Power Transmission System with Continuously Variable Speed Control
The present invention is directed toward an apparatus for continuous speed variation of an output member with respect to a primary input member. In particular, the present invention provides a device having an output that rotates at reduced speed and increased torque relative to its prime input through the low friction, rolling engagement of its members, or alternatively, at increased speed and reduced torque for overdrive applications. Furthermore, the speed of the output member may be varied continuously and infinitely between the apparatus's lowest and highest ratio via a secondary input member and its low friction, rolling engagement with the device's members.
Latest Patents:
This application is a continuation of U.S. patent application Ser. No. 12/962,504, filed Dec. 7, 2010 and entitled “POWER TRANSMISSION SYSTEM WITH CONTINUOUSLY VARIABLE SPEED CONTROL,” which is a continuation of U.S. patent application Ser. No. 11/535,286, filed Sep. 26, 2006 and entitled “POWER TRANSMISSION SYSTEM WITH CONTINUOUSLY VARIABLE SPEED CONTROL,” the disclosures of which are incorporated herein by reference.
TECHNICAL FIELDThe present invention is directed toward an apparatus for continuous speed variation of an output member with respect to a prime input member. In particular, the present invention provides a device having an output that rotates at reduced speed and increased torque relative to its prime input through the low friction, rolling engagement of its members, or alternatively, at increased speed and reduced torque for overdrive applications. Furthermore, the speed of the output member may be varied continuously and infinitely between the apparatus's lowest and highest ratio via a secondary input member and its low friction, rolling engagement with the device's members.
BACKGROUND OF THE INVENTIONThe ability to vary the power between an input and output shaft is vital to industries and economies throughout the world. Industries dependent on variable power transmission range from energy exploration and power generation to transportation and construction. Consequently, the applications range from stationary to mobile equipment, but the desired result remains the same, that is, to achieve the desired output of torque or speed in the most efficient manner possible.
In order to achieve these desired power transmission results a number of systems have developed over the years to vary the desired rotational speed output with respect to the prime input member in the most efficient manner possible. Most, if not all, such current systems may be classified as either stepped, conventional power transmission systems or step-less, continuously variable power transmission systems. Each of the presently available systems, whether conventional or continuously variable, have distinct advantages and corresponding disadvantages associated therewith.
First, conventional power transmission systems employ the use of multiple gear sets and clutching devices. Such systems, typically, receive input from a single source, and the speed ratio changes are accomplished in discrete steps by engaging different gears in the power transmission pathway until the output is in the vicinity of that which is desired. The output speed variation between two of the “geared” speed ratios is obtained by varying the input speed supplied by the prime mover. Consequently, the prime mover cannot always operate at its most efficient speed, resulting in a less than ideal power transmission system.
To the contrary, continuously variable transmission systems provide continuously variable speed ratio change between the minimum and maximum available speed ratios. With this type of power transmission system, the prime mover may be operated at its optimum speed for peak performance or efficiency. Presently available continuously variable transmission systems include belt systems, toroidal systems, and hydrostatic systems. These present continuously variable transmission systems provide a significant advantage over conventional systems; however, these systems are not without their own drawbacks.
Belt driven continuously variable transmissions consist essentially of a drive pulley, a belt, a driven pulley, and a control system. The drive pulley is driven by the prime mover and consists of two cones facing each other. The driven pulley transfers power to the output, and it also consists of two cones facing each other. The belt rides in the groove between the two cones of each pulley. When the two cones of the pulley are far apart (when the diameter increases), the belt rides lower in the groove, and the radius of the belt loop going around the pulley gets smaller. When the cones are close together (when the diameter decreases), the belt rides higher in the groove, and the radius of the belt loop going around the pulley gets larger. Such a continuously variable transmission system may use hydraulic pressure, centrifugal force, or spring tension to create the force necessary to adjust the pulley halves. This type of system works well for its intended purpose and provides many advantages including its efficiency and simplicity; however, several drawbacks of the belt driven continuously variable transmission exists as well. First, this type of system is typically limited to small, relatively low horsepower applications because of its reliance on the belt for full power transmission. In such a system, the belt can stretch (resulting in slippage and efficiency loss) or break resulting in complete power failure. Additionally, the system is limited by its size. The typical belt system is large in size and weight, limiting its useful applications to light stationary or light mobile equipment.
