Fluid Turbine Having Optimized Blade Pitch Profiles
A fluid turbine comprising a rotor, having an axis of rotation, comprising at least two rotor blades disposed at a radius from the axis of rotation, each rotor blade having a pitch axis and a variable pitch angle. The fluid turbine comprises a mechanism operable to control the pitch angle of at least one rotor blade about its pitch axis and to vary the pitch angle of the rotor blade between various pitch angles as the blade moves radially about the axis of rotation of the rotor.
According to a first embodiment, the present disclosure relates to a fluid turbine comprising a rotor, having an axis of rotation, comprising at least two rotor blades disposed at a radius from the axis of rotation, moving along a circumferential tangent path line (TPL), each rotor blade having a pitch axis and a variable pitch angle. The fluid turbine further comprises a mechanism operable to control the pitch angle of at least one rotor blade about its pitch axis and to vary the pitch angle of the rotor blade from a first pitch angle at a first circumferential location about the axis of rotation to a second pitch angle at a second circumferential location about the axis of rotation.
According to a second embodiment, the present disclosure relates to a fluid turbine comprising a rotor, having an axis of rotation, comprising at least two rotor blades disposed at a radius from the axis of rotation, moving along a circumferential tangent path line (TPL), each rotor blade having a pitch axis and a variable pitch angle. The fluid turbine further comprises a mechanism operable to control the pitch angle of at least one rotor blade about its pitch axis and to vary the pitch angle of the rotor blade from a first pitch angle at a first circumferential location about the axis of rotation to a second pitch angle at a second circumferential location about the axis of rotation to a third pitch angle at a third circumferential location about the axis of rotation.
According to a third embodiment, the present disclosure relates to a fluid turbine comprising a rotor, having an axis of rotation, comprising at least two rotor blades disposed at a radius from the axis of rotation, moving along a circumferential tangent path line (TPL), each rotor blade having a pitch axis and a variable pitch angle. The fluid turbine further comprises a mechanism operable to control the pitch angle of at least one rotor blade about its pitch axis and to vary the pitch angle of the rotor blade from a first pitch angle at a first circumferential location about the axis of rotation to a second pitch angle at a second circumferential location about the axis of rotation to a third pitch angle at a third circumferential location about the axis of rotation to a fourth pitch angle at a fourth circumferential location about the axis of rotation.
A system and method of the present patent application will now be described with reference to various examples of how the embodiments can best be made and used. Like reference numerals are used throughout the description and several views of the drawings to indicate like or corresponding parts, wherein the various elements are not necessarily drawn to scale.
Because of the fact that the angle between a rotor blade 112 and the fluid flow will vary as the rotor blade 112 moves around the axis of rotation of the turbine 100, the optimal pitch angle for torque generation will vary accordingly as that rotor blade 112 moves around the axis of rotation. In order to optimize the angle between the blade pitch and the fluid flow, turbine 100 disclosed herein incorporates at least one mechanism to vary the blade pitch according to angular position as a rotor blade 112 moves around the rotational axis of the turbine 100. The pattern or profile of blade pitch vs. angular position may vary depending on a number of factors, including but not limited to rotor velocity and free stream fluid velocity. Thus, it may be desirable to modify the blade pitch profile as conditions change.
As described above, those of skill in the art will recognize that a blade pitch value of zero in
It is believed that the operation and construction of the embodiments of the present patent application will be apparent from the Detailed Description set forth above. While the exemplary embodiments shown and described may have been characterized as being preferred, it should be readily understood that various changes and modifications could be made therein without departing from the scope of the present invention as set forth herein.
Claims
1. A fluid turbine comprising:
- a rotor, having an axis of rotation, comprising at least two rotor blades disposed at a radius from the axis of rotation, traveling along a circumferential tangent path line, each rotor blade having a pitch axis and a variable pitch angle; and
- a mechanism operable to control the pitch angle of at least one rotor blade about its pitch axis and to vary the pitch angle of the rotor blade from a first pitch angle at a first circumferential location about the axis of rotation to a second pitch angle at a second circumferential location about the axis of rotation, according to a non-sinusoidal pitch profile.
2. The fluid turbine of claim 1, wherein the first rotor blade pitch angle is between 7 degrees and 15 degrees to a line tangent to the circumferential path of the rotor blade.
