METHODS AND APPARATUS FOR TREATING BODY TISSUE SPHINCTERS AND THE LIKE
A plurality of structures that resiliently attract one another are provided for implanting in a patient around a body tissue structure of the patient. For example, the body tissue structure may be the esophagus, and the plurality of structures may be implanted in an annulus around the outside of the esophagus, the annulus being substantially coaxial with the esophagus. The attraction may be between annularly adjacent ones of the structures in the annulus, and it may be provided, for example, by magnets or springs. The array of structures is preferably self-limiting with respect to the smallest area that it can encompass, and this smallest area is preferably large enough to prevent the apparatus from applying excessive pressure to tissue passing through that area.
Latest TORAX MEDICAL, INC. Patents:
- Methods and apparatus for treating body tissue sphincters and the like
- Magnetic sphincter augmentation device for urinary incontinence
- Active sphincter implant to re-route flow through gastrointestinal tract
- Tunable magnetic sphincter augmentation device
- Methods and apparatus for treating body tissue sphincters and the like
This application claims the benefit of U.S. provisional patent applications 60/599,333, filed Aug. 5, 2004; 60/614,835, filed Sep. 30, 2004; and 60/653,966, filed Feb. 17, 2005, all of which are hereby incorporated by reference herein in their entireties.
This is a continuation of U.S. patent application Ser. No. 11/147,801, filed Jun. 7, 2005, which is a continuation-in-part of U.S. patent application Ser. Nos. 10/134,306, filed Apr. 26, 2002; 10/732,696, filed Dec. 9, 2003; 10/732,693, filed Dec. 9, 2003; 10/612,496, filed Jul. 1, 2003; 10/802,992, filed Mar. 16, 2004; and 11/059,173, filed Feb. 16, 2005, all of which are hereby incorporated by reference herein in their entireties.
BACKGROUND OF THE INVENTIONThis invention relates to medical implants for improving or modifying the performance of tissue structures in a patient's body such as a sphincter, a tubular conduit, or an organ. An illustrative use of the invention is improving the performance of a patient's lower esophageal sphincter (“LES”) as a treatment for gastro-esophageal reflux disorder or disease (“GERD”). However, this is only an example of how the invention may be used, and many other uses will be readily apparent to those skilled in the art. To list just a few further examples, the invention may be applied to other sphincters in the body such as sphincters in the urinary tract and elsewhere in the digestive tract. The apparatus of the invention may be used around the stomach as part of a treatment for obesity.
A common cause of GERD is inadequate functioning of the LES. The LES (and perhaps some associated tissue structures) normally keeps the lower part of the esophagus closed in order to prevent stomach contents from entering the esophagus. The LES opens during swallowing to allow whatever is being swallowed to pass from the esophagus into the stomach. The LES also opens to allow excess pressure in the stomach to escape via the esophagus. However, normal stomach pressure is substantially resisted by a normally functioning LES to keep the contents of the stomach from entering the esophagus. In a patient with GERD the cause is frequently an LES that has lost its ability (strength or “tone”) to resist normal stomach pressure and prevent stomach contents from coming back into the esophagus. This can cause discomfort (“heartburn”), and if left untreated, can cause damage to the esophagus that can lead to very serious adverse consequences for the patient.
It has been proposed to implant magnets in a GERD patient to improve the strength or tone of the patient's LES. For example, two magnets may be implanted in the esophagus on respective opposite sides of the esophageal lumen at or near the LES. Magnetic attraction between the magnets helps to hold the esophagus closed (except during swallowing or excess stomach pressure venting) and thereby reduces or eliminates the reflux of GERD. In following this approach, it would be desirable to avoid subjecting tissue to long-term, direct pressure from the magnets, such as when tissue between two mutually attracting magnets or magnetic structures is the only thing keeping the magnets or magnetic structures apart. Such pressure can interfere with blood flow to the tissue between the magnets or magnetic structures, which can be unhealthy for that tissue. For example, tissue death (necrosis) can result.