Toroidal continuously variable power transmissions work similarly to the belt system, but it replaces the belt and pulleys with discs and power rollers. The input disc is driven by the prime mover, and the output disc transfers power to the output. Rollers are located between the discs acting like the belt, in a belt system, transmitting power from the input disc to the output disc. In operation, the rollers can rotate along two separate axes. Each roller may spin around the horizontal axis and tilt in or out around the vertical axis, which allows the roller to contact the discs in different areas. When the rollers are in contact with the input disc near the center, they must contact the output disc near the rim, resulting in a reduction in speed and an increase in torque. When the rollers contact the input disc near the rim, they must contact the output disc near the center, resulting in an increase in speed and a decrease in torque. Therefore, any tilt of the rollers incrementally changes the gear ratio, providing for an infinite variation in speed ratios between the corresponding system's minimum and maximum ratio. This type of system, similarly to the belt system, suffers from drawbacks associated with its limited size and scope. Toroidal continuously variable power transmissions are unable to handle large torque loads, and are quite heavy, limiting them to light stationary and mobile equipment as well.
Finally, hydrostatic continuously variable transmission systems use variable displacement pumps to vary the fluid flow into hydrostatic motors. In this system, the rotational motion of the prime mover operates a hydrostatic pump on the input side. The pump converts the rotational motion into fluid flow; then, with a hydrostatic motor located on the output side, the fluid flow is converted back into rotational motion. However, hydrostatic drives also have several drawbacks. The hydrostatic power transmission systems are noisy and operate at very low efficiency. Therefore, they are generally used only for low speed applications such as agricultural machinery and construction equipment. Additionally, hydrostatic power transmission systems are prone to contamination, which can result in efficiency loss or catastrophic system failure.
More recent developments in step-less, continuously variable power transmission systems involve the use of electromechanical transmission systems. Many such systems operate on a power-split concept similar to hydrostatic drives. Furthermore, the typical electromechanical power transmission system integrates either single or compound planetary gear trains to achieve a continuously variable transmission of power. However, a number of inherent deficiencies exist in this type of mechanical gear train that are well known in the art. For instance, the efficiency and performance of this type of system is detrimentally impacted by the sliding frictional forces generated during its operation. In order to transfer torque, planetary gear systems depend on the sliding engagement of individual gear teeth. It is well known that this sliding produces high frictional forces between the teeth, which can lead to total destruction of the system if not continuously and properly lubricated. Furthermore, proper transfer of torque in these planetary gear systems is totally reliant on the strength of each individual gear tooth. As the input member of the system rotates at a given torque, the force from each single tooth of the input is transferred, one at a time, to each single tooth of the mating gear. As a result, each individual tooth must be designed to transfer the entire force of the system including any impact loads that may be introduced at any particular time. Additionally, any tooth breakage can lead to catastrophic failure of the entire system. Finally, traditional means of manufacturing housing and components of current planetary gear systems are not only expensive and time consuming to set up and modify, but they are also expensive and time consuming to manufacture and produce. The housing for such a system consists of two or more cast parts assembled together; therefore, in order to either originally produce housings or modify existing designs, either new molds must be manufactured or modifications must be made to existing molds. Likewise, expensive tooling and highly skilled personnel are required for both the gears themselves and other major components of a planetary gear system.
In view of the limitations of products currently known in the art, a tremendous need exists for a continuously variable transmission system that is compact, efficient, durable, reliable, cost-effective, and able to handle high power applications.
