicted. In the depicted embodiment, the proximal portion (142) of the foot member may comprise a flexible tube comprising a polymer such as fluorinated ethylene-propylene, and the distal portion (110) may comprise a mechanically flattened continuation of such tubing configured with holes (112) to accommodate knots and fastening of a deployment tension member (element 82 in FIG. 6C, for example) and/or attachment tension member (element 84 in FIG. 6C, for example). A crease is provided to create a preferred bending or hinging axis (102) between the proximal (142) and distal (110) portions of the foot member. In another embodiment, the proximal portion (142) of the foot member may comprise a reinforcing material or member, such as a piece of metal hypotube, to increase the structural modulus of such portion and facilitate precise positioning and loading of such portion to maneuver the delivery assembly or portions thereof.

Referring to FIGS. 6K-6M, as described above, the closure device may be an expandable or self expanding device that is configured to be transformable from a collapsed state to an expanded state when unrestrained, in the case of a self expanding configuration, or unrestrained and actively expanded (for example, with an expansion balloon), in the case of an actively expandable configuration. Expansion of one embodiment is depicted in the transformation between FIG. 6K and FIG. 6L, wherein the collapsed closure device (86) is freed from the constraints of one or more restraining members, such as a lumen or lumens of one or more sheaths, or one or more deployment attachment members which may be looped around the collapsed configuration. FIG. 6M illustrates an orthogonal view of the expanded configuration of FIG. 6L. The expanded configuration of the depicted embodiment, illustrated in FIGS. 6L and 6M, comprises an expanded form of an expandable closure device (114) featuring a cylindrical pattern of nitinol frame elements or structural members (30), coupled to a cover structure (32), similar to those described above in reference to FIGS. 1A-1J and 2A-2I. A sheetlike member may also be coupled to the frame elements to assist with arteriotomy closure, as described above. As described above, preferably the cover (32) is sized to not only contain substantially the entire structure when in a collapsed configuration, but also to provide a layer of arteriotomy closure and leak prevention when the device has been expanded and the cover (32) has been oriented directly adjacent to the location of the arteriotomy. Also as described above, the cover (32) may comprise a bioresorbable material, and in other embodiments, elements of the closure device (14, 24) structure may comprise a polymeric material which also may be bioresorbable. The cover (32) may be coupled to the closure device (114) using a clip, wire, or suture which may be looped around one of the frame elements (30) and through the material comprising the cover (32). Geometric features may be created in the closure device to assist with such coupling, and may be configured to allow for coupling of the cover and closure device without a clip, wire, or suture.

Referring to FIGS. 6N-6O, three different views of a closure device frame or scaffold (116) configuration comprising two crowns coupled together, using a weld or adhesive junction, for example, are illustrated. A clip, wire, or suture around one of the crown junctions may be utilized to couple a cover to such device.

Referring to FIGS. 6Q and 6R, two different views of a closure device frame or scaffold embodiment (118) are shown wherein a small loop feature (119) has been formed to assist with the coupling of such scaffold and a cover. FIG. 6S depicts a similar embodiment (120) having a larger loop feature (121). FIG. 6T depicts an embodiment (124) wherein a loop feature (125) is formed with an end to end structural member junction that may comprise welds or adhesive junctions; FIG. 6U depicts a similar embodiment (126) with a larger loop feature (127). FIG. 6V depicts an embodiment (128) having several features of interest, including an end to end crimp tube junction (131), a small bend feature (130) which may be positioned to contain or assist with coupling an associated cover member, and two pinch coil features (129) configured to retain a portion of a cover member with a pinch friction/load fit, somewhat akin to that provided to a piece of paper with a paper clip. In other embodiments, pinch coil features (129) may be created at various locations about the closure device frame or scaffold structure, in addition to the end apex locations as shown in the variation of FIG. 6V.

FIGS. 6W and 6X depict orthogonal and side views of another embodiment of a scaffold (248) comprising an omega type fitting (250) which facilitates attachment of one or more elongate fastening or tethering members, such as sutures coupled to the scaffold or an associated cover member using one or more knots, in a manner wherein the knots need not touch or mechanically interfere with each other, and wherein a sheetlike cover member may be closely interfaced with the scaffold (248) without the knot or other fastening means creating a large gap between the cover and scaffold (such a gap can be disadvantageous in the endovascular environment, for example, for thrombus pooling, flow turbulence, and general flow disruption reasons). In other words, each of the two sides of the omega shape (250) can be used as a knot or fastening interface, and the gap defined by the center of the omega shape (250) maintains a distance between the two fastening interfaces which keeps them from mechanically rubbing against each other, and also provides a geometric pocket for the knots or fasteners to reside, thus allowing for a more direct interfacing of an associated cover to the scaffold (248) without gaps required to accommodate an otherwise prominent fastener or knot.

Referring to FIG. 6Y, a scaffold embodiment (252) is depicted having two end portions (254), each of which may comprise a non-resorbable metallic coil, for example, and a central portion (256) coupling the two end portions (254), the central portion preferably comprising a bioresorbable material such as polylactic acid or other resorbable polymer or material, as discussed otherwise herein. Such an embodiment (252) may be utilized to seal a hole or other defect as described herein, for example, using a cover member or the like, and after deployment and hemostasis at the defect, the central portion (256) is configured to bioabsorb away, leaving the end portions (254) remaining in situ where they may be encapsulated by endothelial cells, and the region of the associated vessel immediately adjacent the previous location of the resorbable central portion (256) available for secondary or revision access. In other words, the vessel portion adjacent the resorbable central portion (256) may be easily reaccessed because no implantable hardware has been left behind from the previous intervention in this portion of the vessel.

