VIBRATION TOOL

A downhole vibration tool for connection with a pipe string, including a housing, a sleeve contained within the housing, a sleeve bore defined by the sleeve, an annular bore defined between the sleeve and the housing, an unbalanced annular turbine rotatably contained within the annular bore, an inlet for introducing a fluid into the sleeve bore and the annular bore, and an outlet for discharging the fluid from the sleeve bore and the annular bore.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

A downhole tool for creating vibration and for vibrating a pipe string which is connected with the tool.

BACKGROUND OF THE INVENTION

A pipe string may be placed in a borehole during drilling, completion and/or servicing operations involving the borehole. One or more components may be connected together to form a pipe string. These components may include drill pipe, drill collars, drilling motors, drill bits, stabilizers, telemetry tools, steering tools, logging tools, completion tools, servicing tools, casing, tubing, coiled tubing, and/or other equipment.

During such drilling, completion and/or servicing operations, the pipe string or components of the pipe string may become stuck in the borehole. The risk of sticking is increased in “extended reach” boreholes, which may include lengthy non-vertical or horizontal sections.

Sticking of a pipe string may sometimes be prevented, and freeing of a stuck pipe string may sometimes be accomplished by vibrating the pipe string axially, torsionally and/or laterally.

Vibrating a pipe string may involve operating one or more vibration tools which may be incorporated into the pipe string. Examples of vibration tools in the prior art include UK Patent Application No. 2 261 238 A (Reiley), Russian Patent Publication No. RU2139403 C1 (Panfilov), Soviet Union Patent Publication No. SU1633087 A1 (Lyakh et al), U.S. Pat. No. 4,384,625 (Roper et al), U.S. Pat. No. 4,667,742 (Bodine), U.S. Pat. No. 4,830,122 (Walter), U.S. Pat. No. 7,191,852 (Clayton), U.S. Pat. No. 7,708,088 (Allahar et al), U.S. Patent Application Publication No. US 2002/0157871 A1 (Tulloch), U.S. Patent Application Publication No. US 2009/0173542 A1 (Ibrahim et al), U.S. Patent Application Publication No. US 2010/0212965 A1 (Hall et al), U.S. Patent Application Publication No. US 2010/0212966 A1 (Hall et al), and U.S. Patent Application Publication No. US 2010/0224412 A1 (Allahar).

There remains a need for a relatively simple and robust vibration tool which may be connected with a pipe string in order to vibrate the pipe string.

SUMMARY OF THE INVENTION

References in this document to orientations, to operating parameters, to ranges, to lower limits of ranges, and to upper limits of ranges are not intended to provide strict boundaries for the scope of the invention, but should be construed to mean “approximately” or “about” or “substantially”, within the scope of the teachings of this document, unless expressly stated otherwise.

The present invention is directed at a downhole vibration tool for connection with a pipe string. The vibration tool is comprised of at least one turbine which is unbalanced relative to a longitudinal tool axis of the vibration tool so that rotation of the turbine results in vibration of the vibration tool. The rotation of the turbine is caused by a fluid passing through or by the turbine.

In some embodiments, the vibration tool may be comprised of a housing and an annular turbine assembly contained within the housing, wherein the annular turbine assembly is comprised of a sleeve and at least one unbalanced annular turbine which is contained within an annular bore defined between the housing and the sleeve, so that a fluid passing through the annular bore rotates the annular turbine, resulting in vibration of the vibration tool.

As used herein, “proximal” means located relatively toward an intended “uphole” end, “upper” end and/or “surface” end of the vibration tool and/or a pipe string as a point of origin.

As used herein, “distal” means located relatively away from an intended “uphole” end, “upper” end and/or “surface” end of the vibration tool and/or a pipe string as a point of origin.

As used herein, “fluid” means drilling fluid, water or any other type of fluid which may be circulated through a pipe string.

