AGITATOR ASSEMBLY FOR CLOTHES WASHING MACHINE

- American Trim, LLC

An agitator assembly for a clothes washing machine is provided. The agitator assembly includes a base rotatably mounted on a lower portion of a rotary drum. The base includes an upper surface and a lower surface and is configured to rotate about a first rotational axis. A plurality of vanes is mounted on the upper surface of the base and is rotated together with the base about the first rotational axis. Each vane extends radially from the first rotational axis toward a periphery of the base. The impeller is configured to rotate along with rotation of the base about a second rotational axis which is radially offset from the first rotational axis. Rotation of the impeller imparts an upper flow through the base to the water contained in a water basket.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/422,496 filed on Dec. 13, 2010, such application being incorporated herein in its entirety.

BACKGROUND

Exemplary embodiments herein generally relate to a clothes washing machine, and more particularly, to a clothes washing machine having an agitator assembly including at least one secondary impeller for imparting an upward flow to the washing water.

A clothes washing machine is generally classified into either a side-loading drum type in which a rotational shaft of a water basket is horizontally arranged, or a top-loading agitator type in which a rotating shaft of a water basket is vertically arranged. In the known drum type clothes washing machine, a cylindrical drum having a plurality of water extracting openings is rotatably arranged in a water basket. During operation, a plurality of projections formed in the drum pull the clothes upward, and then clothes fall by gravity so the washing process is accomplished. This washing machine is adapted for larger capacity washing.

A known top-loading clothes washing machine is schematically illustrated in FIG. 1. The clothes washing machine 100 includes a body 102, an outer tub or water basket 104 suspended to the body by a suspension device (not shown), and a clothes basket or drum 106 mounted rotatably in the water basket 104. The drum 106 includes a plurality of openings 110 such that the washing water supplied into the drum 106 flows to the side of the water basket 104 through the openings 110. The openings 110 allow the levels of water in the water basket 104 and the drum 106 to be equal and allow dirty washing water and any sediment to be deposited to the water basket 104 through the openings 110 during the washing process. An agitator or pulsator 112 is rotatably mounted on the center of a bottom portion of drum 106. Located beneath the water basket 104 is a drive mechanism 118 including a motor 120 and a reduction gear assembly 122. The motor 120 generates the driving force, and the reduction gear assembly 122 reduces a high speed rotational force of the motor into a proper speed rotational force for both the drum 106 and the agitator 112. The rotational force of the motor is transmitted to the drum 106 and/or the agitator 112 by the selective engagement or disengagement of a clutch (not shown) housed in the reduction gear assembly. The agitator 112 is connected with an input shaft 124 extending from the reduction gear assembly 122. Typically, laundry detergent in added to the clothes washing machine in order to help breakdown the soils in order to clean the fabrics. The rotatable agitator 112 is periodically rotated, and an agitating vane formed on the side wall of the agitator 112 stirs up water to form the swirling water. Clothes float in water and make frictional contact with the agitator and the inner wall of the drum 106, thus accomplishing the washing process.

The cycles of the automatic clothes washing machine allow the user to choose pre-soak, pre-wash, wash, rinse, and spin dry cycles of varying durations. Also automatic clothes washing machines allow the user to add, repeat, or exclude cycles in the process. The mechanical operation of the clothes washing machine can independently control rotation of the agitator and the drum. In the wash agitation mode, the drum is locked in position while the agitator rotates. In the spin mode, both the drum and agitator spin in unison. Water with concentrated detergent is typically pumped and circulated from a valve situated above the drum. The impinging of the water on the fabric assists in the cleaning function of the washing machine. Older model clothes washing machines had very aggressive tall agitators that were more aggressive at moving the fabric through the detergent and water solution in the drum. Modern high efficiency clothes washing machines, such as the clothes washing machine 100 schematically depicted in FIG. 1, have very low profile disk like agitators that more gently move the clothing about in the drum. Because the single agitator is mounted at the center of the inner bottom surface of the drum, and the agitator is coaxially arranged with the input shaft, the rotation of the input shaft causes the agitator to rotate. However, the water flow generated by the agitator is insufficiently transferred to the clothes floating beneath the level of water. Additionally, an ineffective water flow is provided to the side wall of the drum. This can cause inefficient washing of the clothes. Also, with the conventional agitator, twisting and tangling of clothes may occur in the drum.