SUMMARY OF THE INVENTIONIn view of the foregoing, it is an object of the present invention to provide an apparatus for power transmission that allows continuously variable speed control of the output with respect to the input.
It is another object of the present invention to provide an apparatus for power transmission that is extremely compact in size.
It is another object of the present invention to provide an apparatus for power transmission that is light in weight.
It is another object of the present invention to provide an apparatus for power transmission that is exceptionally efficient.
It is another object of the present invention to provide an apparatus for power transmission that is extremely reliable.
It is another object of the present invention to provide an apparatus for power transmission that has an excellent power to size ratio.
It is another object of the present invention to provide an apparatus for power transmission that can transmit extremely high torque loads.
It is another object of the present invention to provide an apparatus for power transmission that is extremely durable.
It is another object of the present invention to provide an apparatus for power transmission that is highly cost effective to manufacture.
In satisfaction of these and other related objectives, the present invention provides an apparatus for power transmission with continuously variable speed control of the output. This system provides for highly efficient transfer of power from a prime input member to an output member with output speed controlled via a secondary input member. As will be discussed in the specification to follow, practice of the present invention involves a combination of components so aligned to provide efficient transfer of power for a wide range of horsepower ratings and a wide range of applications, while allowing for infinite variation in output speed from a maximum speed through zero output rotation to reverse or negative output rotation, if desired.
The preferred embodiment of the present invention incorporates a power input shaft, driven by a prime mover, configured for low-friction, rolling engagement with dual, offset driver discs. In operation, as the power input shaft rotates in a given direction each driver disc is pushed outward against another low friction, rolling mechanism, driving a second member to rotate in the same direction about the input shaft and at a reduced speed and corresponding torque increase. This increased torque is further transferred via low friction, rolling engagement with a set of dual, offset driven discs. These discs, in operation, are also pushed outward against a final low friction, rolling mechanism, driving an output member to rotate in the same direction as the second member at a further reduced speed and corresponding torque increase. Hence, the result being, an output member configured to operate in the same direction as the input member, but at reduced speed and increased torque, while being operated completely through low friction, rolling engagement of their respective members.
Additionally, a second system is incorporated into the first in order to continuously vary the output speed from the maximum speed obtainable through the elimination of rotation of the output shaft in its entirety to reverse output rotation, if desired. This second system incorporates a secondary input device, driven by a secondary power source. This secondary input is configured to drive a hollow shaft member, with which the power input shaft has near frictionless engagement, while extended therethrough. This secondary input shaft incorporates two sets of dual eccentric lobe members configured for rolling engagement with the inner surfaces of the driving and driven discs of the primary system respectively. In operation, as this secondary shaft is rotated in the opposite direction of the primary, power shaft. This action, in turn, further slows the rotation of both the driving and driven disc members about the input shaft, resulting in a greater speed reduction in the output shaft. Thus, as the secondary input member's speed increases, the output shaft's speed correspondingly decreases until its rotation is completely eliminated. Furthermore, as the secondary input member's speed is further increased, the output shaft rotates in the opposite direction from that of its original direction of rotation, thus, providing breaking for the device attached to the output member.
The result is a continuously variable transmission system with capabilities unmatched by the prior art. First, through a novel configuration of components, the present invention allows the prime mover to continuously operate at the user's desired speed and torque, whether the application requires a particularly high transmission of torque throughout its specified operating speeds or whether the application calls for the prime mover to operate at its peak efficiency for maximum fuel economy. That is, in operation, the present system allows for the prime mover to be set and held at the optimum speed for which the application calls. When the secondary input member is fixed to prevent rotation of the secondary input shaft, the speed is reduced through the two (or more) stage reduction system of low friction rollers to the maximum output speed and corresponding desired torque increase of the output shaft. While holding the prime mover constant, the secondary input member, which may be driven by either an electric or hydraulic motor, is ramped up, resulting in a further reduction in speed of the output member, while keeping the output member at a constant torque. Therefore, the system allows for an infinitely variable, step-less, variation in output speed, while maintaining the prime mover at a constant speed and while maintaining the available torque to the output member at a constant level as well. Furthermore, the system can be used to retard speed or provide breaking to a device connected to the output member by continuing to ramp up the speed of the secondary input until the rotation of the output member is reversed.