In one exemplary embodiment, the invention is a downhole vibration tool for connection with a pipe string, comprising:

    • (a) a housing, the housing having an inner housing surface;
    • (b) a sleeve contained within the housing, the sleeve having an outer sleeve surface and an inner sleeve surface, wherein the inner sleeve surface defines a sleeve bore extending through the housing, and wherein the inner housing surface and the outer sleeve surface define an annular bore extending through the housing;
    • (c) a first annular turbine rotatably contained within the annular bore, wherein the vibration tool has a longitudinal tool axis, and wherein the first annular turbine is unbalanced relative to the longitudinal tool axis;
    • (d) an inlet for introducing a fluid into the sleeve bore and the annular bore; and
    • (e) an outlet for discharging the fluid from the sleeve bore and the annular bore.

The housing may be comprised of any pipe, conduit or similar structure which provides the inner housing surface and which is suitable for facilitating containment of the sleeve and the annular turbine therein while providing for the sleeve bore and the annular bore to extend therethrough.

The housing may be comprised of a single housing part or may be comprised of a plurality of housing parts which are connected together either permanently or temporarily. A plurality of housing parts may be permanently connected together by welds or in some other manner, or may be temporarily connected together by threaded connections or in some other manner.

In some embodiments, the vibration tool may be comprised of one or more subs for facilitating connecting the vibration tool with a pipe string. The subs may be considered to be part of the housing, or the subs may be considered to be separate from the housing. In some embodiments, the housing may be considered to be comprised of a main housing and one or more subs which are permanently or temporarily connected with the main housing.

In some embodiments, the vibration tool may be comprised of a proximal sub having a proximal threaded connector for connecting the vibration tool with a pipe string. In some embodiments, the proximal threaded connector may be a box connector. In some embodiments, the proximal threaded connector may be a pin connector.

In some embodiments, the vibration tool may be comprised of a distal sub having a distal threaded connector for connecting the vibration tool with a pipe string. In some embodiments, the distal threaded connector may be a box connector. In some embodiments, the distal threaded connector may be a pin connector.

In some embodiments, the proximal sub may be connected with a main housing with a threaded connection. In some embodiments, the distal sub may be connected with a′ main housing with a threaded connection.

In some embodiments, the threaded connection between the main housing and the proximal sub may be comprised of a box connector on the main housing and a pin connector on the proximal sub. In some embodiments, the threaded connection between the main housing and the proximal sub may be comprised of a pin connector on the main housing and a box connector on the proximal sub. In some embodiments, the threaded connection between the main housing and the distal sub may be comprised of a box connector on the main housing and a pin connector on the distal sub. In some embodiments, the threaded connection between the main housing and the distal sub may be comprised of a pin connector on the main housing and a box connector on the distal sub.

The sleeve may be comprised of any pipe, conduit or similar structure which defines the sleeve bore and which is suitable to be contained within the housing such that the annular bore is defined between the inner housing surface and the outer sleeve surface. The sleeve has a proximal sleeve end and a distal sleeve end.

The sleeve may be comprised of a single sleeve part or may be comprised of a plurality of sleeve parts which are connected together either permanently or temporarily. A plurality of sleeve parts may be permanently connected together by welds or in some other manner, or may be temporarily connected together by threaded connections or in some other manner.

The first annular turbine may be comprised of any annular structure or device which is suitable to be rotatably contained within the annular bore. The first annular turbine is rotatable about a first turbine rotation axis. In some embodiments, the first turbine rotation axis may be substantially coincident with the longitudinal tool axis. In some embodiments, the first turbine rotation axis may be offset from the longitudinal tool axis.

The first annular turbine is comprised of one or more first turbine vanes which are impacted as the fluid passes through the annular bore so that the fluid energy imparts rotational energy to the first annular turbine.

The first turbine vanes may be comprised of any surfaces which are suitable for being impacted by the fluid and may be arranged on the first annular turbine in any manner which is suitable for facilitating conversion of the fluid energy to the rotational energy. As non-limiting examples, the first turbine vanes may be comprised of blades, grooves, or bucket structures, or may be defined as suitable passages through the first annular turbine.