SUMMARY OF THE INVENTIONIn accordance with the invention, a medical implant includes plural bodies, adjacent ones of which are resiliently attracted to one another (e.g., by magnetism, spring force, or the like). The bodies can be disposed in an array (e.g., an annular array) around a body tissue structure to be treated. The structure of the implant maintains an open area inside the array of at least a predetermined non-zero minimum size. Tissue passing through that area may be subjected to some residual pressure, e.g., of the kind and in an amount that improves the tone of a sphincter that is part of that tissue. But no part of the tissue is exposed to pressure of the kind that would be unhealthy for the tissue. If a normal body function (e.g., swallowing) causes the tissue structure passing through the array of bodies that make up the implant or prosthesis to need to expand, those bodies can move resiliently apart to allow such enlargement of the tissue structure. Thereafter, the bodies of the prosthesis move resiliently back toward one another again to help the tissue structure contract to its first-mentioned condition. However, this contraction of the prosthesis is limited by the prosthesis itself to always leave open at least the above-mentioned non-zero minimum area bounded by the prosthesis. The contracting prosthesis may not always reach the above-mentioned limit, if the prosthesis is sized or designed to apply some residual pressure to the tissue. But if that is the case, the residual pressure is small enough (e.g., it is the result of a relatively small force distributed over a relatively large area of tissue) so that it is not a problem for the tissue even if applied long-term.
Other aspects of the invention relate to methods for implanting a prosthesis in a patient in accordance with the invention. For example, an implant in accordance with the invention may be introduced into the patient in a substantially linear array. The array may be wrapped around the outside of the target body tissue structure. Opposite ends of the array may be joined to one another to form a closed loop around the target body tissue structure. These steps may be performed in any of a number of ways. For example, the implanting may be done surgically. As another example, the implanting may be done laparoscopically. As still another example, the prosthesis may be delivered into the patient via a body conduit of the patient, may then exit from that conduit at a location interior to the patient, and may then be implanted at the intended site using instrumentation that accompanies or follows the prosthesis into the patient via the conduit and out of that conduit at the interior location. As a specific example of the last-mentioned possibility, the prosthesis may be delivered into the patient in a linear condition via the patient's mouth and esophagus and into the stomach. The prosthesis may then exit through a temporary aperture in the side wall of the stomach and thereby enter the extra-luminal space. The prosthesis may then be secured around the external esophagus or upper stomach.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
As shown in
Each bead 20 in apparatus 10 is resiliently attracted to the adjacent beads in the string or loop. This resilient attraction may be provided by means such as magnetic force, spring force, or the like. Use of magnetic force will be described first. Other examples will be described later.
The hollow interior of each post 62 is large enough to easily and loosely accommodate end portions of two links 30 (or end portions of one link 30 and one link eyelet 40). (Because for this purpose link eyelets 40 are substantially similar to links 30, it will not be necessary to separately mention eyelets 40 again in this immediate discussion. It will be understood that they are subsumed in the discussion of links 30.) In each bead 20 one of the associated links 30 extends out of an aperture in the bottom of cup 60. This aperture is large enough to allow the main length of the link 30 to pass freely through the aperture, but it is not large enough to allow an enlarged stop 32 at the end of the link to pass through the aperture. The other link 30 associated with each bead 20 extends out of an aperture in the center of a washer-like cap 72 that is used to substantially close an aperture in the bottom of cup 70 and the otherwise open end of the hollow in post 62. Again, the aperture in cap 72 is large enough to allow the main length of the associated link 30 to pass freely through, but it is not large enough to allow the enlarged stop 32 at the end of the link to pass.
The various components of apparatus 10 can be assembled (during manufacture) as follows. Each link 30 can be initially provided with only one enlarged end stop 32. The other end of a link 30 can be passed successively through the aperture in the bottom of a cup 60 (not yet attached to a cup 70) and the aperture in a washer-like cap 72 (also not yet attached to a cup 70). An enlarged end stop 32 can be formed on the other end of the link 30. Magnets 80 can be placed in the cup 60. A cup 70 can be attached to the cup 60. A washer-like cap 72 can be attached to the cup 70.
Magnets 80 do not need to be biocompatible because the magnets can be completely sealed inside beads 20. The parts of apparatus 10 that will be exposed to a patient's body are preferably biocompatible. These components are cups 60 and 70 (including posts 62), washer-like caps 72, and links 30/40. An example of a biocompatible material that is suitable for these components is titanium, but many other suitable metallic and non-metallic materials are known to those skilled in art and can be used if and as desired. Assuming that one or more metals are used for components 30, 40, 60, 62, 70, and 72, enlarged end stops 32 may be formed as weld balls, annular hermetic welds may be formed between the abutting lips of cups 60 and 70, a similar annular hermetic weld may be formed between mating components 62 and 70, and spot welds may be used to secure washer-like caps 72 to the associated cups 70. Hermetic sealing of this last connection is not required because of the hermetic sealing between components 62 and 70. Alternatively, the mating between components 62 and 70 could be left unsealed, and a seal weld could be used between component 72, on the one hand, and components 62 and 70, on the other hand.