Secondly, because of its compact design, and the robustness of its component parts, the present invention is able to transmit much higher torque and horsepower than current continuously variable transmission systems, while maintaining a much smaller envelope and lighter operating weight. Current continuously variable operating systems depend on sets of conical discs and either belts or rollers to transmit the torque loads. These types of systems, as previously mentioned, result in large, heavy systems compared to the torque loads they are capable of transmitting. By contrast, the present invention has an extremely high torque to size/weight ratio because the present invention is merely dependent upon the size of the driver and driven discs and the eccentricity of each. Further, because torque is transmitted by a series of low-friction rolling members, large torque transmitting members are not necessary.
Additionally, the mechanical efficiency of the present invention is extremely high because of the near elimination of friction within the system as compared to current continuously variable power transmission systems. Whereas, most continuously variable transmission systems depend on friction for the transmission of the torque, most of the newer, electromechanical systems use planetary gear systems, as previously mentioned. In the former, a reduction in friction results in slippage and a corresponding reduction in efficiency, while in the latter, a significant amount of efficiency is lost due to the “sliding” friction generated between the mating teeth. By contrast, all torque transfer in the present system is accomplished through low-friction, rolling engagement; therefore, because the present invention completely eliminates the “sliding” or slipping friction effects of the prior art, the present invention is able to operate at a significantly higher efficiency.
The present invention is also able to withstand much higher loading (including impact loading) than prior art continuously variable transmission systems. In belt systems, all loading is transferred via belts; thus, the system is limited by the tensile strength of belt materials. In toroidal systems, all loading is transferred via friction rollers; thus, the system is limited by the frictional loading between the rollers and the discs. Finally, in electromechanical gearing systems, all loading is transferred via a single gear tooth; thus, these systems are limited by the strength of materials and the loading that a single gear tooth can withstand. In the present invention, loading is evenly distributed among multiple, rolling members, which, in turn, allows the system to withstand much higher loading than its traditional counterparts. Not only does this result in a more robust system (compared to the size of the system), but it also results in a more reliable system because damage to one rolling member does not result in total system failure whereas a broken gear tooth, belt, or roller does lead to total system failure in the known prior art systems. Therefore, the present design is much more durable and reliable than currently available continuously variable transmission systems.
Finally, the present invention, in its preferred embodiment, is extremely cost effective in view of the prior art of continuously variable transmission systems. The novel design of the present invention provides for a simple and cost-effective manufacturing process as opposed to more traditional manufacturing techniques applied to current power transmission systems. Whereas the traditional manufacturing methods of casting and extensive machining of a number of different sized components is laborious, time-consuming, and expensive, the present invention requires relatively very little in the way of lead or production costs. In the present invention, both the housing and the internal components of the device are laminated. That is, each component is comprised of a plurality of relatively thin pieces of source material, generally consisting of a metal alloy or some other suitably rigid material, which are individually cut and sandwiched together using an affixing means, such as pins, screws, or other bonding techniques, to form the final primary components. Production by way of lamination greatly reduces both start up time and cost as well as production time and cost without sacrificing strength or quality. Start up time and cost are reduced by eliminating the need for long-lead casting and machining equipment. Correspondingly, production time and cost are reduced by eliminating the need for stocking and using materials of multiple thicknesses and by eliminating the need for extensive machining and highly skilled machinists to produce final primary components. Thus, when compared to the prior art continuously variable power transmission systems, the present invention provides a substantially more cost-effective device than is presently available.
In summary, the present invention provides a highly cost-effective, compact, and reliable continuously variable power transmission system capable of withstanding significantly higher torque loads than that of the prior art.