BRIEF DESCRIPTION

In accordance with one aspect, an agitator assembly for a clothes washing machine is provided. The washing machine includes a water basket for containing water therein, and a drum rotatably disposed in the water basket for holding laundry. A drive mechanism selectively rotates the drum and the agitator assembly. The agitator assembly includes a base rotatably mounted on a lower portion of the drum. The base includes an upper surface and a lower surface and is configured to rotate about a first rotational axis. A plurality of vanes is mounted on the upper surface of the base. Each vane extends radially from the first rotational axis toward a periphery of the base. The plurality of vanes is rotated together with the base about the first rotational axis. An impeller is mounted to the base and is positioned at least partially below the upper surface of the base such that the impeller is prevented from contacting laundry held in the drum. The impeller is configured to rotate along with rotation of the base about a second rotational axis which is radially offset from the first rotational axis. Rotation of the impeller imparts an upper flow through the base to the water contained in the water basket.

In accordance with another aspect, an agitator assembly for a clothes washing machine includes a base rotatably mounted on a lower portion of a drum. The base includes an upper surface and a lower surface and is configured to rotate about a first rotational axis. A plurality of vanes is mounted on the upper surface of the base. Each vane extends radially from the first rotational axis of the base. The plurality of vanes is rotated together with the base about the first rotational axis. The vanes divide the base into separate sections. A plurality of impellers is mounted to the base, one impeller being provided for each section of the base. Each impeller includes a plate and a plurality of curved blades radially arranged on an upper surface of the plate. The base includes a plurality of apertures, each aperture dimension to receive therein one of the impellers. The plurality of impellers is configured to rotate along with rotation of the base about a second rotational axis, wherein rotation of the impellers impart an upward flow through the base to the water contained in the water basket. A plurality of caps is provided, each cap being configured to cover the blades of one of the impellers. Each cap prevents the blades of each impeller from contacting laundry held in the drum.

In accordance with yet another aspect, a clothes washing machine includes a water basket for containing water therein, a rotary drum disposed in the water basket for holding laundry, an agitator assembly rotatably mounted at a lower portion of the drum, and a drive mechanism for selectively rotating the drum and the agitator assembly. The agitator assembly includes an annular base having a plurality of vanes and a plurality of circumferentially spaced impellers rotatably disposed in apertures provided in the base. A plurality of caps covers the plurality of impellers. The caps prevent laundry from contacting the impellers. A plurality of support members is configured to at least partially house the impellers. Each support member is connected to one of the plurality of caps. The drive mechanism includes a stationary annular gear secured to the lower portion of the drum and a plurality of pinion gears connected to the plurality of impellers. The pinion gears are meshed with the annular gear. Rotation of the base relative to the drum about a first rotational axis causes each pinion gear to revolve about a second rotational axis and rotate along the perimeter of the annular gear. This, in turn, rotates each impeller in the aperture of the base about a second rotational axis, wherein rotation of the impellers impart an upper flow through the base to the water contained in the water basket.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial cross-sectional view of a known top-loading clothes washing machine having an agitator according to the prior art.

FIG. 2 is a partially exploded perspective view of an agitator assembly for the clothes washing machine of FIG. 1 according to one aspect of the present disclosure.

FIG. 3 is a partial perspective view of the agitator assembly of FIG. 2 in an assembled condition.

FIG. 4 is a perspective view of the agitator assembly of FIG. 2.

FIG. 5 is a bottom perspective view of the agitator assembly of FIG. 2 engaged to a drive mechanism.

FIG. 6 is an enlarged partial perspective view of an impeller assembly provided on a base of the agitator assembly of FIG. 2.