Note that the ends of each cylindrical bead 20 are preferably approximately spherical. Note also that links 30 may be somewhat bent laterally along their lengths. Features such as these help the structure form a closed loop that can resiliently enlarge and contract without mechanical interference (other than the intended ultimate limits on both enlargement and contraction as will now be described).
As has been mentioned, the magnets 80 in beads 20 resiliently attract adjacent beads into contact with one another as shown in
At all times that apparatus 10 is annularly enlarged to any degree, it is resiliently urged to return to its fully, annularly contracted condition by the magnetic attraction between beads 20. (Note that apparatus 10 has its lowest force urging contraction when beads 20 are at maximum separation from one another (e.g., as shown in
Certain aspects of the behavior of apparatus 10 are illustrated by
If, beyond the enlargement of apparatus 10 that has occurred when point B is reached, still more enlargement is needed, the force required to initiate such further enlargement returns to approximately the starting force as shown at point C. If at least such further enlargement force is present, two more of beads 20 will begin to separate to provide a further annular enlargement of apparatus 10.
The above-described process of beads 20 separating from one another one after another will continue, following the force and displacement diagram shown in
Turning now to more detail regarding how apparatus of the type shown and described above may be used as a medical implant in accordance with the invention, an illustrative use is as a treatment for gastro-esophageal reflux disorder or disease (“GERD”). In such a condition, the body structures that normally function to keep the lower part of the esophagus (near the stomach) closed, except when swallowing or when excessive pressure in the stomach needs to be relieved via the esophagus, is no longer functioning properly or adequately. This structure includes the lower esophageal sphincter (“LES”), possibly in cooperation with other tissue structures where the esophagus passes through the diaphragm (see
Apparatus 10 can be implanted as shown, for example, in
Any of several techniques can be used for introducing the implant 10 into the patient. For example, this may be done using open or relatively open surgery. As another example, the implant may be introduced into the patient using less invasive procedures such as laparoscopy and laparoscopic instruments. As still another example, the implant may be introduced trans-gastrically. In this technique the implant is introduced trans-orally into the esophagus, passed down the esophagus, and into the stomach. A dilator device is used to penetrate the wall of the stomach sufficient in size to allow the implant to be passed through this dilator into the space outside the stomach. The device, using instruments such as a stylet, can then be threaded around the lower esophagus. The implant can be connected into a closed loop with a suture, a clip, or stronger magnet beads located at each end. The implant may be modified to use an over-the-wire technique for this delivery method. In this case, a guide wire is placed around the distal esophagus and the implant is threaded over this wire once the wire is in position. The wire can then be removed.
It may be desirable to first measure or “size” the outer circumference of the esophagus where apparatus 10 is to be implanted. This may be done using one or more sizing instruments. When the desired implant size has been determined, an implant of that size may be implanted. Implants having different sizes may be provided by, for example, producing implants with different numbers of a given size bead 20, or by using beads 20 of different sizes to make implants of different sizes.
The implant may be medicated for any of several purposes. For example, such medication may include an antibiotic to combat infection, and/or the medication may include a steroid to promote appropriate healing.
With regard to the annular size of the prosthesis, it is currently thought desirable in the treatment of GERD, for example, to slightly “under-size” apparatus 10 for the outside of the esophageal tissue structure to which the apparatus will be applied. This means selecting a size of prosthesis such that when the implant is in place in the patient, there is at least some space in the annular or circumferential direction between two (preferably only two) of beads 20. (See
Continuing with the discussion of the example of applying apparatus 10 to a patient's esophagus, when the esophagus should be closed, the implant helps to keep it closed. However, when the patient swallows (e.g., a bolus of food), the implant annularly enlarges to the necessary extent to allow what has been swallowed down into the stomach. This may involve any number of beads 20 moving away from the adjacent bead(s). After any bolus has passed the plane of the implant, the implant resiliently returns to its initial, more annularly contracted condition. The same sequence of operations occur when excessive pressure in the stomach must be relieved through the esophagus. The implant annularly enlarges to vent the stomach, and then resiliently annularly contracts to return to its initial condition. The force exerted on the esophagus by the implant is preferably always large enough to help prevent reflux, but it is not so large as to impede swallowing or necessary venting of the stomach via the esophagus.
Over time, implanted apparatus 10 may become overgrown with tissue. However, this will not interfere with operation of the implant as described above. Tissue over-growth as described in this paragraph may make it possible to form the links 30 of the prosthesis from an absorbable (e.g., suture) material such as polyglycolic acid and/or polylactic acid. In embodiments of this type the links would degrade and disappear over time. Once the implant is integrated to the external esophagus and a fibrous tissue cap has conformed to at least part of the beads, the function of the links between the beads may not be necessary.