Applicant's invention may be further understood from a description of the accompanying drawings, wherein unless otherwise specified, like referenced numerals are intended to depict like components in the various views.
Referring to
A first embodiment of the present invention is seen in
Continuing along the power path, and referring to
Still referring to
Next, still referring to
Continuing along the speed control circuit, first stage eccentric lobe members (78,79) and second stage eccentric lobe members (80,81) are affixed to input sleeve (66). Correspondingly, each pair of lobe members (78-81) has the center point of one lobe member (78,80) offset from the central axis of input member (12) in one direction, while the other lobe member (79,81) is centrally offset from the central axis of input member (12) an identical distance in the diametrically opposing direction.
In operation, a power drive means is applied to input member (12) through a coupling engagement as known in the art. Assuming secondary input member (62) is constrained, the input speed and torque is directly transferred with minimal efficiency loss to first stage adapter member (18) because of input member's (12) low-friction, rolling support of input bearing member (16) with respect to housing member (56), sleeve bearing members (70) with respect to constrained input sleeve (66), second stage bearing member (33) with respect to second stage adapter member (30), and output engagement bearing member (58) with respect to output engagement member (54). Progressing along the power train, the input speed and torque transfers from first stage adapter member (18) to driver disc members (24) through low-friction, rolling engagement of pin members (22) and roller members (20). As first stage adapter member (18) rotates at the same speed and torque as input member (12), roller members (20) force driver disc members (24) to rotate about eccentric lobe members (78,79), and therefore input member (12) and constrained sleeve member (66), in a “cam-type” fashion. The disc members are allowed to rotate about eccentric lobe members (78,79) via their rolling engagement with eccentric lobe members (78,79) through driver disc bearing members (26). Correspondingly, as each driver disc member (24) rotates, it creates an eccentric sweep, which forces driver disc (24) outward onto roller (28). This continued rotation of disc members (24) forces disc members (24) to “walk” along rollers (28). This action forces second stage adapter member (30) to rotate (through low-friction, rolling engagement) about first stage adapter member (18) at a reduced speed and corresponding torque increase with very little efficiency loss, not only because of its low-friction rolling engagement with its driving members, but also because of its rolling engagement with central lobe member (74) via bearing member (76) and its rolling engagement with first adapter member (18) via second stage bearing member (33).
Continuing along the power train, the reduced speed and increased torque of second stage adapter member (30) is transmitted to driven disc members (34), through the low-friction rolling engagement of pin member (36) and corresponding roller members (38). The second stage speed reduction functions similarly to the first stage speed reduction. That is, as second stage adapter member (36) rotates at a reduced speed and increased torque from that of input member (12), roller members (38) force driven disc members (34) to rotate about eccentric lobe members (80,81), and therefore input member (12) and constrained sleeve member (66), in a “cam-type” fashion. The driven disc members (34) are allowed to rotate about eccentric lobe members (80,81) via their rolling engagement with eccentric lobe members (80,81) through lobe bearing members (35). Furthermore, as each driven disc member (34) rotates, it creates an eccentric sweep, which forces driven disc (34) outward onto roller (40). This continued rotation of disc members (34) forces them to “walk” along rollers (40). Correspondingly, output ring member (42) is forced to rotate (through low-friction, rolling engagement) about second stage adapter member (30) at a reduced speed and corresponding torque increase with very little efficiency loss, not only because of its low-friction rolling engagement with its driving members, but also because of its rolling engagement with central lobe member (72) via bearing member (76). Finally, this second stage reduced speed and increased torque is transmitted through output ring (48) and output engagement member (54) to output member (14) with very little efficiency loss because of the support and rolling engagement of bearing member (58) with respect to input member (12) and output bearing member (60) with respect to housing member (56).