In some embodiments, the first annular turbine may be comprised of an outer surface which is located adjacent to the inner housing surface and an inner surface which is located adjacent to the outer sleeve surface.

In some embodiments, the first turbine vanes may be comprised of surfaces located on the outer surface of the first annular turbine. In some embodiments, the first turbine vanes may be comprised of surfaces located on the inner surface of the first annular turbine. In some embodiments, the first turbine vanes may be comprised of surfaces which are defined as passages through the first annular turbine.

In some embodiments, the first turbine vanes may be comprised of blades which extend along all or a portion of a first turbine length of the first annular turbine. In some embodiments, the blades are located on the outer surface of the first annular turbine so that the blades are adjacent to the inner housing surface. The blades are arranged at an angle relative to the longitudinal tool axis so that the first annular turbine has a first turbine vane angle.

The first annular turbine is unbalanced relative to the longitudinal tool axis so that rotation of the first annular turbine results in a tendency of the vibration tool to move laterally or “wobble”, thereby causing vibration of the vibration tool.

The first annular turbine may be configured to be unbalanced relative to the longitudinal tool axis in any manner which will result in a tendency of the vibration tool to move laterally or “wobble”. In some embodiments, the first annular turbine may be configured to be unbalanced relative to the longitudinal tool axis by configuring the mass of the first annular turbine so that the center of mass is offset from the first turbine rotation axis and/or by offsetting the first turbine rotation axis from the longitudinal tool axis.

The mass of the first annular turbine may be configured so that the center of mass is offset from the first turbine rotation axis in any suitable manner. In some embodiments, the first annular turbine may be fabricated to provide an offset center of mass. In some embodiments, the first annular turbine may be initially fabricated so that the center of mass is substantially coincident with the first turbine rotation axis and may subsequently be modified by adding or removing mass asymmetrically from the first annular turbine.

The first turbine rotation axis may be offset from the longitudinal tool axis in any suitable manner. In some embodiments, the first turbine rotation axis may be offset from the longitudinal tool axis by configuring the housing asymmetrically.

The inlet may be comprised of any structure or device which is capable of introducing a fluid into the sleeve bore and the annular bore. In some embodiments, the inlet may be comprised of a portion of the housing adjacent to the proximal sleeve end which is in fluid communication with both the sleeve bore and the annular bore.

In some embodiments, the inlet may be comprised of a flow control device for selectively controlling a flow of fluid into the sleeve bore and/or the annular bore. The flow control device may be comprised of any structure, device or apparatus which is capable of selectively controlling a flow of fluid into the sleeve bore and/or the annular bore. In some embodiments, the flow control device may be comprised of a valve. In some embodiments the valve may be adjustable. In some embodiments, the valve may be remotely actuatable. In some embodiments, the flow control device may be comprised of a seat which is configured to receive a plug which may be transported to the inlet by a flow of fluid through the pipe string. In some embodiments, the plug may be comprised of a ball.

The outlet may be comprised of any structure or device which is capable of discharging fluid from the sleeve bore and the annular bore so that the fluid may be communicated back to the pipe string from the vibration tool. In some embodiments, the outlet may be comprised of a portion of the housing adjacent to the distal sleeve end which is in fluid communication with both the sleeve bore and the annular bore.

In some embodiments, the vibration tool may be adapted to be connected with a pipe string having a nominal inner diameter. The sleeve bore has a sleeve bore diameter. In some embodiments, the sleeve bore diameter may be maximized in order to enable fluid and tools to pass through the vibration tool without significant restriction. In some embodiments, a ratio of the sleeve bore diameter to the nominal inner diameter of the pipe string may be at least about 0.5:1. In some embodiments, a ratio of the sleeve bore diameter to the nominal inner diameter of the pipe string may be at least about 0.6:1. In some embodiments, a ratio of the sleeve bore diameter to the nominal inner diameter of the pipe string may be at least about 0.7:1. In some embodiments, a ratio of the sleeve bore diameter to the nominal inner diameter of the pipe string may be at least about 0.8:1. In some embodiments, a ratio of the sleeve bore diameter to the nominal inner diameter of the pipe string may be at least about 0.9:1. In some embodiments, the sleeve bore diameter may be substantially identical to the nominal inner diameter.