In any of the embodiments of FIGS. 6N-6Y, a suitable frame or scaffold may be substantially cylindrical, with a diameter of between 6 and 14 mm, more preferably between about 11 and 14 mm, and a length of between about 12 and 20 mm, more preferably about 16 mm.

FIG. 6Z illustrates a side view of a delivery sheath (76), which may comprise a generally cylindrical polymeric tube with sequentially stepped down outer diameter shaping (to provide greater flexural modulus performance and shaping distally) and an atraumatic tip (79) similar to that shown in FIG. 6A (element 78 of FIG. 6A) comprising a partially hemispheric or capsular arcuate geometry with notches (80) to allow for passage of closely fit objects (i.e., by bending forward/distally one or more of the plurality of atraumatic tip flaps formed by the notches 80 and capsular shape of the atraumatic tip 79) through a working lumen which preferably is formed and defined through the sheath (76). As described above, the introducer illustrated in FIG. 6A, for example, has similar atraumatic tip features, including a notched (80) partially hemispheric or capsular arcuate geometry (element 78 of FIG. 6A) configured to accommodate the passage of relatively closely fit objects (i.e., by bending forward/distally one or more of the plurality of atraumatic tip flaps formed by the notches 80 and capsular shape of the atraumatic tip, element 78 of FIG. 6A).

FIG. 6Z-1 illustrates aspects of the proximal portions of a delivery assembly which may be utilized with a distal deployment configuration such as that illustrated in FIG. 6A. Referring to FIG. 6Z-1, the outermost layer of the distal aspects of the depicted configuration comprises the delivery sheath (76), which terminates proximally with a delivery sheath hub (77) configured to be manipulated by an operator. Within the lumen defined by the delivery sheath is a delivery assembly comprising an elongate deployment member (90) movably coupled to a foot member proximal portion (142). The elongate deployment member (90) terminates proximally with an elongate deployment member hub (91) configured to be manually manipulated by an operator. This hub (91) features a releasable termination screw (137) to fix one end or one portion of a deployment tension member (82), the other portion or end of which may be coupled to a pull tab (132) configured for tension manipulation by an operator to, for example, untie a highwayman's hitch knot configured to releasably contain a closure device in a collapsed configuration. The elongate deployment member hub (91) also features a screw (144) adjustable compression spring (146). The proximal portion of the foot member (142) terminates proximally in a foot hub (140) configured to be manually manipulated by an operator. A set screw (138) may be utilized to fasten the hub (140) to the foot member (142). The attachment tension member (84) is proximally routed through the proximal portion of the foot member (142) to a releasable fixation screw (136). The proximal portion of the foot member (142), which, as described above, may be reinforced by, or may comprise, a relatively stiff material or construct, such as a metal hypotube. In operation, when an operator wants to induce rotation and/or translation of a collapsed closure device, as described, for example, in reference to FIGS. 6C-6E, he may longitudinally reposition the elongate deployment member hub (91), foot member hub (140), and attachment tension member (84) tensioning to create such rotation and/or translation of the distal foot portion and collapsed closure device. A compression spring seat (148) coupled to the proximal portion of the foot member (142) applies loads to the proximal portion of the foot member (142) as the foot member hub (140) is pushed toward the elongate deployment member hub (91). A shoulder bolt (134) maintains the orientation of the foot member rotationally to allow the operator to understand the direction of flexion of the foot member upon desired rotation and/or translation. The compression spring adjustment screw may be tightened to pre-bias the distal foot portion to flex when released from constraining members, such as one or more sheaths which may temporarily surround and mechanically constrain the distal foot portion (i.e., thereby urging the distal foot straight as opposed to flexed). Alternatively, the spring may be left relatively unloaded to allow for release from constraining members without pre-biased flexion actuation, followed by controlled flexion actuation using the various hubs and attachment tension element. Aspects of embodiments of such operation are described in reference to FIGS. 7A-7F, and 8A-8B.

Referring to FIG. 7A, an assembly has been inserted through an arteriotomy (28) and advanced forward to place a collapsed closure device (86), such as those described above in reference to FIG. 1A-1J, 2A-2I, 3A-3D, or 6L-6V, within a blood vessel (22) and surrounded by one or more sheaths (76, 2). In some embodiments, the arteriotomy (28) may have a diameter as large as 18 French or greater. Referring to FIG. 7B, to begin deployment of the closure device (86), the introducer sheath (2) may be withdrawn proximally using an introducer manipulation hub (3), and/or the elongate deployment member (90) and foot member (142) may be advanced distally, to further expose the collapsed closure device (86). Referring to FIG. 7C, the delivery sheath (76) and collapsed closure device (86) may be moved relative to each other to further expose the collapsed closure device (86). Referring to FIG. 7D, the exposed collapsed closure device (86) may be controllably translated and/or rotated to cause rotational reorientation to a toggled position. Referring to FIG. 7E, the closure device (86) is intentionally dimensioned to not be easily passable through the arteriotomy when in the toggled position. In one embodiment, the closure device (86) may have a proximal portion, centerpoint, and distal portion along an axis parallel to a longitudinal axis of the closure device when collapsed or expanded. Preferably the total length of the device along this axis is greater than the largest dimension of the arteriotomy, and preferably the distal portion and proximal portion are long enough to prevent additional rotation of the device relative to the longitudinal axis of the vessel (i.e., about an axis perpendicular to the longitudinal axis of the vessel). In one embodiment, the attachment tension member (84) may be tensioned to place the collapsed closure device (86) against the arteriotomy with the central point (154), adjacent to which the attachment tension member preferably is terminated upon the device, aligned with the center of the arteriotomy (28), and the proximal (156) and distal (158) portions of the device extending away from the arteriotomy (28). In other words, upon controlled repositioning and/or reorientation of the collapsed closure device to the toggled or rotated position, further withdrawal of the closure device out of the arteriotomy is prevented by virtue of the geometry of the arteriotomy and closure device, the device in the depicted embodiment (86 collapsed; 88 expanded) spanning across the diameter of the previous arteriotomy location with extra length to spare on either side of this previous arteriotomy location. Referring to FIG. 7F, the deployment tension member (not shown) has been tensioned to allow the closure device to take its expanded shape (88), preferably urging the associated cover against the inside of the arteriotomy, which shrinks to a closed configuration (27) when all of the hardware has been withdrawn with the exception of the attachment tension member (84), which is configured to remain attached to the expanded device (88), and is preferably configured to subsequently biologically erode after being clipped most proximally and allowed to stay inside of the body after transcutaneous wound closure.