From the condition shown in
Although
It will be noted that spring embodiments (e.g., as in
If desired, any of the above-described embodiments (including the magnetic embodiments) can be augmented to produce substantially equal spacing between adjacent beads at all times.
Assuming that
Another illustrative embodiment of the invention is shown in
The arc length of each structure 520 is preferably sufficient that the ends of the one structure can contact the ends of the other structure beyond esophagus 50 (i.e., with no tissue of the esophagus between the contacting ends of the structures 520) as shown in
Each of structures 520 includes one or more magnets 580 for magnetically attracting the other structure 520, e.g., across the esophagus. This magnetic attraction is strong enough to hold structures 520 together as shown in
Like the earlier-described embodiments, embodiments of the type shown in
If desired, structures 520 like those shown in
When esophagus 50 opens as shown in
The length of belt 620 between the closed magnet pairs (as in
When esophagus 50 is closed as shown in
Such parameters as the number of beads 720, their shape (e.g., arched), etc., help ensure that when esophagus 50 is closed (
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope of the invention. For example, although application of the disclosed apparatus to a patient's esophagus in order to treat GERD has been given the most detailed attention herein, it will be understood that the invention has many other applications. For example, apparatus in accordance with the invention can be used around other body conduits, chambers, and/or sphincters in a patient's body. Just a few specific examples include use in treating urinary incontinence, anal incontinence, stomach size reduction, or as a completely artificial sphincter in the event that a natural sphincter has been removed or has wholly or largely ceased to function. Any of the structures shown and/or described herein as loops may be initially provided as open structures that are only formed into closed loops after placement around the target tissue structure. This principle is shown and described in detail in connection with embodiments like those illustrated by
Claims
1-10. (canceled)
11. Apparatus for encompassing a patient's body tissue structure and for resiliently applying pressure to the encompassed tissue comprising:
- a band that can be disposed around the tissue structure; and
- means for resiliently producing a pleat in the band to reduce but not eliminate an area encompassed by the band.
12. The apparatus defined in claim 11 wherein the means for resiliently producing comprises:
- a pair of bodies adjacent to one another along the band that are magnetically attracted to one another.
13. A method of treating a patient's body tissue structure comprising:
- surrounding the tissue structure with apparatus for applying resilient pressure to the tissue structure, the apparatus being self-limiting with respect to a smallest area that the apparatus encompasses, the smallest area being a non-zero area, the apparatus including a plurality of bodies in an array that can annularly surround the tissue structure so that each of the bodies contacts the tissue structure, each body in the array having a structural link connecting it to a next adjacent body in the array, each of the links allowing the bodies it connects to move apart from one another in a direction that is annular of the array, and each of the links including a stop that is trapped but movable inside one of the bodies it connects for stopping such movement apart of the bodies it connects when spacing between those bodies reaches a maximum spacing, each link being unconnected to any annularly adjacent link except by the body between that link and the annularly adjacent link.
14. The method defined in claim 13 wherein the surrounding comprises:
- implanting the apparatus inside the patient's body.
15. The method defined in claim 14 wherein the implanting comprises:
- delivering the apparatus into the patient's body in a substantially linear form;
- wrapping the apparatus around the tissue structure; and
- attaching ends of the apparatus to one another.
16. A method of treating a patient's body tissue structure comprising:
- surrounding the tissue structure with apparatus for applying resilient pressure to the tissue structure, the apparatus being self-limiting with respect to a largest area that the apparatus encompasses, the apparatus including a plurality of bodies in an array that can annularly surround the tissue structure so that each of the bodies contacts the tissue structure, each body in the array having a structural link connecting it to a next adjacent body in the array, each of the links allowing the bodies it connects to move apart from one another in a direction that is annular of the array, and each of the links including a stop that is trapped but movable inside one of the bodies it connects for stopping such movement apart of the bodies it connects when spacing between those bodies reaches a maximum spacing, each link being unconnected to any annularly adjacent link except by the body between that link and the annularly adjacent link.
17. A method of treating a patient's body tissue structure comprising:
- surrounding the tissue structure with annularly continuous apparatus for applying resilient pressure to the tissue structure, the apparatus being self-limiting with respect to a smallest area that the apparatus encompasses, the smallest area being a non-zero area, the apparatus including a plurality of bodies in an array that can annularly surround the tissue structure so that each of the bodies contacts the tissue structure, each body in the array having a structural link connecting it to a next adjacent body in the array, each of the links allowing the bodies it connects to move apart from one another in a direction that is annular of the array, and each of the links including a stop that is trapped but movable inside one of the bodies it connects for stopping such movement apart of the bodies it connects when spacing between those bodies reaches a maximum spacing, each link being unconnected to any annularly adjacent link except by the body between that link and the annularly adjacent link.