The first annular turbine has a proximal first turbine end and a distal first turbine end. In some embodiments, the vibration tool may be further comprised of a first proximal support ring contained within the annular bore adjacent to the proximal first turbine end. In some embodiments, the vibration tool may be further comprised of a first distal support ring contained within the annular bore adjacent to the distal first turbine end.

In some embodiments, the vibration tool may be further comprised of a proximal first turbine bearing located between the first proximal support ring and the proximal first turbine end. In some embodiments, the vibration tool may be further comprised of a distal first turbine bearing located between the distal first turbine end and the first distal support ring. In some embodiments, one or both of the proximal first turbine bearing and the distal first turbine bearing may be omitted or replaced with a bushing.

In some embodiments, the first proximal support ring may be fixedly connected with the housing. In some embodiments, the first proximal support ring may be fixedly connected with the housing with one or more dowels. In some embodiments, the first distal support ring may be fixedly connected with the housing. In some embodiments, the first distal support ring may be fixedly connected with the housing with one or more dowels.

In some embodiments, the vibration tool may be comprised of one or more annular turbines in addition to the first annular turbine.

In some embodiments, the vibration tool may be further comprised of a second annular turbine rotatably contained within the annular bore, wherein the second annular turbine is unbalanced relative to the longitudinal tool axis.

The second annular turbine may be comprised of any annular structure or device which is suitable to be rotatably contained within the annular bore. The second annular turbine is rotatable about a second turbine rotation axis. In some embodiments, the second turbine rotation axis may be substantially coincident with the longitudinal tool axis. In some embodiments, the second turbine rotation axis may be offset from the longitudinal tool axis.

The second annular turbine is comprised of one or more second turbine vanes which are impacted as the fluid passes through the annular bore so that the fluid energy imparts rotational energy to the second annular turbine.

The second turbine vanes may be comprised of any surfaces which are suitable for being impacted by the fluid and may be arranged on the second annular turbine in any manner which is suitable for facilitating conversion of the fluid energy to the rotational energy. As non-limiting examples, the second turbine vanes may be comprised of blades, grooves, or bucket structures, or may be defined as suitable passages through the second annular turbine.

In some embodiments, the second annular turbine may be comprised of an outer surface which is located adjacent to the inner housing surface and an inner surface which is located adjacent to the outer sleeve surface.

In some embodiments, the second turbine vanes may be comprised of surfaces located on the outer surface of the second annular turbine. In some embodiments, the second turbine vanes may be comprised of surfaces located on the inner surface of the second annular turbine. In some embodiments, the second turbine vanes may be comprised of surfaces which are defined as passages through the second annular turbine.

In some embodiments, the second turbine vanes may be comprised of blades which extend along all or a portion of a second turbine length of the second annular turbine. In some embodiments, the blades are located on the outer surface of the second annular turbine so that the blades are adjacent to the inner housing surface. The blades are arranged at an angle relative to the longitudinal tool axis so that the second annular turbine has a second turbine vane angle.

The second annular turbine is unbalanced relative to the longitudinal tool axis so that rotation of the second annular turbine results in a tendency of the vibration tool to move laterally or “wobble”, thereby causing vibration of the vibration tool.

The second annular turbine may be configured to be unbalanced relative to the longitudinal tool axis in any manner which will result in a tendency of the vibration tool to move laterally or “wobble”. In some embodiments, the second annular turbine may be configured to be unbalanced relative to the longitudinal tool axis by configuring the mass of the second annular turbine so that the center of mass is offset from the second turbine rotation axis and/or by offsetting the second turbine rotation axis from the longitudinal tool axis.