Referring to FIG. 8A, a deployment process is outlined, wherein subsequent to transcutaneous access and arteriotomy creation (160), an introducer and associated hardware may be inserted through the arteriotomy and advanced through a portion of the artery (162). A deployment assembly may be advanced (164) with the introducer, or subsequently advanced, and may be exposed by moving the introducer longitudinally relative to the deployment assembly. In one embodiment wherein the foot member is pre-biased to reorient by a proximal loading configuration such as a compressed compression spring, when the distal portion of the foot member is cleared of mechanical confinement by a delivery sheath or introducer sheath, it flexes at the foot hinge or bend axis to reorient the collapsed closure device. In preparation for such reorientation, the introducer may be moved proximally relative to the closure device (166). The deployment assembly may then be withdrawn to place the collapsed covered closure device immediately adjacent the tissue structure portions around the hole in the vessel (167). This withdrawal may be facilitated by a bleedback indicator configured to signal an operator when a predetermined amount of instrument insertion or retraction positioning has been achieved, as described below in reference to FIG. 11. In the depicted embodiment wherein the foot member is pre-biased to flex when not constrained, the last anti-flexion constraint, the delivery sheath, is withdrawn relative to the foot member, closure device, and elongate delivery member, and the closure device and distal portion of the foot become reoriented (168). Subsequently, the introducer, delivery sheath, and foot member/elongate delivery member assembly may be withdrawn to allow the closure device to be urged against the arteriotomy with tension in the attachment tensile member (170). Subsequently, the deployment tension member may be controllably tensioned to allow the closure device to expand in position against the arteriotomy, preferably with a cover portion of the closure device positioned immediately adjacent the arteriotomy location (172). The deployment and access tools may be withdrawn, leaving behind only the expanded closure device and the attachment tension member, or “tether line” (176), which may subsequently be shortened prior to transcutaneous access closure (176).

Referring to FIG. 8B, another embodiment is depicted, differing from that of FIG. 8A in that the foot member is not pre-biased to flex upon release from constraining members such as an introducer sheath or delivery sheath. In the embodiment of FIG. 8B, the collapsed closure device may be exposed to the bloodstream while the foot remains in an un-flexed configuration, and when the operator desires, may be controllably rotated and/or translated into the rotated configuration with a flexion inducing load applied deliberately (169).