FIG. 7 is an exploded perspective view of the impeller assembly of FIG. 6.

FIG. 8 is a cross-sectional view of the impeller assembly of FIG. 6.

FIG. 9 is an exploded perspective view of an agitator assembly for the clothes washing machine of FIG. 1 according to another aspect of the present disclosure.

FIG. 10 is a perspective view of the agitator assembly of FIG. 9.

FIG. 11 is a cross-sectional view of an impeller assembly provided on a base of the agitator assembly of FIG. 9.

FIG. 12 is a cross-sectional view of the impeller assembly of FIG. 11 taking along line 12-12 of FIG. 11.

DETAILED DESCRIPTION

It should, of course, be understood that the description and drawings herein are merely illustrative and that various modifications and changes can be made in the structures disclosed without departing from the present disclosure. In general, the figures of the exemplary agitator assembly for a clothes washing machine are not to scale. It should be appreciated that the term “plurality” means “two or more”, unless expressly specified otherwise. It will also be appreciated that the various identified components of the exemplary agitator assembly disclosed herein are merely terms of art that may vary from one manufacturer to another and should not be deemed to limit the present disclosure.

Referring now to the drawings where like numerals refer to like parts throughout the several views, FIGS. 2-5 illustrate an agitator assembly 200 according to one aspect of the present disclosure for use in a clothes washing machine, similar to the clothes washing machine 100 schematically depicted in FIG. 1. For ease of understanding, the identified components of the clothes washing machine 100, such as the water basket 104 and the drum 106, will be included in the drawings of the agitator assembly 200. It should be appreciated, however, that the agitator assembly 200 can be implemented in other types of clothes washing machines and is not limited to the known top-loading clothes washing machine 100 shown in FIG. 1.

The agitator assembly 200 generally includes an annular base 202 rotatably mounted on a lower portion, such as a bottom support 204, of the drum 106. The base 202 includes an upper surface 210 and a lower surface 212, and is configured to rotate about a first rotational axis FRA which is defined by a drive mechanism 220. A plurality of vanes 230 is mounted on the upper surface 210 of the base 202. Each vane 230 extends radially from the first rotational axis FRA toward a periphery 232 of the base 202. The plurality of vanes 230 is rotated together with the base 202 about the first rotational axis FRA. An impeller assembly 240 is mounted to the base 202 and is positioned at least partially below the upper surface 210 of the base such that an impeller 242 of the impeller assembly 240 is prevented from contacting laundry held in the drum 106. As will be discussed in greater detail below, the impeller 242 is configured to rotate along with rotation of the base 202 about a second rotational axis SRA which is radially offset from the first rotational axis FRA. Rotation of the impeller 242 imparts an upper flow through the base 202 to the water contained in the water basket 104 and drum 106.

As indicated above, the plurality of vanes 230 is mounted on the upper surface 210 of the base 202. In the depicted exemplary embodiment, each vane 230 includes a first end portion 244 and a second end portion 246. The first end portion 244 of each vane 230 is mounted to a hub 248, which is mounted on a post 250 extending upwardly from the upper surface 210 of the base 202. With this configuration, the plurality of vanes 230 can be removed from the base 202. Alternatively, the base 202 together with the plurality of vanes can be formed as a unitary one-piece member such that the plurality of vanes 230 is integral with the base 202. The hub 248 can be spaced from the upper surface 210 of the base 202 via a platform 256 provided on the upper surface 210 of the base 202. For the agitator assembly 200 having the vanes 230 removable from the base 202, the platform 256 can be a separate member secured to the base 202. As shown, the platform 256 can include a cutout 258 dimensioned to accommodate the impeller assembly 240 and a top wall 260. The top wall 260 is defined by a sloping section 262 and a central planar section 264. The post 250 is positioned on the planar section 264 of the top wall 260. With the platform 256, the first end portion 244 of each vane 230 is elevated compared to the second end portion 246 such that each vane 230 is slanted upwardly from the periphery 232 of the base 202 toward the first rotational axis FRA. It should be appreciated, however, that in lieu of the platform 256, the plurality of vanes 230 can be mounted directly to the upper surface 210 of the base 202. As depicted, the plurality of vanes 230 divide the base 202 into equally sized sections 270, and the exemplary agitator assembly 200 can include an impeller assembly 240 for each section 270 of the base 202.

