PUMP SHAFT BEARING SUPPORT

A device and method of tailoring a pump lift capacity of a pump for an electrical submersible pumping unit (ESP). The pump unit of the ESP has a plurality of stages, each made up of an impeller and a diffuser. The ESP has a pump lift capacity, which is ideally matched with well capacity. The well capacity is, therefore, the target lift capacity. To facilitate matching of pump lift capacity and well capacity, one or more stages of the pump unit may be replaced with a spacer assembly to reduce pump lift capacity by a desired amount. The spacer assembly may include a shaft bearing support made up of an outer ring and an inner ring, wherein the outer and inner ring are connected by webs, which allow oil to flow through the support. The spacer assembly may be axially located on the pump shaft via compression tubes.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The invention relates to electrical submersible pumps. More particularly, the invention relates to replacing one or more pump stages with a spacer, or pump shaft bearing support, for fine tuning a pump's lift capacity to more closely match well capacity.

BACKGROUND OF THE INVENTION

Electrical submersible pumps (ESP) are used to artificially lift well fluid from deep underground. Primarily, ESPs are used to pump oil, typically as part of an oil and water mix, from deep wells at high pressures. ESPs are driven by long tubular, high horsepower, electric inductance motors that typically run at speeds of approximately 3,500 rpm. A common type of pump used in an ESP is a pump generally known as a centrifugal pump. Centrifugal pumps are made up of six (6) primary components. The major components are the housing, shaft, head, base, impeller and diffuser. The impeller and diffuser, when paired together, are referred to as stages.

Pumps are designed, manufactured and marketed by stage and series. The term “stage” reflects stage variation or the number of stages in a pump. “Stage” is a term used to communicate accurately the amount of fluid a pump can lift in a day. A common daily rate of lift is described in barrels per day. For example “D50” refers to a pump with an impeller and diffuser combination, i.e., stage, that is able to lift 50 gallons per hour under specific power requirements, rpm and well fluid levels. Therefore, pump stages are an important consideration when sizing an ESP for a well.

“Series” is a term that directly relates to a pump's outside diameter (O.D.) and indirectly to a well casing inside diameter (I.D.). Pumps are designed, manufactured and sold in many different series so that pumps may be easily sized to fit into a well casing and to allow room for the pump's housing and for power cable clearance. Common series in the industry are 300, 400, 500, 675 and so on. A 500 series pump will fit into a well casing I.D of 6.50 inches. An incorrectly sized pump runs the risk of getting stuck in the casing.

The larger the series number and the larger the stage number and amount of stages, the more fluid a pump can lift in a given time period. The amount of fluid that a pump can lift in a given time period is referred to as lift capacity. However, the lift capability of a pump is not only dependent on pump diameter, pump size and number of stages, but it is ultimately tied to the capability of a well to produce fluid.

A well will produce only the quantity of fluid that is released from a well formation under the surface. Wells are logged and evaluated to determine their ability to produce fluid, known as capacity. Capacity is important for two reasons. First, lifting more fluid than the well can produce will run a pump dry and irreparably damage the pump. Second, to maximize profits, production and efficiency, a pump needs to lift exactly the amount of fluid that a well will provide. Therefore, sizing the pump is critical.

In the past, pump manufactures were only able to get close to providing a pump with the amount of stages to exactly match lift with well capacity. This is due to limitations imposed by commonly available housing lengths and stage configurations.

Several methods have been utilized to match pump lift capacity with well capacity. One way to size a pump is to tie pumps together, i.e., a tandem pump, so that the stages add up closely to the requirements. A disadvantage with this solution is that the use of tandem pumps is a costly solution to the customer.

Another way to avoid pumping off or under pumping a well is to control the speed (rpm) of a pump with a variable speed drive (VSD). The flow rate of the pump can be controlled by a VSD. The VSD actively monitors the fluid discharge rates to increase or decrease the pump's speed. A disadvantage associated with the use of VSDs is that VSDs are relatively expensive and costly to operate, thus costing the customer more.

SUMMARY OF THE INVENTION

Therefore, it is desirable to provide a low cost method of matching pump lift components with well capacity. The pump lift capacity of a pump can be modified by the replacement of one or more stages with a shaft bearing support of the invention.

By adding the shaft bearing support of the invention, a given housing can be used with the exact number of stages required to effectively pump fluid out of a well, which allows for a well to be pumped without running the well dry and without leaving any fluid below. This invention will maximize profits and efficiency while minimizing wear and tear on the equipment.