Referring to FIGS. 9A-9E, another closure device deployment embodiment is depicted, wherein an elongate bending spring member is built into the foot member to pre-bias the foot to flex when not constrained by a constraining structure such as a delivery or introducer sheath. Referring to FIG. 9A, an assembly somewhat similar to that depicted in FIG. 6A is depicted, with the exception that the foot member (93) comprises an elongate bending spring member (178) extending through the distal portion of the foot member, and also through some of the distal end of the proximal portion of the foot member. Preferably the elongate bending spring member (178) comprises a pre-bent metallic or polymeric member and is configured to assume a foot flexion position, as depicted in FIG. 9B, for example, when not otherwise constrained by a sheath or other contraining member to assume a straight position, as shown in FIG. 9A. In one embodiment the elongate spring member comprises nitinol superalloy wire in a “V” shape as in FIG. 9D, and is coupled to proximal and distal foot member structures using interference fitting and a discrete adhesive coupling at the distal tip of the “V” shape. In other embodiments, the elongate spring member may comprise other biocompatible metals, such as stainless steel, cobalt chrome, titanium, nickel, gold, tantalum and/or alloys thereof, as well as biocompatible polymeric materials such as polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene terepthalate, polyesther, polylactic acid, poly glycolic acid, poly-lactic-co-glycolic acid, fluorinated ethylene-propylene, silicone, polyethylene, polyurethane, and/or copolymers of any of the above. Further details of an elongate spring foot member are depicted in FIGS. 9C-9E. Referring to FIG. 9C, the elongate bending spring member (178) extends nearly the entire length of the distal portion (184) of the foot member (93), and a relative small length of the distal end of the proximal portion (182) of the foot member (93). When allowed to rotate (i.e., without a sheath or other constraint holding it straight), as in FIG. 9E, the foot member distal portion (184) is configured to rotate to a preselected angle (186) in accordance with the pre-shaped configuration of the elongate spring member, about an axis of rotation, or bending or hinge point, (180) that divides the proximal portion (182) from the distal portion (184). In one embodiment: the preselected angle of rotational sweep is between about 90 degrees and about 180 degrees, and more preferably about 155 degrees; the distal foot portion (184) may be between about 7 mm and about 30 mm, and more preferably about 20 mm; and the portion of the foot spring member (178) extending proximally from the flexion axis (180) may be between about 3 mm and about 15 mm, more preferably about 9 mm. Referring to FIG. 9D, an orthogonal view illustrates the placement of a collapsed closure device (86) relative to the distal portion (184) of the foot member, such distal portion (184) being in an unfolded configuration in FIG. 9D, to accommodate interfacing and coupling with a collapsed closure device (86). Four holes in the distal portion (184) of the foot are configured to assist with releasable fastening of a deployment tension member (element 82 in FIG. 9A) using a releasable knot, such as a highwayman's hitch. The distal portion (184) of the foot member may be created by crushing flat a substantially cylindrical piece of tubing comprising the proximal portion (182) of the foot member, and creating an “H”-shaped slice in such flattened portion to create the wings (232, 234) configuration depicted in FIG. 9D. Each of the wings (232, 234) is configured to be wrapped around the exterior of a collapsed closure device (86) to form a stable saddle-like interface. Two additional holes (204, 206) are formed through the foot member (93), one (204) to accommodate a deployment tension member (element 82 in FIG. 9A), and the other (206) to accommodate an attachment tension member (element 84 in FIG. 9A). Some sample dimensions for one particular embodiment include a collapsed closure device length dimension (188) of about 0.5″, a bending axis to proximal end of collapsed closure device dimension (190) of about 0.125″, a distal tip of foot member to distal end of collapsed closure device dimension (192) of about 0.25″, a distal end of collapsed closure device to distal wing edge dimension (194) of about 1/16″, a distal end of foot member to distal wing edge dimension (196) of about 5/16″, a deployment member hole to proximal wing edge dimension (198) of about 1/16″, and a wing length dimension (200) of about 0.25″.

Referring to FIG. 10, a process for utilizing an arteriotomy closure system such as that described in reference to FIGS. 9A-9E is depicted, with steps similar to those described in reference to FIG. 8A, with the exception of inserting a deployment assembly wherein the associated foot member comprises a pre-formed nitinol (“NiTi” or nickel titanium alloy) member biased to flex the distal foot portion at the rotational (or hinge or bending) axis when freed of confinement by a confining structure such as a delivery or introducer sheath (208).

Referring to FIG. 11, a particular embodiment of a deployment sheath (76) is depicted, wherein a blood, or “bleedback”, channel (210) is formed within the exterior surface of the sheath (76) to allow pressurized blood, when present at the distal tip (79) of the sheath (76), to flow from the distal end of the sheath, proximally through the channel (with an introducer sheath in place over the deployment sheath, the channel would be confined at the outer surface by the inside surface of the introducer lumen, but would remain free to flow through the channel proximally), to a lumen inlet (212), the associated lumen (214) being fluidly connected with a simple indicator fitting (216) configured to effectively ooze or squirt blood when appropriate blood pressure is present at the distal end of the channel (210). Such a configuration may be utilized in the relatively high-pressure (relative to venous) arterial system where arteriotomies are created, to provide an indication to an operator that the distal portion of the subject sheath (79) is at an insertion or retraction position wherein it is exposed to arterial flow. In one embodiment, such an indication may be utilized to position the distal portion of such sheath (79) just at the transition out of the arteriotomy and into non-pressurized space, when conducting a closure device deployment, as described above.

Referring to FIGS. 12A-12D, various aspects of a manual interface or control handle assembly for operating a closure device deployment system, such as those described in reference to FIGS. 6A-6X and 9A-9E, are illustrated. Referring to FIG. 12A, in one embodiment the control handle assembly (220) comprising a manipulable handle housing (218) and two manually movable elements (222, 224) configured to assist with various aspects of the deployment, is coupled to an elongate deployment member (90). Referring to the partial cutaway view of FIG. 12B, a foot member (93) extends distally through the elongate deployment member (90) and proximally is coupled to the first manually movable element (222), which is slidably coupled to the handle housing (218) to facilitate convenient thumb or finger insertion/retraction of the foot member (93) relative to the elongate deployment member (90). Extending proximally from the foot member (93), an attachment tension member (84) is coupled to a second manually movable element (224) by way of a spring-loaded mechanical fitting (226) configured to provide the operator with a tactile bump in tensile pull (using, for example, a small enlargement in the tension member that passes a fitting within the spring-loaded mechanical fitting) when he is about to release the attachment tension member from the housing, such that it may be left in situ. In operation, when the second movable element (224) is pulled proximally by a small amount (228) as in FIG. 12C, the movable element (224) detaches from the housing. Additional proximal pulling (230), as shown in FIG. 12D, takes the attachment tension member (84) past the detent, bump, or pull limit tactile feedback mechanism, to provide the operator with an understanding that pulling past such point permanently releases the attachment tension member (84) from the housing (84) and the control handle assembly (220) in general.