With particular reference to FIGS. 6-8, the impeller assembly 240 includes the impeller 242. The impeller 242 includes an annular plate 280 having an upper surface 284 and a lower surface 286 and a plurality of spaced blades 282 radially arranged on the upper surface 284 of the plate 280. Each blade 282 is generally curved in a clockwise direction from a first end portion 292 provided adjacent the second rotational axis SRA toward a second end portion 294 located adjacent a peripheral wall 290 of the base 280. The first end portion 292 of each blade 282 can have a height greater than a height of the second end portion 294. The impeller assembly 240 further includes a cap 300 and a support member 302. The cap 300 is configured to cover the blades 282 of the impeller 242 and prevent the blades 282 from contacting laundry held in the drum 106. The support member 302 is configured to engage the plate 280 of the impeller 242 and is connected to the cap 300.

More particularly, the cap 300 includes an annular base member 310 and a plurality of tabs 312 extending downwardly from the base member 310. The tabs 312 are circumferentially spaced on the base member 310 such that adjacent tabs define a space 314 therebetween. In the depicted embodiment, the base member 310 is convex away from the impeller 242 and includes a plurality of slots 320 and a central opening 322. Similar to the arrangement of the impeller blades 282 on the plate 280, the plurality of slots 320 is radially arranged on the base member 310 for jetting water upwardly in the drum 106, and the plurality of slots 320 has a profile similar to the profile of the plurality of blades 282. Each of the tabs 312 includes an outwardly extending shelf 324 having an engaging surface 326. The tabs 312 are configured to engage the support member 302. The support member 302 includes a peripheral wall 340. A lower portion of the peripheral wall 340 includes inwardly extending flanges 342 for engaging the plate 280 of the impeller 242. The flanges 342 are circumferentially spaced on the peripheral wall 340 such that adjacent flanges 342 define a space 346 therebetween. The flanges 342 act as a bushing allowing for rotation of the impeller 242 within the support member 302. As depicted, the peripheral wall 340 of the support member 302 at least partially surrounds the impeller blades 282. The peripheral wall 340 further includes a plurality of circumferentially spaced elongated openings 350 which allow water to flow through the support member 302 and toward the impeller blades 282 as the impeller 242 rotates about the second rotational axis SRA.

The cap 300 and the support member 302 together are configured to mount the impeller 242 to the base 202. Specifically, the base 202 includes an aperture dimensioned to receive the impeller assembly 240. As indicated previously, the exemplary agitator assembly 200 includes a plurality of impeller assemblies 240, one impeller assembly provided in each section 270 of the base 202. Therefore, the base 202 includes a plurality of apertures 360, each aperture 360 dimensioned to receive therein one of the impeller assemblies 240. When positioned in the aperture 360, the plate 280 of the impeller 242 is located below the upper surface 210 of the base 202 and the peripheral wall 290 of the plate 280 is spaced from the base 202 such that the impeller 242 rotates freely within the aperture 360.

To mount the impeller assembly 240 to the bases 202, the aperture 360 is provided with inwardly extending ledges 370, each ledge defining a support surface 372. The ledges 370 are circumferentially spaced about an inner surface 376, which defines the aperture 360, such that adjacent ledges 370 define a space 374 therebetween. The space 374 is sized to receive one of the tabs 312 of the cap 300. The cap 300 is positioned in the aperture 360 such that the tabs 312 are positioned in the spaces 374 and is supported on the support surfaces 372 of the ledges 370. Once properly positioned in the aperture 360, the cap 300 is fixed relative to rotation of the impeller 242 and moves together with rotation of the base 202. As stated previously, the impeller 242 sits on the flanges 342 of the support member 302, the flanges 342 acting as a bushing allowing for rotation of the impeller 242. The support member 302 is connected to the cap 300 via engagement of the shelves 324 provided on the tabs 312 with the peripheral wall 340 of the support member 302. The tabs 312 are positioned in the spaces 346 defined by the adjacent flanges 342 such that the shelves 324 extend at least partially beneath the peripheral wall 340. In this position, the peripheral wall 340 is engaged by the engaging surfaces 326 defined by the shelves 324. Because the tabs 312 are positioned between the flanges 342, the support member 302 is also fixed relative to rotation of the impeller 242 and moves together with the base 202. Therefore, in the assembled condition shown in FIG. 6, the cap 300 and support member 302 are at least partially positioned in the base aperture 360 and together mount the impeller 242 to the base.