3. The fluid turbine of claim 1, wherein the second rotor blade pitch angle is parallel to a line tangent to the circumferential path of the rotor blade.
4. The fluid turbine of claim 1, wherein the second rotor blade pitch angle is between 20 degrees and 30 degrees to a plane orthogonal to a line tangent to the circumferential path of the rotor blade.
5. The fluid turbine of claim 1, wherein the second rotor pitch angle is between 25 degrees and 35 degrees to a line tangent to the circumferential path of the rotor blade.
6. The fluid turbine of claim 1, wherein the minimum rotor blade pitch angle for a rotor blade is imposed at a rotor position wherein that rotor blade is upstream of the axis of rotation of the rotor blade.
7. The fluid turbine of claim 1, wherein the maximum rotor blade pitch angle for a rotor blade is imposed at a rotor position wherein that rotor blade is downstream of the axis of rotation of the rotor blade.
8. A fluid turbine comprising:
- a rotor, having an axis of rotation, comprising at least two rotor blades disposed at a radius from the axis of rotation, traveling along a circumferential tangent path line, each rotor blade having a pitch axis and a variable pitch angle; and
- a mechanism operable to control the pitch angle of at least one rotor blade about its pitch axis and to vary the pitch angle of the rotor blade from a first pitch angle at a first circumferential location about the axis of rotation to a second pitch angle at a second circumferential location about the axis of rotation to a third pitch angle at a third circumferential location about the axis of rotation, according to a non-sinusoidal pitch profile.
9. The fluid turbine of claim 8, wherein the first rotor blade pitch angle is between 7 degrees and 15 degrees to a line tangent to the circumferential path of the rotor blade.
10. The fluid turbine of claim 8, wherein the second rotor blade pitch angle is parallel to a line tangent to the circumferential path of the rotor blade.
11. The fluid turbine of claim 8, wherein the second rotor blade pitch angle is between 20 degrees and 30 degrees to a line tangent to the circumferential path of the rotor blade.
12. The fluid turbine of claim 8, wherein the second rotor pitch angle is between 25 degrees and 35 degrees to a line tangent to the circumferential path of the rotor blade.
13. The fluid turbine of claim 8, wherein the minimum rotor blade pitch angle for a rotor blade is imposed at a rotor position wherein that rotor blade is upstream of the axis of rotation of the rotor blade.
14. The fluid turbine of claim 8, wherein the maximum rotor blade pitch angle for a rotor blade is imposed at a rotor position wherein that rotor blade is downstream of the axis of rotation of the rotor blade.
15. A fluid turbine comprising:
- a rotor, having an axis of rotation, comprising at least two rotor blades disposed at a radius from the axis of rotation, traveling along a circumferential tangent path line, each rotor blade having a pitch axis and a variable pitch angle; and
- a mechanism operable to control the pitch angle of at least one rotor blade about its pitch axis and to vary the pitch angle of the rotor blade from a first pitch angle at a first circumferential location about the axis of rotation to a second pitch angle at a second circumferential location about the axis of rotation to a third pitch angle at a third circumferential location about the axis of rotation to a fourth pitch angle at a fourth circumferential location about the axis of rotation, according to a non-sinusoidal pitch profile.
16. The fluid turbine of claim 15, wherein the second rotor blade pitch angle is parallel to a line tangent to the circumferential path of the rotor blade.
17. The fluid turbine of claim 15, wherein the first rotor blade pitch angle is between 7 degrees and 15 degrees to a line tangent to the circumferential path of the rotor blade.
18. The fluid turbine of claim 15, wherein the second rotor pitch angle is between 25 degrees and 35 degrees to a line tangent to the circumferential path of the rotor blade.
19. The fluid turbine of claim 15, wherein the minimum rotor blade pitch angle for a rotor blade is imposed at a rotor position wherein that rotor blade is upstream of the axis of rotation of the rotor blade.
20. The fluid turbine of claim 15, wherein the maximum rotor blade pitch angle for a rotor blade is imposed at a rotor position wherein that rotor blade is downstream of the axis of rotation of the rotor blade.
Type: Application
Filed: Nov 28, 2010
Publication Date: May 31, 2012
Inventors: Robert Clifton Vance (Arlington, TX), Jason Daniel Cormey (Dallas, TX)
Application Number: 12/954,886
International Classification: F01D 7/00 (20060101);