Referring to FIG. 13A, an assembly (290) similar to that of FIG. 9A is depicted, with the exception that a catch member (258) is depicted extending proximally away from the proximal end of the collapsed closure device (86). In the depicted embodiment, the catch member (258) is coupled to an elongate member (260) which has a distal extension (266) that extends distally past the junction of the catch member (258) and the elongate member (260). The assembly (288) of FIG. 13B has similar elements as shown in FIG. 13A, with the exception that the introducer sheath (2) and delivery sheath (76) have been removed. Referring to FIG. 13C, when the distal aspect of the foot member (93) is moved, as described above in reference to FIG. 9B, for example, the catch member (258) also becomes reoriented, to a configuration wherein the proximal aspect of the catch member sticks out, away from the remaining portions of the delivery assembly, to facilitate “catching” tissue structures which may be nearby, such as the tissue which may surround a hole or defect. This “catching” affect desirably prevents the associated closure device (86) from exiting such defect or hole, as described further below. Further, this catching affect assists with docking of the collapsed state of the implantable closure device adjacent the arteriotomy, and may also be useful in mechanically supporting the portions of the vessel that lie immediately adjacent the catch member (i.e., in one configuration, the catch member may be utilized to prevent collapse of the immediately adjacent vessel portions). Referring to FIG. 13D, in one embodiment, the catch member (258) may be controllably retracted forward (268) with advancement (262) of the elongate push/pull member (260) through manual manipulation. Such advancement of the elongate member (260) causes advancement (264) of the distal extension (266), which guides the catch member (258) forward and into alignment with the distal extension (266), into a retracted position as shown in FIG. 13D. Such retracted position may be utilized to retract a delivery assembly back through the hole or defect after deployment of a closure device. Referring to FIGS. 14A and 14B, a similar catch member functionality may be achieved in one embodiment by advancing (274) and/or retracting a guidewire (270) through a lumen created in the foot member (93) to cause a guidewire distal tip portion (272) to be advanced outward (276) relative to the collapsed closure device (86) in a “catching” configuration, or retracted back to facilitate removal of the assembly through the hole or defect.

Referring to the three different orthogonal views of FIGS. 15A-15C, a catch member extension (261) may comprise a portion of the closure device scaffold (278), as opposed to a separate movable member as described above in reference to FIGS. 13A-14B. Such a catch member extension (261) is not configured to be retractable, but need not be, as it is decouplable from the delivery tools, and such tools may therefore be retracted away through the hole or defect without concerns for reconfiguring the catch member for such retraction (i.e., because in this embodiment, the catch member need not be withdrawn back through the hole or defect after closure device deployment). Also shown in FIGS. 15A-15C are small omega formations (282) which may be utilized for fastening tethers, a cover, and the like, as described above in reference to FIGS. 6W and 6X. Further, a wire coupling is shown, comprising a sleeve (286) that is fitted over to abutted ends of the wire comprising the depicted scaffold (278) and welded (284) in place to form a robust junction by melting the sleeve over the wire ends. In one embodiment, the inner diameter of the sleeve may be about ½ of a thousandth of an inch larger than the outer diameter of the wire, for a tight fit, before the sleeve is melted (notwithstanding the fact that in one embodiment, both the wires and sleeve comprise NiTi material, preferably the wires remain unmelted and as intact as possible), forming a low-profile filleted joint which may be electropolished for smoothing before attachment of a cover member, tether, or other part. In other embodiments, such a junction may be created using adhesive bonding, crimping, press fit techniques, and/or thermal expansion/contraction techniques.

Referring to FIGS. 16A-16K, various aspects of a deployment are configured utilizing embodiments similar to those described in reference to FIGS. 13A-13D above. Referring to FIG. 16A, an assembly (290) similar to that of FIG. 13A is depicted being inserted through an arteriotomy (28) formed in a vessel (22). Referring to FIG. 16B, the delivery sheath (76) and collapsed closure device (86) may be advanced relative to the introducer sheath (2) to expose the delivery sheath (76) and collapsed closure device (86) to the bloodstream of the vessel (22). The delivery sheath (76) may comprise a channel or lumen for providing bleedback feedback to the operator, as described in reference to FIG. 11, such that the operator may insert and/or withdraw the delivery sheath (76) and collapsed closure device (86) until a desirable predetermined level of insertion is achieved, based upon the feedback from the bleedback configuration. Referring to FIG. 16C, with the delivery sheath (76) and collapsed closure device (86) optimally inserted relative to the arteriotomy (28), the delivery sheath (76) may be controllably withdrawn while the longitudinal position of the collapsed closure device (86) is maintained, and as shown in FIG. 16D, the foot member may be utilized to induce repositioning (in the depicted embodiment, rotational repositioning or reorienting) of both the collapsed closure device (86) and the catch member (258). Referring to FIGS. 16E and 16F, the introducer sheath (2) and delivery sheath (78) may be further withdrawn, and the collapsed closure device (86) and catch member (258) may be withdrawn or urged toward the tissue (292) surrounding the arteriotomy. As shown in FIG. 16F, the catch member interfaces with the nearby tissue (292) and geometrically prevents the closure device (86) from being withdrawn out of the arteriotomy (28). With the collapsed closure device (86) appropriately positioned and oriented prior to expansion of the closure device to an expanded configuration, the closure device may be expanded to the expanded configuration (88), as shown in the transformation from FIG. 16G to FIG. 16H. Referring to FIG. 16I, with the closure device (88) deployed into the expanded configuration, the elongate deployment member (90), foot member (93), and catch member (258) and associated elongate member (260) may be withdrawn proximally, preferably after the elongate member (260) has been advanced relative to the foot member (93) to place the catch member into a withdrawn configuration, as described above. As shown in FIG. 16J, the introducer sheath (2) and delivery sheath (76) may also be withdrawn, leaving behind the attachment tensile member (83) which is coupled to the closure device (88). Referring to FIG. 16K, in one embodiment, a resorbable compressive member (294), such as a sheet or cylindrical plug member (294) of collagen or other bioresorbable material slidably coupled to the attachment tensile member (83), may be advanced toward the arteriotomy to place the arteriotomy wound in compression between the member (294) and the deployed closure device (88). The surrounding tissue would serve to maintain the position of the member (294) relative to the arteriotomy, but in one embodiment, one or more sutures may be utilized to fasten the member (294) in position relative to the arteriotomy (28). In another embodiment, a flowable material, such as hydogel or other pro-thrombal agent selected to promote healing and/or clotting, may be dispensed adjacent the arteriotomy.