With particular reference to FIGS. 2, 5 and 8, the drive mechanism 220 is configured to rotate the base 202 about the first rotational axis FRA and the impeller 242 about the second rotational axis SRA simultaneously with the rotation of the base 202. Similar to the clothes washing machine 100 depicted in FIG. 1, the drive mechanism 220 includes the motor 120 and can also include the reduction gear assembly 122 which transmits the rotational force of the motor to the agitator assembly 202 via an input shaft 390 extending from the reduction gear assembly. The input shaft 390 extends through the lower portion of the drum 106 and engages the base 202. In the depicted embodiment, the input shaft 390 is provided with a plurality of splines which engage corresponding splines provided in a bore (not shown) located in the post 250. Although, it should be appreciated, that alternative manners for mounting the base 202 to the rotational input shaft 390 are contemplated.

The drive mechanism 220 further includes a stationary annular gear 392 provided on the lower portion, specifically the bottom support 204, of the drum 106. The annular gear 392 rotates with the rotary drum 106 about the first rotational axis FRA. According to one aspect, the stationary gear 392 is a separate gear that is fixedly secured to the drum 106 via a mounting member, such as the depicted mounting members 396 and 398 which are provided on the drum 106 to accommodate the configuration of the base 202 of the agitator assembly 200. According to another aspect, the stationary annular gear 392 can be integrally formed with the lower portion of the drum 106. The annular gear 392 includes a plurality of teeth 400 disposed about the outer perimeter of the gear. The drive mechanism 202 further includes a pinion gear 410 that is connected to the impeller assembly 240. Particularly, the pinion gear 410 is positioned beneath the plate 280 of the impeller 242 and includes teeth 412 disposed about an outer perimeter of the pinion gear, the teeth 412 being spaced inwardly from the peripheral wall 290 of the plate 280. This allows the pinion gear 410 to be rotationally positioned between the inwardly extending flanges 342 provided on the peripheral wall 340 of the support member 302. The pinion gear 410 can be a separate gear which is fixedly connected to the lower surface 286 of the plate 280. Alternatively, the pinion gear 410 can be integrally formed with the plate 280 of the impeller 242.

As best shown in FIG. 5, the pinion gear 410 is meshed with the stationary annular gear 392 such that rotation of the base 202 relative to the drum 106 causes the pinion gear 410 to revolve about the second rotational axis SRA and rotate along the outer perimeter of the annular gear 392. The revolution and rotation of the pinion gear 410 is transmitted to the impeller 242 making the impeller rotate in the drum 106. The rotation of the impeller 242 imparts an upward flow through the base 202 to the water contained in the water basket 104 and drum 106. This upward flow of water provided to the sidewall of the drum 106 sufficiently transfers water flow to the clothes floating beneath the level of water in the drum thereby providing an efficient washing of the laundry.