18. A method of treating a patient's body tissue structure comprising:
- surrounding the tissue structure with apparatus for applying resilient pressure to the tissue structure while allowing the tissue structure to resiliently change its radius of curvature, the apparatus being self-limiting with respect to a smallest area that the apparatus encompasses, the smallest area being a non-zero area, the apparatus including a plurality of bodies in an array that can annularly surround the tissue structure so that each of the bodies contacts the tissue structure, each body in the array having a structural link connecting it to a next adjacent body in the array, each of the links allowing the bodies it connects to move apart from one another in a direction that is annular of the array, and each of the links including a stop that is trapped but movable inside one of the bodies it connects for stopping such movement apart of the bodies it connects when spacing between those bodies reaches a maximum spacing, each link being unconnected to any annularly adjacent link except by the body between that link and the annularly adjacent link.
19. A method of treating a patient's body tissue structure comprising:
- delivering a prosthesis into the patient's body in a discontinuous form;
- disposing the prosthesis around the tissue structure; and
- converting the prosthesis to a continuous form around the tissue structure, wherein the prosthesis includes a plurality of bodies in an array that can annularly surround the tissue structure so that each of the bodies contacts the tissue structure, each body in the array having a structural link connecting it to a next adjacent body in the array, each of the links allowing the bodies it connects to move apart from one another in a direction that is annular of the array, and each of the links including a stop that is trapped but movable inside one of the bodies it connects for stopping such movement apart of the bodies it connects when spacing between those bodies reaches a maximum spacing, each link being unconnected to any annularly adjacent link except by the body between that link and the annularly adjacent link.
20. A method of treating a body passage comprising:
- disposing a band around the outside of the body passage, the band being configured to provide radial support to the body passage; and
- securing at least a portion of the band to the wall of the body passage, wherein the band includes a plurality of bodies in an array that can be disposed annularly around the outside of the body passage so that each of the bodies contacts the tissue passage, each body in the array having a structural link connecting it to a next adjacent body in the array, each of the links allowing the bodies it connects to move apart from one another in a direction that is annular of the array, and each of the links including a stop that is trapped but movable inside one of the bodies it connects for stopping such movement apart of the bodies it connects when spacing between those bodies reaches a maximum spacing, each link being unconnected to any annularly adjacent link except by the body between that link and the annularly adjacent link.
21. The method defined in claim 20 wherein the body passage is an esophagus.
22. The method defined in claim 20 further comprising:
- forming the band of an elastic material.
23. The method defined in claim 20 further comprising:
- forming the band of an elastic metal or polymer.
24. The method defined in claim 20 wherein the securing comprises:
- suturing at least a portion of the band to the wall of the body passage.
25. The method defined in claim 20 wherein the band is configured to allow expansion of the body passage.
26. A method of treating a body passage comprising:
- disposing a band around the outside of the body passage, the band being configured to provide inwardly directed radial support to the body passage, wherein the band is configured to allow expansion of the body passage, and wherein the band includes a plurality of bodies in an array that can be disposed annularly around the outside of the body passage so that each of the bodies contacts the tissue passage, each body in the array having a structural link connecting it to a next adjacent body in the array, each of the links allowing the bodies it connects to move apart from one another in a direction that is annular of the array, and each of the links including a stop that is trapped but movable inside one of the bodies it connects for stopping such movement apart of the bodies it connects when spacing between those bodies reaches a maximum spacing, each link being unconnected to any annularly adjacent link except by the body between that link and the annularly adjacent link.
27. The method defined in claim 26 further comprising:
- securing at least a portion of the band to the wall of the body passage.
28. The method defined in claim 26 wherein the body passage is an esophagus.
29. The method defined in claim 26 further comprising:
- forming the band of an elastic material.
30. The method defined in claim 26 further comprising:
- forming the band of an elastic metal or polymer.
31. The method defined in claim 27 wherein the securing comprises:
- suturing at least a portion of the band to the wall of the body passage.
Type: Application
Filed: Feb 23, 2012
Publication Date: Jun 14, 2012
Applicant: TORAX MEDICAL, INC. (Shoreview, MN)
Inventors: Chad J. Kugler (Andover, MN), Jerome K. Grudem, JR. (Rogers, MN), Todd A. Berg (Stillwater, MN), William J. Swanson (St. Paul, MN)
Application Number: 13/403,441
International Classification: A61B 17/12 (20060101);