Referring to FIG. 17, a process embodiment is illustrated featuring configurations such as those described above in reference to FIGS. 16A-16K. Referring to FIG. 17, with several steps in common with the process embodiments described in reference to FIGS. 8A, 8B, and 10, after transcutaneous access and arteriotomy are created (160) and introducer advancement (162), a deployment assembly comprising a collapsed closure device movably coupled to a proximal catch member and other tools may be inserted through the introducer (208), positioned relative to the end of the introducer (166), and adjusted longitudinally to a position near the arteriotomy (for example, using bleedback detection to confirm longitudinal positioning relative to a predetermined position associated with bleedback, as described above in reference to FIG. 11; 167). The foot may be controllably flexed to reorient and/or reposition the collapsed closure device and catch member (296), after which the collapsed closure device and catch member may be urged into a position adjacent and/or against the arteriotomy, with the catch member in position to prevent withdrawal or escape of the closure device through the arteriotomy (298). Subsequently the closure device may be expanded to the expanded configuration (172), the catch member may be retracted to a withdrawal configuration (300), other deployment tools may be retracted/withdrawn (174), and the free length of tether remaining may be shorted before transcutaneous access is closed.

Referring to FIGS. 18A-18C, a fully bioresorbable closure device configuration is depicted. Referring to FIG. 18A, in a collapsed configuration (322), a “furling”/“unfurling” closure device (320) in the “furled” or collapsed state has a relatively small outer diameter. Referring to FIG. 18B, with tension on the one or more tensioning elements (328, 330), which may be coupled to the depicted coupling points (332, 334), or in another embodiment featuring four tensioning elements (not shown), to the other depicted coupling points (344—four corners of the substantially rectangular sheetlike closure device), and concomitant pushing of a cinching member (326) toward the closure device (i.e., to create a compressive load 338 between the cinching member 326 and closure device 324), the closure device assumes an expanded configuration (324) wherein a substantially cylindrical shape is assumed, at least in part. In the depicted embodiment, the arc length occupied by the expanded closure device (324) represents approximately ⅔ of the circumference of a full cylindrical shape. In another embodiment, the expanded closure device (324) represents approximately ½ of the circumference of a full cylindrical shape. The cinching member (326) may comprise a housing through which the one or more tensioning elements are passed, and may comprise a locking feature, such as a simple reed lock (i.e., as in a “zip tie” locking mechanism) to allow only tightening movement. The middle portion (342) adjacent the tensioning member portions coupling to the closure device (324) may be reinforced to prevent bucking under the applied loads—to facilitate controllable expansion with applied tensioning (340) and compression (338) of the cinching member (326). Referring to FIG. 18C, a side view of a deployed configuration such as that illustrated in FIG. 18B is depicted, showing the expanded closure device configuration (324) occluding the arteriotomy (28).

In another embodiment similar to that illustrated in FIGS. 18A-18C, one or more portions of such embodiment may be nonresorbable. For example, in one embodiment, a sheetlike portion of the unfurling prosthesis (320) may be bioresorbable, while one or more structural members comprising materials such as one or more nonresorbable metals or polymers may be coupled to the sheetlike portion to assist with the unfurling or other deployment steps or configurations.

Referring to FIG. 19, a process for utilizing a configuration such as that described in reference to FIGS. 18A-18C is illustrated. Referring to FIG. 19, after transcutaneous access and arteriotomy creation (160) and introducer advancement (162), a deployment assembly comprising a rotationally-compressed, or “furled”, closure device may be advanced into position through the introducer (312). The distal portion of the deployment assembly may be positioned relative to the introducer (166), and bleedback may be utilized to assist with positioning relative to the arteriotomy (167) before retracting the delivery sheath and allowing the rotationally-compressed closure device to have direct access to the interior of the artery (314), adjust in position relative to the arteriotomy (316), expand or “unfurl” to close the arteriotomy (318)—i.e., by applying tension to associated tension elements, followed by removal of associated tools (174) and final tether shortening and wound closure (176).