As previously mentioned, additional speed control is attained through the secondary speed circuit. As secondary input member (62) speed is ramped up, input sleeve (66) is rotated in the opposite direction from input member (12). Accordingly, eccentric lobe members (78-81) and central lobe members (72,74) are forced to rotate at the same speed as input sleeve (66). Further, because of the rolling engagement of the outer diameter of lobe members (78-81,72,74) with the inner diameter of disc members (24,34) and adapter members (30,42), the rotation of the entire power system (excluding input member (12)) is slowed. Therefore, by controlling the speed of secondary input member (62), the output speed of device (10) may be varied from its maximum speed through zero output rotation to reverse rotation, if desired.
Referring next to
Next, driver discs (226) transmit this speed and torque to driven discs (232) through the low-friction, rolling engagement of driver rollers (234), driver pins (236) and driven rollers (238). As driven discs (232) are forced to rotate, they create offsetting, eccentric sweeps about eccentric lobe members (240), which are attached to input sleeve (220) and are centrally offset from the central axis of input sleeve (220) the same distance in diametrically opposing directions. Again, low-friction rolling engagement is attained between eccentric lobe members (240) and driven discs (232) via eccentric bearings (242). Accordingly, each driven disc (232) is centrally offset, with respect to input member (212), the same distance in diametrically opposing directions from one another as well. This eccentric sweeping motion forces the outer diameters of driven disc members (232) outwardly and causes engagement of the cutout or sprocket shape along second stage rollers (244) and second stage pins (246), in turn, forcing second stage adapter (248) to rotate at reduced speed and corresponding increased torque. Accordingly, minimal frictional losses are attained because all engagement is via low-friction, rolling members as opposed to traditional sliding gear members. Second stage adapter (248) is also supported by adapter bearing (250) allowing second stage adapter to rotate freely about input sleeve (220). Finally, this final speed and torque is transmitted directly through output ring (252) and output engagement member (224) to output member (254). Frictional losses are again minimized through the rolling engagement of output engagement bearing (222) with respect to input member (212) and output bearing (266) with respect to housing member (256).
In operation, the optimum input speed and torque may be attained via control over a prime driving means. As previously mentioned, this driving means also drives pump member (214). Pump member (214), in turn, through hydraulic fluid transfer, drives motor member (258). Still referring to
Next, referring to
Still referring to
Continuing with
Referring finally to
Still referring to
Still referring to
In summary, each of the embodiments described herein have displayed a double speed change and corresponding torque change in one manner or another. It is important to note that although particular stages may either increase or decrease the input torque, the size of driver discs (24,226,326,426) and driven discs (34,232,332,432), the number of cutouts or spokes in the outer diameter of driver discs (24,226,326,426) and driven discs (34,232,332,432), and the number of rollers (28,40,334,344,230,244,434,438) situated along the outer perimeter of driver and driven discs (24,34,226,232,326,332,426,432) dictate the specific ratio of speed reduction and torque increase achieved, or alternatively, speed increase and torque reduction in overdrive applications. Furthermore, one skilled in the art would also contemplate from the presented embodiments that the invention contemplates both additional stages of reduction in the power line of device (10) by the addition of lobe and disc members as well as numerous power line configurations based on the embodiments disclosed.
Finally, although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the inventions will become apparent to persons skilled in the art upon reference to the description of the invention. It is, therefore, contemplated that the appended claims will cover such modifications that fall within the scope of the invention.
Claims
1. A method for changing the rotational speed of an output, said method comprising the steps of:
- rotating a first input component;
- rotating a drive mechanism in response to rotating said first input component;
- rotating an output component in response to rotating said drive mechanism, wherein said output component rotates at a reduced rotational speed with respect to the rotational speed of said first input component; and
- varying the rotational speed of said output component by further rotating said drive mechanism in response to rotating a second input component.
2. The method of claim 1 wherein said rotating a drive mechanism comprises:
- coupling said first input component to a plurality of drive components configured to eccentrically rotate about the axis of rotation of said first input component.