The shaft bearing support of the invention is made up of several features. The outside diameter of the shaft bearing support is an outer ring that fits inside a pump housing. Webs connect the outer ring to an inner ring, which defines an inside diameter of the shaft bearing support. Therefore, the inner ring is fixed relative to the outside diameter ring. Both the outer and inner rings have a sufficient width and depth to be mechanically sound. The inner ring of the shaft bearing support has an inner diameter (ID) that is large enough to allow the pump shaft to pass therethrough and to accommodate a fluid bearing between the pump shaft and the ID of the inner ring. The webs of the shaft bearing support define a volume or void between each web so that pumped fluid can move through the voids defined by the pump shaft bearing support with minimal obstruction or frictional loss.

One or more compression tubes may be located adjacent to the shaft bearing support. The orientation and configuration of the compression tubes relative to the shaft bearing support to the stage can vary. The compression tubes may be located toward the head, they can be toward the base, or they can be anywhere in between. A common orientation is to locate a first compression tube adjacent to the head, then locate a first side of the shaft bearing support adjacent to the first compression tube. A second compression tube may then be located adjacent to a second side of the shaft bearing support.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a typical ESP deployed in a well.

FIG. 2 is an exploded perspective view of a pump section of the ESP of FIG. 1, equipped with a pump shaft bearing support of the invention.

FIG. 3 is an enlarged perspective view of the pump shaft bearing support of FIG. 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1, shown is a well designated generally 10. The well consists of casing 12. Tubing 14 extends downwardly into casing 12 from wellhead 16. An electrical submersible pump (ESP) unit, designated generally 18, is suspended from tubing 14. ESP unit 18 has a centrifugal pump unit 20. Pump unit 20 has an intake end 22 and an output end 24. Output end 24 is affixed to tubing 14 for delivering fluids to tubing 14.

Pump unit 20 further includes a housing 26. A pump base 28 (FIG. 2) is affixed to intake end 22 of housing 26. Pump head 30 is affixed to output end 24 of housing 26. Pump shaft 32 extends through housing 26. A plurality of impellers 34 are affixed to pump shaft 32 for rotating with pump shaft 32. A plurality of diffusers 36 are located adjacent to each of impellers 34 for directing fluid flow toward a center of an adjacent impeller 34. As shown in FIG. 2, each of said impellers 34 and diffusers 36 comprise a stage 38.

ESP unit 18 additionally may be provided with gas separator 40 (FIG. 1), which is typically affixed to pump base 30. Seal section 42 is affixed to lower end of gas separator 40. Motor 44 is affixed to a lower end of seal section 42. Motor 44 is used to rotate pump shaft 32.

Referring now to FIGS. 2, 3, pump unit 20 may be provided with a spacer assembly 46 that surrounds a portion of pump shaft 32 within pump housing 26. Spacer assembly 46 preferably includes a shaft bearing support 48. Shaft bearing support 48 has an outer ring 50 that defines an outside diameter of pump shaft bearing support 48. Pump shaft bearing support 48 additionally has an inner ring 52 that defines an inside diameter of pump shaft bearing support 48. Inner ring 52 is for receiving pump shaft 32. A plurality of webs 54 define a plurality of voids therebetween.

In a preferred embodiment, shaft bearing support 48 is preferably a cast part made from Ni-resist and then machined to exact specifications. Webs 54 may be oriented perpendicularly to a central axis 53 of shaft bearing support 48, e.g., webs 54a. Alternatively, webs 54 may be tapered, e.g., 54b (FIG. 3B), angled, e.g., 54c (FIG. 3C), or twisted, e.g., 54d (FIG. 3D) to affect fluid flow passing over shaft bearing support 48.

Referring back to FIG. 2, spacer assembly 46 is made up of a first compression tube 55 (FIG. 2) located adjacent to a first side of shaft bearing support 48 and may include a second compression tube 58 located adjacent to a second side of shaft bearing support 48. Compression tubes 55 and 58 axially locate shaft bearing support 48 within housing 26 of pump unit 20. First and second compression tubes 55, 58, preferably have a diameter that is approximately equal to outer ring 50 of shaft bearing support 40. Compression tubes 55, 58 and shaft bearing support 48 preferably do not rotate.

In use, a lift capacity of ESP unit 18 may be modified by replacing one or more stages 38, preferably 8 to 10 stages 38, of pump unit 20 with spacer assembly 46, such as a spacer assembly made up of shaft bearing support 48, first compression tube 55, and possibly second compression tube 58. Multiple spacer assemblies 46 can be located within housing 26, e.g., multiple spacer assemblies 46 may be placed end to end. Other spacer assembly configurations may also be utilized that support pump shaft 32 and occupy space surrounding a length of pump shaft 32. By fine tuning the lift capacity of ESP unit 18 in this manner, the lift capacity may be made to more closely match the well capacity of well 10.