Referring to FIGS. 20A-20K, an embodiment similar to that described in reference to FIGS. 16A-16K is illustrated, the embodiment of FIGS. 20A-20k featuring use of a guiding member such as a guidewire to facilitate efficient return to the arteriotomy location in an over-the-wire configuration after closure, until such guiding member or wire is removed. Referring to FIGS. 20A and 20B, an assembly is inserted and positioned as in FIGS. 16A and 16B. Referring to FIG. 20C, a guiding member (302), such as a guidewire, is inserted through a lumen defined in the foot member or elongate deployment member, through the collapsed closure device (86), and out distally into the vascular lumen. In another embodiment, a distal portion guiding member (302) may be preadvanced to a location within the collapsed closure device (86) before any instrumentation is inserted through the arteriotomy (28) as in FIGS. 20A and 20B. With the guiding member in place, the deployment of the closure device (86, 88) is continued, as shown in FIGS. 20D-20J, which parallel the deployment steps of FIGS. 16D-16J (with the exception that a plug member 294 is not shown in the embodiment of FIG. 20J, and a guiding member 302 is present in each step). Referring to FIG. 20J, with the tether member clipped and the closure device expanded (88), the guiding member (302) may remain in place until a time that the surgeon decides it may be removed (as in FIG. 20K), which may occur well after hemostasis of the arteriotomy. Should the operating team need fast and efficient access to the location of the arteriotomy and the associated vessel lumen while the guiding member remains in place, an over-the-wire procedure may be utilized to take further instrumentation directly to the site.

Referring to FIG. 21, a process for utilizing configurations such as those featured in FIGS. 20A-20K is illustrated. As shown in FIG. 21, after transcutaneous access and arteriotomy are created (160), an introducer advanced (162), and in this embodiment, a deployment assembly featuring a catch member inserted (208), and repositioned relative to the introducer (166), a guiding member such as a guidewire may be introduced (304), after which the deployment assembly may be withdrawn with feedback from a bleedback configuration, as described above in reference to FIG. 11 (167). The foot member may be utilized to reposition and/or reorient the collapsed closure device and catch member (296), followed by urging the collapsed closure device and catch member against the arteriotomy location (298), expansion of the closure device (172), controlled retraction of the catch member (300), retraction of associated tools—with exception of the guiding member, which may be left in place (306), and shortening of the free length of the tether member while leaving the arteriotomy provisionally closed over the guiding member. After the surgical team decides that a deployed guiding member is no longer warranted, the guiding member may be removed (310), preferably by gently tensioning/pulling it out through the arteriotomy.

Referring to FIG. 22A, an embodiment similar to that depicted in FIG. 20G is depicted without the associated anatomy. FIG. 22B depicts a close-up view to illustrate that in one embodiment, the guiding member (302) may be passed through a lumen defined in part by a foot member portion (95), and in part by a conduit branch (99) configured to extend away from the foot member into the interior of the closure device (86), to direct the guiding member out into the vascular lumen without further entanglement. Referring to FIG. 22C, in another embodiment, the distal aspect of a foot member may be directed down into the closure device (86) to function both as a foot member for deployment purposes, and also as a guiding member conduit, without the need for a conduit branch (99—in FIG. 22B). In either variation, a small entry port (101) is created where the guiding member (302) exits the closure device (86), and this port (101) may be closed to facilitate hemostasis after removal of the guiding member by application of direct pressure, a small flap door that is biased to close, one or more sutures that may be controllably tensioned to close the port, or a plug member used similarly as described in reference to FIG. 16J.

Referring to FIG. 23A, a simple illustration of a collapsed closure device (86) and associated catch member (258) is depicted. Referring to FIGS. 23B and 23C, in another embodiment, a distal catch member (259) comprising similar materials and being similarly controllably withdraw-able and/or repositionable, may be associated with the closure device (86) to prevent exit of the distal portion of the closure device back through the arteriotomy. The embodiment of FIG. 23C shows the distal catch member in a somewhat withdrawn configuration which may facilitate delivery and advancement through the arteriotomy. The embodiment of FIG. 23C shows the distal catch member in a fully extended position wherein it is configured to prevent withdrawal of the closure device (86) through an associated arteriotomy. The change from withdrawn to extended positions may be controllably executed by an operator pulling or pushing a push or pull member, such as a pushrod or tension element such as a wire or suture.

Referring to FIGS. 24 and 25, embodiments are illustrated wherein a guidewire is inserted before introduction of a deployment assembly, with other steps similar to those of other aforementioned embodiments, such as that of FIG. 21. Referring to FIG. 24, after creation of transcutaneous access and an arteriotomy, a guidewire (“GW”) may be introduced to reach the interior of the artery (346). Subsequently, an introducer may be advanced in an over-the-wire configuration (348), followed by a deployment assembly through the introducer and over-the-wire. Subsequent steps are similar to those described in reference to the illustrative embodiment of FIG. 21. Referring to FIG. 25, an embodiment similar to that of FIG. 24 is depicted, with the exception that the guidewire (“GW”) may be utilized to assist with positioning of the deployment assembly—without the use of an introducer. As shown in FIG. 25, after creation of transcutaneous access and an arteriotomy (160), the guidewire may be introduced (346), followed by the deployment assembly in an over-the-wire configuration, without an introducer (352). Subsequently the deployment assembly position may be adjusted, without the presence of an introducer (354), and the remaining steps may be similar to those described in reference to the illustrative embodiment of FIG. 21.

Various exemplary embodiments of the invention are described herein. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. Further, as will be appreciated by those with skill in the art that each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present inventions. All such modifications are intended to be within the scope of claims associated with this disclosure.

Any of the devices described for carrying out the subject interventions may be provided in packaged combination for use in executing such interventions. These supply “kits” further may include instructions for use and be packaged in sterile trays or containers as commonly employed for such purposes.

The invention includes methods that may be performed using the subject devices. The methods may comprise the act of providing such a suitable device. Such provision may be performed by the end user. In other words, the “providing” act merely requires the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.