The mass of the second annular turbine may be configured so that the center of mass is offset from the second turbine rotation axis in any suitable manner. In some embodiments, the second annular turbine may be fabricated to provide an offset center of mass. In some embodiments, the second annular turbine may be initially fabricated so that the center of mass is substantially coincident with the second turbine rotation axis and may subsequently be modified by adding or removing mass asymmetrically from the second annular turbine.

The second turbine rotation axis may be offset from the longitudinal tool axis in any suitable manner. In some embodiments, the second turbine rotation axis may be offset from the longitudinal tool axis by configuring the housing asymmetrically.

The second annular turbine has a proximal second turbine end and a distal second turbine end. In some embodiments, the vibration tool may be further comprised of a second proximal support ring contained within the annular bore adjacent to the proximal second turbine end. In some embodiments, the vibration tool may be further comprised of a second distal support ring contained within the annular bore adjacent to the distal second turbine end.

In some embodiments, the vibration tool may be further comprised of a proximal second turbine bearing located between the second proximal support ring and the proximal second turbine end. In some embodiments, the vibration tool may be further comprised of a distal second turbine bearing located between the distal second turbine end and the second distal support ring. In some embodiments, one or both of the proximal second turbine bearing and the distal second turbine bearing may be omitted or replaced with a bushing.

In some embodiments, the second proximal support ring may be fixedly connected with the housing. In some embodiments, the second proximal support ring may be fixedly connected with the housing with one or more dowels. In some embodiments, the second distal support ring may be fixedly connected with the housing. In some embodiments, the second distal support ring may be fixedly connected with the housing with one or more dowels.

In some embodiments, the vibration tool may be further comprised of a third annular turbine rotatably contained within the annular bore, wherein the third annular turbine is unbalanced relative to the longitudinal tool axis.

The third annular turbine may be comprised of any annular structure or device which is suitable to be rotatably contained within the annular bore. The third annular turbine is rotatable about a third turbine rotation axis. In some embodiments, the third turbine rotation axis may be substantially coincident with the longitudinal tool axis. In some embodiments, the third turbine rotation axis may be offset from the longitudinal tool axis.

The third annular turbine is comprised of one or more third turbine vanes which are impacted as the fluid passes through the annular bore so that the fluid energy imparts rotational energy to the third annular turbine.

The third turbine vanes may be comprised of any surfaces which are suitable for being impacted by the fluid and may be arranged on the third annular turbine in any manner which is suitable for facilitating conversion of the fluid energy to the rotational energy. As non-limiting examples, the third turbine vanes may be comprised of blades, grooves, or bucket structures, or may be defined as suitable passages through the third annular turbine.

In some embodiments, the third annular turbine may be comprised of an outer surface which is located adjacent to the inner housing surface and an inner surface which is located adjacent to the outer sleeve surface.

In some embodiments, the third turbine vanes may be comprised of surfaces located on the outer surface of the third annular turbine. In some embodiments, the third turbine vanes may be comprised of surfaces located on the inner surface of the third annular turbine. In some embodiments, the third turbine vanes may be comprised of surfaces which are defined as passages through the third annular turbine.

In some embodiments, the third turbine vanes may be comprised of blades which extend along all or a portion of a third turbine length of the third annular turbine. In some embodiments, the blades are located on the outer surface of the third annular turbine so that the blades are adjacent to the inner housing surface. The blades are arranged at an angle relative to the longitudinal tool axis so that the third annular turbine has a third turbine vane angle.

The third annular turbine is unbalanced relative to the longitudinal tool axis so that rotation of the third annular turbine results in a tendency of the vibration tool to move laterally or “wobble”, thereby causing vibration of the vibration tool.

The third annular turbine may be configured to be unbalanced relative to the longitudinal tool axis in any manner which will result in a tendency of the vibration tool to move laterally or “wobble”. In some embodiments, the third annular turbine may be configured to be unbalanced relative to the longitudinal tool axis by configuring the mass of the third annular turbine so that the center of mass is offset from the third turbine rotation axis and/or by offsetting the third turbine rotation axis from the longitudinal tool axis.