Thus, the present invention is well adapted to carry out the objectives and attain the ends and advantages mentioned above as well as those inherent therein. While presently preferred embodiments have been described for purposes of this disclosure, numerous changes and modifications will be apparent to those of ordinary skill in the art. Such changes and modifications are encompassed within the spirit of this invention as defined by the claims.

Claims

1. A pump unit for an centrifugal pump comprising:

a pump unit having an intake end and an output end, said pump unit including a housing;
a pump shaft extending through said housing;
a plurality of impellers affixed to said pump shaft for rotating with said pump shaft;
a diffuser adjacent to each of said impellers for directing fluid flow towards a center of said housing;
wherein each pair of said impellers and said diffusers comprises a stage;
a spacer assembly surrounding a portion of said pump shaft within said housing;
a motor in communication with said pump shaft, said motor for rotating said pump shaft.

2. The pump unit according to claim 1 wherein said spacer assembly comprises:

a shaft bearing support;
wherein the shaft bearing support minimizes deflection of said pump shaft while the pump unit is in operation.

3. The pump unit according to claim 2 wherein said shaft bearing support comprises:

an outer ring that defines an outside diameter of said shaft bearing support;
an inner ring that defines an inside diameter of said shaft bearing support;
a plurality of webs for connecting said outer ring to said inner ring, said webs defining a plurality of voids therebetween;
wherein said inner ring is sized to receive said pump shaft.

4. The pump unit according to claim 2 wherein said spacer assembly further comprises a first compression tube adjacent to a first side of said shaft bearing support.

5. The pump unit according to claim 2 wherein said spacer assembly further comprises:

a second compression tube adjacent to a second side of said shaft bearing support.

6. The pump unit according to claim 3 wherein said webs of said shaft bearing support are tapered.

7. The pump unit according to claim 3 wherein said webs of said shaft bearing support are angled.

8. The pump unit according to claim 3 wherein said webs of said shaft bearing support are twisted.

9. The pump unit according to claim 3 further comprising:

a first compression tube adjacent to a first side of said shaft bearing support; and
wherein said first compression tube has a diameter approximately equal to said outer ring of said shaft bearing support.

10. A well comprising:

a wellhead;
casing extending below said wellhead;
tubing extending downwardly from said wellhead within said casing;
a pump unit having an intake end and an output end, said output end affixed to said tubing for delivering fluids to said tubing, said pump unit including a housing;
a pump shaft extending through said housing;
a plurality of impellers affixed to said pump shaft for rotating with said housing;
a diffuser adjacent to each of said impellers for directing fluid flow towards a center of said housing;
wherein each pair of said impellers and said diffusers comprises a stage;
a spacer assembly surrounding a portion of said pump shaft within said housing;
a motor in communication with said pump shaft, said motor for rotating said pump shaft.

11. The well according to claim 10 wherein said spacer assembly comprises:

a shaft bearing support;
wherein the shaft bearing support minimizes deflection of said pump shaft while said pump unit is in operation.

12. The well according to claim 11 wherein said shaft bearing support comprises:

an outer ring that defines an outside diameter of said shaft bearing support;
an inner ring that defines an inside diameter of said shaft bearing support,
a plurality of webs for connecting said outer ring to said inner ring, said webs defining a plurality of voids therebetween;
wherein said inner ring is sized to receive said pump shaft.

13. The well according to claim 11 wherein said spacer assembly comprises:

a first compression tube adjacent to a first side of said shaft bearing support.

14. The well according to claim 13 wherein said spacer assembly comprises:

a second compression tube adjacent to a second side of said shaft bearing support.

15. The well according to claim 12 wherein said webs of said shaft bearing support are tapered.

16. The well according to claim 12 wherein said webs of said shaft bearing support are angled.

17. The well according to claim 12 wherein said webs of said shaft bearing support are twisted.

18. The well according to claim 12 further comprising:

a first compression tube adjacent a first side of said shaft bearing support; and
wherein said first compression tube has a diameter approximately equal to said outer ring of said shaft bearing support.

19. A method of tailoring a pump lift capacity of a pump for an electrical submersible pumping unit comprising the steps of:

determining a target pump lift capacity;
selecting a pump having a stage and series sized to have a pump lift capacity greater than said target pump lift capacity;
removing at least one stage from said pump;
replacing said at least one stage with a spacer assembly for reducing said pump lift capacity to more closely match said target pump lift capacity.
Patent History
Publication number: 20120073800
Type: Application
Filed: Sep 29, 2010
Publication Date: Mar 29, 2012
Inventor: MIKEL ERIC JANITZ (Sapulpa, OK)
Application Number: 12/893,553
Classifications
Current U.S. Class: With Eduction Pump Or Plunger (166/105); Electric Or Magnetic Motor (417/410.1)
International Classification: E21B 43/00 (20060101); F04B 35/04 (20060101);