Exemplary aspects of the invention, together with details regarding material selection and manufacture have been set forth above. As for other details of the present invention, these may be appreciated in connection with the above-referenced patents and publications as well as generally know or appreciated by those with skill in the art. For example, one with skill in the art will appreciate that one or more lubricious coatings (e.g., hydrophilic polymers such as polyvinylpyrrolidone-based compositions, fluoropolymers such as tetrafluoroethylene, hydrophilic gel or silicones) may be used in connection with various portions of the devices, such as relatively large interfacial surfaces of movably coupled parts, if desired, for example, to facilitate low friction manipulation or advancement of such objects relative to other portions of the instrumentation or nearby tissue structures. The same may hold true with respect to method-based aspects of the invention in terms of additional acts as commonly or logically employed.

In addition, though the invention has been described in reference to several examples optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention.

Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.

Without the use of such exclusive terminology, the term “comprising” in claims associated with this disclosure shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.

The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of claim language associated with this disclosure.

Claims

1. A method for closing a hole in a vessel, comprising:

a. inserting through the hole an implantable closure device having proximal and distal ends and being expandable from a collapsed state to an expanded state, the expanded state providing a geometry sufficient to substantially occlude the hole;
b. inserting a distal portion of an elongate guiding member through the hole and into a vascular lumen formed by the vessel; and
c. controllably expanding the implantable closure device to the expanded state to occlude the hole, while leaving the distal portion of the elongate guiding member extending into the vascular lumen.

2. The method of claim 1, further comprising inserting an introducer sheath through the hole, the introducer sheath defining an introducer lumen sized to accommodate insertion of the collapsed state of the closure device.

3. The method of claim 1, wherein inserting comprises advancing the implantable closure device relative to the hole with a deployment member having a proximal portion configured for manual manipulation and a distal portion configured to be removably coupled to the implantable closure device.

4. The method of claim 3, further comprising controllably moving the collapsed closure device relative to the deployment member to place the closure device into a geometric configuration relative to the vascular lumen that is selected to prevent withdrawal of the closure device back out of the hole.

5. The method of claim 4, wherein controllably moving comprises rotating the collapsed closure device relative to the deployment member to place the closure device into a rotated orientation selected to prevent withdrawal of the closure device back out of the hole when the deployment member is withdrawn.

6. The method of claim 4, wherein controllably moving comprises translating the collapsed closure device relative to the deployment member to place the closure device into compression against a portion of the deployment member.

7. The method of claim 6, wherein translating causes the collapsed closure device to controllably rotate to a rotated orientation selected to prevent withdrawal of the closure device back out of the hole.

8. The method of claim 2, further comprising advancing an assembly of a delivery sheath and collapsed implantable closure device, at least a portion of which is removably positioned within the introducer lumen, to a deployment position within the vascular lumen wherein reconfiguration of the implantable device from the collapsed state to the expanded state is desired, and maintaining the position of the collapsed implantable device while retracting the delivery sheath to expose the collapsed implantable device to the vascular lumen.

9. The method of claim 8, further comprising selecting the deployment position based at least in part upon an indication from a bleedback indicator channel.

10. The method of claim 1, further comprising urging the expanded implantable closure device toward the hole, wherein the expanded state is configured to contact at least 90 degrees of an inner surface of the vessel adjacent the hole relative to a longitudinal axis of the vascular lumen, and to restrict fluids from exiting the vascular lumen through the hole.

11. The method of claim 1, wherein the closure device is a self expanding structure configured to expand itself from the collapsed state to the expanded state when not restrained in the collapsed state.

12. The method of claim 11, wherein controllably expanding comprises moving a portion of a deployment tensile element relative to the self expanding structure to allow the self expanding structure to expand itself to the expanded state.

13. The method of claim 1, wherein the closure device expanded state forms a substantially cylindrical shape defining a lumen therethrough.

14. The method of claim 1, wherein the elongate guiding member comprises a guidewire.

15. The method of claim 3, wherein inserting the elongate guiding member through the hole comprises advancing the elongate guiding member through a lumen defined through the deployment member.

16. The method of claim 1, wherein the elongate guiding member is removably coupled to the implantable closure device.

17. The method of claim 3, further comprising decoupling the deployment member from the implantable closure device while leaving the distal portion of the elongate guiding member extending into the vascular lumen.

18. The method of claim 17, further comprising engaging the elongate guiding member to re-enter the vascular lumen in an over-the-wire configuration.

19. The method of claim 17, further comprising removing the elongate guiding member from the vascular lumen.

20. The method of claim 1, wherein at least the distal portion of the elongate guiding member comprises a radioopaque material selected to be visible with fluoroscopic imaging.

21. The method of claim 1, wherein the implantable closure device is inserted through the hole before the elongate guiding member.

22. The method of claim 1, wherein the elongate guiding member is inserted through the hole before the implantable closure device.

23. The method of claim 22, wherein the implantable closure device is inserted through the hole and over the elongate guiding member in an over-the-wire configuration.

Patent History
Publication number: 20120065668
Type: Application
Filed: Aug 8, 2011
Publication Date: Mar 15, 2012
Patent Grant number: 9078632
Applicant: PROMED, INC. (Santa Clara, CA)
Inventors: Richard S. Ginn (Gilroy, CA), Nicanor Domingo (Santa Clara, CA), Hans F. Valencia (San Jose, CA), Robert Elliott DeCou (San Carlos, CA), Scott Yerby (Montara, CA)
Application Number: 13/205,528
Classifications
Current U.S. Class: Sutureless Closure (606/213)
International Classification: A61B 17/03 (20060101);