As is evident from the foregoing, the exemplary agitator assembly 200 generally includes three features, namely, the base 202, the plurality of agitating vanes 230 and the impeller assembly 240. Again, the agitator assembly 200 can include a plurality of impeller assemblies 240; although, this is not required. The rotating impeller 242 of the impeller assembly 240 forces water with detergent solution upward from that portion of the drum 106 provided beneath the base 202 into the laundry as the base 202 together with the vanes 230 rotate about the first rotational axis FRA. The impeller 242 spins about the second rotational axis SRA as the base 202 rotates back and forth pushing water upward through the base 202 to the laundry. The cap 300 and support member 302 retain the impeller 242 to the base 202 without the need for additional hardware, and act as a bushing to facilitate rotation of the impeller 242. The impeller 242 is prevented from contacting the laundry in the drum 106 via the cap 300 and the cap 300 acts as a directional guide for water flow upward in the drum 106. Because the pinion gear 410 meshes with the annular gear 392, no secondary drive motor or transmission is required to rotate the impeller 242. If more than one impeller assembly is implemented, the impeller assemblies 240 are assembled to the base 202 through a predetermined number of locations that optimize their effectiveness. By providing circumferentially spaced impeller assemblies 240 on the base 202, the impellers 242 will circulate detergent solution or rinse water equally in the washing process for the laundry.

With reference now to FIGS. 9-12, an agitator assembly 500 for use in a clothes washing machine, similar to the clothes washing machine 100 schematically depicted in FIG. 1, according to another aspect of the present disclosure is illustrated. Similar to the agitator assembly 200, the agitator assembly 500 is mounted to the lower portion of the drum 106 and includes a base 502 configured to rotate about a first rotational axis FRA. A plurality of vanes 510 is mounted on an upper surface 512 of the base 502 and extends radially from a first rotational axis. In the depicted embodiment, a platform 512 can be provided on the base for at least partially elevating the vanes 510 near the first rotational axis. The plurality of vanes 510 is rotated together with the base 502 about the first rotational axis. The plurality of vanes 510 divides the base 502 into separate sections 520. The agitator assembly 500 further includes a plurality of impeller assemblies 530 mounted to the base. One impeller assembly 530 is provided for each section 520 of the base 502. Each impeller assembly 530 includes an impeller 532 including a plate 540 and a plurality of curved blades 542 radially arranged on an upper surface of the plate. The base 502 includes a plurality of apertures 550. Each aperture 550 is dimensioned to receive therein one of the impeller assemblies 530. The plurality of impeller assemblies 530 further includes a plurality of caps 560. Each cap 560 is configured to cover the blades 542 of one of the impellers 532 located in the aperture 560. The caps 560 prevent the impeller blades 542 from contacting laundry held in the drum 106.

Similar to the agitator assembly 200, rotation of the impellers 532 about a second rotational axis SRA imparts an upward flow through the base 502 to the water contained in the water basket 104 and drum 106. However, unlike the agitator assembly 200, the plurality of caps 560 are also configured to rotate together with the impellers 532 about the second rotational axis SRA. To that end, each cap 560 includes an annular base member 562 and a peripheral wall 564 extending downwardly from the base member 562. A lower portion of the wall includes a flange 566 adapted to retain the cap 560 at least partially in the aperture 550 of the base. According to one aspect, each cap 560 can be press fit onto an upper portion of the blades 542 of the impeller 532. This allows the caps 560 to rotate with the impellers 532 about the second rotational axis. Although, it should be appreciated that alternative manners for securing the caps 560 to the impellers 532 so that the caps rotate with the impellers are contemplated. Each cap 560 further includes an outwardly extending projection 570 for agitating the laundry. Provided on an upper surface of the projection 570 is a plurality of water openings 572. As each impeller 532 together with the cap 560 rotates about the second rotational axis SRA, water is directed upwardly through the openings 572 provided on the projection 570 and upwardly along the sidewall of the drum 106.

