Concrete Form

A panel made of concrete-retaining mesh or lath is covered with concrete to form a fault-line defining the boundaries of a foundation break block.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application claims benefit of priority to provisional application Ser. No. 61/413,865 filed Nov. 15, 2010, which is hereby incorporated by reference to the same extent as though fully disclosed herein.

BACKGROUND

Concrete is a building material that is frequently formed as a mixture of sand, gravel, and cement. Various additives may be provided, such as pozzolan to improve strength and durability, curing accelerants, and polymers. The addition of water induces a chemical reaction causing the cement to harden.

One technique for pouring concrete involves the use of forms to present boundaries for the concrete as it hardens. For example, wood or metal may be used to frame a wall by presenting a cavity for receipt of wet cement. Forms may be used for this purpose, for example, as shown in U.S. Pat. No. 7,828,544 issued to Di Lorenzo.

Foundations may be subjected to loading forces that cause fractures or breakage in the concrete. Concrete generally has excellent compressive strength, but is less strong in tension. Thus, soils that swell or uneven loading conditions may fracture concrete. The use of steel reinforcing rods or ‘rebar’ significantly strengthens concrete in this regard; however, this does not entirely prevent fracturing. When fractures occur, water invasion may cause additional problems as the water may attack steel and concrete. The concrete is then further weakened by corrosion, chloride attack and other problems known to the art.

Break blocks are features that may be built into foundations to control the phenomenon of fracturing. Generally, this is an intentional fault that is built into the foundation constituting a preferred line of breakage. While fracturing is not desired and is not expected to occur, the break block consists of one or more lines that are intentionally weakened so that fracturing, if it does occur, is limited to a controlled breakage plane. Thus, the fractures are less likely to occur in a place that is critical for the support of other structural members. The building of these lines consumes significant time, as the common practice is to frame the pour with wood or steel panels that must then be removed.

SUMMARY

The presently disclosed instrumentalities overcome the problems outlined above and advance the art by providing a panel that accelerates pouring operations by remaining in place after concrete is poured. This may be used to assist the pouring of a foundation in a manner that facilitates multiple pouring operations, or to make a break block.

In one aspect, the panel may contain a plurality of generally upright reinforcing members, each having a central bend. A first mesh is attached to the reinforcing members to receive support therefrom, as is a second mesh. The first and second meshes are attached to the reinforcing members in such a manner as to present a gap between the first and second mesh. The gap is proximate to the central bends of the reinforcing members. A wiper is disposed in the gap to present a water barrier.

The panel option ally has a wire assembly disposed in the bend of each upright reinforcing member for hanging the wiper in the gap. This hanger extends horizontally to support the wiper while a vertical member repeatably controls the depth of wiper seating.

In use, one or more of such panels are mounted ion rebar and assembled to form a wall. Concrete is poured to cover the wall including the rebar. The panel forms a naturally weak fault plane that at least partially defines the boundaries of a break block.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a left front perspective view of a foundation area that is made-ready to pour concrete including wall assemblies that are poured in-situ with the concrete to guide or retain the concrete as it is poured and control possible fracturing of hardened concrete;

FIG. 2 provides additional detail pertaining to the wall assemblies of FIG. 1;

FIG. 3 is a rear sectional view taken along line A-A′ of FIG. 2 including a wiper that serves as a water barrier in the event of fracturing;

FIG. 4 is a right side view of a panel incorporated in the wall assembly of FIG. 1 to include the wiper of FIG. 3;

FIG. 5 provides additional detail with respect to a wiper hanger assembly used to support the wiper of FIG. 3; and

FIG. 6 shows a wall assembly of FIG. 1 formed of a plurality of panels.

DETAILED DESCRIPTION

FIG. 1 is a top front perspective view of a foundation area 100 that is made-ready for the pouring of concrete 101. The foundation area 100 contains a left block 102, a middle block 104 and a right block 106. The foundation area 100 may be any size, such as a size for the foundation of a building or shopping mall. In one example, the foundation area is the size of a football field. The respective blocks 102, 104, 106 contain rebar grids 108, 110, 112 that are installed in a conventional manner to reinforce the concrete that is about to be poured. The middle block 104 may also be referred to as a break block because wall assemblies 114, 116 are provided to facilitate vertical breakage or fracturing of the concrete along planes at lines 118, 120. Concrete 101 is poured until it covers the foundation area 100, embedding or encasing the wall assemblies 114, 116 and rebar grids 108, 110, 112.