3. The method of claim 2 further comprises:
- engaging a first of said plurality of drive components with at least one other of said plurality of drive components using a plurality of bearing members.
4. The method of claim 2 wherein said coupling step comprises:
- engaging at least one eccentric lobe component of said second input component with at least one of said plurality of drive components.
5. The method of claim 1 wherein said step of varying the rotational speed of said output component occurs continuously.
6. The method of claim 1 wherein said step of varying the rotational speed of said output component occurs independent of the rotational speed of said input component.
7. The method of claim 1 wherein said step of varying the rotational speed of said output component occurs while the rotational speed of said input component is maintained at a desired rotational speed.
8. An apparatus for controlling the rotational speed of an output, said apparatus comprising:
- a first input component configured to rotate;
- a drive mechanism coupled to said first input component, said drive mechanism having the same axis of rotation as said first input component, wherein said drive mechanism is configured to rotate in response to the rotation of said first input component;
- an output component coupled to said drive mechanism, wherein said output component is configured to rotate in response to the rotation of said drive mechanism and wherein said output component is configured to rotate at a reduced rotational speed with respect to the rotational speed of said first input component; and
- a second input component coupled to said drive mechanism, said second input component configured to further rotate said drive mechanism to vary the rotational speed of said output component.
9. The apparatus of claim 8 wherein said a drive mechanism comprises:
- a plurality of drive components configured to rotate eccentrically about the axis of rotation of said first input component.
10. The apparatus of claim 9 further comprises:
- a first engagement mechanism to engage a first of said plurality of drive components with at least one other of said plurality of drive components, said first engagement mechanism comprises a plurality of bearing members.
11. The apparatus of claim 9 wherein said second input component comprises:
- a shaft member and a plurality of eccentric lobe components attached to said shaft member.
12. The apparatus of claim 11 wherein said first input component comprises a shaft member, wherein the shaft member of said second input component has the same axis of rotation as the shaft member of said first input component.
13. The apparatus of claim 11 further comprises a second engagement mechanism to engage at least one eccentric lobe component of said second input component with at least one of said plurality of drive components.
14. The apparatus of claim 8 wherein said second input component is configured to continuously vary the rotational speed of said output component.
15. The apparatus of claim 8 wherein said second input component is configured to vary the rotational speed of said output component independent of the rotational speed of said input component.
16. The apparatus of claim 8 wherein said second input component is configured to vary the rotational speed of said output component while the rotational speed of said input component is maintained at a desired rotational speed.
17. An apparatus for controlling the rotational speed of an output, said apparatus comprising:
- a first input shaft configured to rotate;
- a drive mechanism coupled to said first input shaft, said drive mechanism having the same axis of rotation as said first input shaft, wherein said drive mechanism is configured to rotate in response to the rotation of said first input shaft;
- an output component coupled to said drive mechanism, wherein said output component is configured to rotate in response to the rotation of said drive mechanism and wherein said output component is configured to rotate at a reduced rotational speed with respect to the rotational speed of said first input shaft; and
- a second input shaft coupled to said drive mechanism, said second input shaft having the same axis of rotation as said first input shaft, wherein said second input shaft is configured to further rotate said drive mechanism to vary the rotational speed of said output component.
18. The apparatus of claim 17 wherein said a drive mechanism comprises:
- a plurality of drive components configured to eccentrically rotate about the axis of rotation of said first input shaft.
19. The apparatus of claim 18 further comprises:
- a first engagement mechanism to engage a first of said plurality of drive components with at least one other of said plurality of drive components, said first engagement mechanism comprises a plurality of bearing members.
20. The apparatus of claim 17 wherein said second input shaft comprises:
- a shaft member and a plurality of eccentric lobe components attached to said shaft member.
Type: Application
Filed: Dec 12, 2011
Publication Date: May 3, 2012
Applicant:
Inventor: Dan Jones (Valley Mills, TX)
Application Number: 13/323,589
International Classification: F16H 37/06 (20060101);