The agitator assembly 500 further includes a drive mechanism 580 which is similar to the drive mechanism 220 of the agitator assembly 200. The drive mechanism 580 includes an annular gear 582 which can be integrally formed on the lower portion of the drum 106. The drive mechanism 580 further includes a pinion gear 586 which can be integrally formed on each impeller 532 beneath the plate 540. Each pinion gear 586 is meshed with the annular gear 582. With this arrangement, rotation of the base 502 relative to the drum 106 about the first rotational axis FRA causes each pinion gear 586 to revolve about the second rotational axis SRA and rotate along an outer perimeter of the annular gear 582 which, in turn, rotates each impeller 532 and cap 560 in the drum 106. It should be appreciated that in the depicted embodiment, because the pinion gears 586 are meshed with the outer perimeter of the annular gear 582, the impeller assemblies 530 rotate in the same direction as the base 502. However, it is contemplated that the annular gear can be a ring gear which allows the pinion gears to be meshed with an inner perimeter of the annular gear. With this arrangement, the impeller assemblies 530 will rotate in an opposite direction relative to the rotation of the base 502.

It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims

1. An agitator assembly for a clothes washing machine, the washing machine including a water basket for containing water therein, a drum rotatably disposed in the water basket for holding laundry, and a drive mechanism for selectively rotating the drum and the agitator assembly, the agitator assembly comprising:

a base rotatably mounted on a lower portion of the drum, the base including an upper surface and a lower surface, the base configured to rotate about a first rotational axis;
a plurality of vanes mounted on the upper surface of the base, each vane extending radially from the first rotational axis toward a periphery of the base, the plurality of vanes being rotated together with the base about the first rotational axis; and
an impeller mounted to the base and positioned at least partially below the upper surface of the base such that the impeller is prevented from contacting laundry held in the drum, the impeller configured to rotate along with rotation of the base about a second rotational axis which is radially offset from the first rotational axis, rotation of the impeller imparting an upward flow thru the base to the water contained in the water basket.

2. The agitator assembly of claim 1, wherein the vanes divide the base into equally sized sections, and further including an impeller for each section of the base.

3. The agitator assembly of claim 1, wherein the impeller includes a plate and a plurality of curved blades radially arranged on an upper surface of the plate, and the base includes an aperture dimensioned to rotatably receive therein the impeller, wherein when positioned in the aperture the plate is located below the upper surface of the base.

4. The agitator assembly of claim 3, wherein the plate includes a peripheral wall spaced from the base such that the impeller rotates freely within the aperture.

5. The agitator assembly of claim 3, further including a cap configured to cover the blades of the impeller, the cap preventing the blades from contacting laundry held in the drum, and a support member configured to engage the plate of the impeller, the support member being connected to the cap, the cap and support member being at least partially positioned in the base aperture and together are configured to mount the impeller to the base.

6. The agitator assembly of claim 5, wherein the support member includes a peripheral wall, a lower portion of the peripheral wall including an inwardly extending flange for engaging the plate of the impeller, the flange acting as a bushing allowing for rotation of the impeller within the support member.

7. The agitator assembly of claim 6, wherein the peripheral wall of the support member at least partially surrounds the impeller blades, the peripheral wall including a plurality of circumferentially spaced elongated openings, the plurality of openings allowing water to flow through the support member and toward the impeller blades.

8. The agitator assembly of claim 5, wherein the base includes a ledge extending into the aperture, the cap including an annular base member adapted to engage the ledge and a plurality of tabs extending downwardly from the base member, the tabs configured to engage the support member.

9. The agitator of claim 8, wherein the base member is convex and includes a plurality of slots which are radially arranged on the base member for jetting water upwardly in the drum.

10. The agitator assembly of claim 5, wherein the cap is fixed relative to rotation of the impeller and moves together with the base.

11. The agitator assembly of claim 5, wherein the cap is configured to rotate together with the impeller about the second rotational axis, the cap including a base member having a projection extending outwardly from the base member for agitating the laundry, the base member further including a plurality of openings for jetting water upwardly in the drum.

12. The agitator assembly of claim 1 in combination with the clothes washing machine, wherein the drive mechanism of the clothes washing machine includes a stationary annular gear provided on lower portion of the drum, the annular gear rotating with the rotary drum about the first rotational axis, and a pinion gear meshed with the annular gear and connected to the impeller, wherein rotation of the base relative to the drum causes the pinion gear to revolve about the second rotational axis and rotate along a perimeter of the annular gear, the revolution and rotation of the pinion gear being transmitted to the impeller making the impeller rotate in the drum.