In one example, wall assembly 114 contains walls 114a and 114b separated by middle space 114c. Thus, no wall member is present at dashed line 114d. When loading forces and reactive ground forces are applied to the foundation area 100 after concrete is poured, these forces may be sufficient to cause fracturing of the concrete. The walls 114a and 114b provide a weak plane that facilitates fracturing along line 118. The middle space 114c is strengthened by the lack of a wall, but if sufficiently stressed after the pouring of concrete will fracture along a plane identified as dashed line 114d connecting walls 114a and 114b. In this manner, the fracturing occurs in a controlled way according to a plan or design, such that structural features that may lie atop or beneath foundation area 100 may better accommodate developing fractures.

FIG. 2 provides additional detail with respect to wall 114a, which is formed of a plurality of panels 200, 202. Panel 200 contains an upper rectangular mesh 204 and a lower rectangular mesh 206 separated by a gap 208. Mesh 204, 206 is attached by welding or wiring to a plurality of upright rebar members, each of which are formed with a bend 214 presented to gap 208. Cross-braces 216 provide structural support to retain wall 114a in an upright position when bearing the weight of wet concrete under pour conditions. As the term is used herein, the ‘meshes’ 204, 206 may be any wire mesh, lath, screen or perforated material that is capable of retaining concrete. These may be purchased on commercial order.

FIG. 3 shows a sectional rear view of wall 114a taken along line A-A′ of FIG. 2. A rubber wiper 300 is positioned in gap 208 and an optional wire hanger assembly 302. The wire hanger assembly 302 is positioned within bend 214 where it may be attached by welding to support the wiper 300. End 306 of wiper 300 abuts member 308 to control the depth of seating wiper 300. The wiper 300 forms a water barrier to limit the possible flow of water that may occur in a fracture along wall 114a. FIG. 4 shows a right side view of wall 114a where wiper 300 runs longitudinally the entire length of wall 114a.

FIG. 5 provides additional detail with respect to the wire hanger assembly 302. Horizontal wire members 500, 502 form a channel communicating with gap 208 as limited by the abutment of member 308. As shown in FIG. 6, a plurality of panels 200, 200′, 200″ to form a continuous gap 208 for receipt of wiper 300.

In use, one or more of such panels are mounted on rebar and assembled to form a wall. Concrete is poured to cover the wall including the rebar. The panel forms a naturally weak fault plane that at least partially defines the boundaries of a break block. The disposition of panels is not limited to the configuration shown in FIG. 1. By way of example, a single wall assembly may span the entirety of foundation area 100 from front to rear. Alternatively, a single wall assembly may be provided to eliminate middle space 114c. A wall assembly is optionally provided where middle space 114c is shown, and this may be bounded by spaces where walls 114a and 114b are shown.

Those skilled in the art will appreciate that the foregoing disclosure teaches by way of example and not by limitation. Insubstantial changes may be made to the various embodiments described above without departing from the scope and spirit of the disclosure. Accordingly, the inventors hereby state their intention to rely upon the doctrine of equivalents in protecting their rights in the invention.

Claims

1. A panel for use in pouring concrete, comprising:

a plurality of generally upright reinforcing members, each having a central bend;
a first mesh attached to the reinforcing members panels to receive support therefrom;
a second mesh a attached to the reinforcing members panels to receive support therefrom;
the first and second mesh being attached to the reinforcing members in such a manner as to present a gap between the first and second mesh,
the gap being proximate to the central bends of the reinforcing members; and
a wiper disposed in the gap.

2. The panel of claim 1, further comprising means for hanging the wiper in the gap.

3. The panel of claim 1 encased in concrete.

4. The panel of claim 3 including a fracture in the concrete proximate the panel.

5. A wall assembly made of a plurality of the panels of claim 1.

6. A break block at least partially bounded by the panels of claim 1.

7. A method of pouring concrete comprising the steps of:

forming a network of rebar;
incorporating into the network of rebar a wall assembly formed of a plurality of the panels of claim 1 to form a break block; and
pouring concrete to cover the wall assembly.
Patent History
Publication number: 20120117902
Type: Application
Filed: Nov 15, 2011
Publication Date: May 17, 2012
Inventor: Robert James Garcia, JR. (Greenwood Village, CO)
Application Number: 13/297,054
Classifications
Current U.S. Class: Embedded Projecting Tie (52/295); Filler Is Cementitious (e.g., Concrete, Etc.) (52/742.14)
International Classification: E02D 27/01 (20060101); E04G 21/02 (20060101);