13. The agitator of claim 1, wherein the annular gear in integrally formed with the drum and the pinion gear is integrally formed with the impeller.

14. An agitator assembly for a clothes washing machine, the washing machine including a water basket for containing water therein, a drum rotatably disposed in the water basket for holding laundry, and a drive mechanism for selectively rotating the drum and the agitator assembly, the agitator assembly comprising:

a base rotatably mounted on a lower portion of the drum, the base including an upper surface and a lower surface, the base configured to rotate about a first rotational axis;
a plurality of vanes mounted on the upper surface of the base, each vane extending radially from the first rotational axis of the base, the plurality of vanes being rotated together with the base about the first rotational axis, the vanes dividing the base into separate sections;
a plurality of impellers mounted to the base, one impeller being provided for each section of the base, each impeller including a plate and a plurality of curved blades radially arranged on an upper surface of the plate, and the base includes a plurality of apertures, each aperture dimensioned to receive therein one of the impellers, wherein the plurality of impellers is configured to rotate along with rotation of the base about a second rotational axis, rotation of the impellers imparting an upward flow thru the base to the water contained in the water basket; and
a plurality of caps, each cap configured to cover the blades of one of the impellers, the caps preventing the impeller blades from contacting laundry held in the drum.

15. The agitator assembly of claim 14, further including a support member connected to the cap, the support member configured to at least partially house the impeller, the support member including an inwardly extending flange for supporting the plate of the impeller, the flange acting as a bushing allowing for rotation of the impeller within the support member.

16. The agitator assembly of claim 14 in combination with the clothes washing machine, wherein the drive mechanism of the clothes washing machine includes an annular gear integrally formed on lower portion of the drum, and a pinion gear integrally formed on each impeller beneath the plate, the pinion gear being meshed with the annular gear, wherein rotation of the base relative to the drum about the first rotational axis causes each pinion gear to revolve about the second rotational axis and rotate along a perimeter of the annular gear which, in turn, rotates each impeller in the drum.

17. The agitator assembly of claim 14, wherein the caps are configured to rotate together the impellers about the second rotational axis, each cap including an outwardly extending projection for agitating the laundry.

18. A clothes washing machine comprising:

a water basket for containing water therein;
a rotary drum disposed in the water basket for holding laundry;
an agitator assembly rotatably mounted at a lower portion of the drum; and
a drive mechanism for selectively rotating the drum and the agitator assembly,
wherein the agitator assembly includes an annular base having a plurality of vanes and a plurality of circumferentially spaced impellers rotatably disposed in apertures provided in the base, and further including a plurality of caps for covering the plurality of impellers, the caps preventing laundry from contacting the impellers, and further including a plurality of support members configured to at least partially house the impellers, the support members being connected to the caps,
wherein the drive mechanism includes a stationary annular gear secured to the lower portion of the drum and a plurality of pinion gears connected to the plurality of impellers, the pinion gears being meshed with the annular gear, rotation of the base relative to the drum about a first rotational axis causes each pinion gear to revolve about a second rotational axis and rotate along a perimeter of the annular gear which, in turn, rotates each impeller in the aperture of the base about a second rotational axis, rotation of the impellers imparting an upward flow thru the base to the water contained in the water basket.

19. The clothes washing machine of claim 18, wherein the annular gear is integrally formed on a bottom wall of the drum and each pinion gear is integrally formed with one of the impellers.

20. The clothes washing machine of claim 18, wherein each cap is configured as a directional guide for the upwardly flow of water in the drum.

Patent History
Publication number: 20120144877
Type: Application
Filed: Nov 1, 2011
Publication Date: Jun 14, 2012
Applicant: American Trim, LLC (Lima, OH)
Inventors: Robert M. Byrne (Lima, OH), Bret E. Kline (Columbus, OH)
Application Number: 13/286,252
Classifications
Current U.S. Class: Impellers (68/134)
International Classification: D06F 21/00 (20060101); D06F 37/12 (20060101);