The mass of the third annular turbine may be configured so that the center of mass is offset from the third turbine rotation axis in any suitable manner. In some embodiments, the third annular turbine may be fabricated to provide an offset center of mass. In some embodiments, the third annular turbine may be initially fabricated so that the center of mass is substantially coincident with the third turbine rotation axis and may subsequently be modified by adding or removing mass asymmetrically from the third annular turbine.

The third turbine rotation axis may be offset from the longitudinal tool axis in any suitable manner. In some embodiments, the third turbine rotation axis may be offset from the longitudinal tool axis by configuring the housing asymmetrically.

The third annular turbine has a proximal third turbine end and a distal third turbine end. In some embodiments, the vibration tool may be further comprised of a third proximal support ring contained within the annular bore adjacent to the proximal third turbine end. In some embodiments, the vibration tool may be further comprised of a third distal support ring contained within the annular bore adjacent to the distal third turbine end.

In some embodiments, the vibration tool may be further comprised of a proximal third turbine bearing located between the third proximal support ring and the proximal third turbine end. In some embodiments, the vibration tool may be further comprised of a distal third turbine bearing located between the distal third turbine end and the third distal support ring. In some embodiments, one or both of the proximal third turbine bearing and the distal third turbine bearing may be omitted or replaced with a bushing.

In some embodiments, the third proximal support ring may be fixedly connected with the housing. In some embodiments, the third proximal support ring may be fixedly connected with the housing with one or more dowels. In some embodiments, the third distal support ring may be fixedly connected with the housing. In some embodiments, the third distal support ring may be fixedly connected with the housing with one or more dowels.

The sleeve may be supported within the housing in any suitable manner. In some embodiments, the sleeve may be supported within the housing by one or more of the support rings. In some embodiments, the sleeve may be supported within the housing by the first proximal support ring. In some embodiments, the sleeve may be supported within the housing by the first proximal support ring and one or more of the other support rings.

In some embodiments, the sleeve may be connected with one or more of the support rings. In some embodiments, the sleeve may be connected with the first proximal support ring and/or with one or more of the other support rings by an interference fit between the first proximal support ring and the outer sleeve surface. In some embodiments, the sleeve may be fixedly connected with one or more of the support rings.

In some embodiments, the proximal sleeve end may be comprised of a projection for engaging with the first proximal support ring in order to limit the movement of the sleeve relative to the first proximal support ring. In some embodiments, the third distal support ring may be comprised of a projection for engaging with the distal sleeve end in order to limit the movement of the sleeve relative to the third distal support ring. In some embodiments, the proximal sleeve end may be comprised of the projection and the projection may be comprised of a lip or rim extending radially from the proximal sleeve end.

In some embodiments, the first distal support ring and the second proximal support ring may be comprised of separate parts. In some embodiments, the first distal support ring and the second proximal support ring may be comprised of a combined first intermediate support ring.

In some embodiments, the second distal support ring and the third proximal support ring may be comprised of separate parts. In some embodiments, the second distal support ring and the third proximal support ring may be comprised of a combined second intermediate support ring.

In some embodiments, the annular turbines may be substantially identical to each other. In some embodiments, the annular turbines may be configured so that the annular turbines are different from each other in some respects.

In some embodiments, each of the annular turbines may have the same number of turbine vanes. In some embodiments, the number of first turbine vanes, the number of second turbine vanes and/or the number of third turbine vanes may be different from each other.

In some embodiments, some or all of the first turbine vane angle, the second turbine vane angle and the third turbine vane angle may be the same. In some embodiments, some or all of the first turbine vane angle, the second turbine vane angle and the third turbine vane angle may be different from each other.

The first annular turbine has a first turbine length. The second annular turbine has a second turbine length. The third annular turbine has a third turbine length. In some embodiments, some or all of the first turbine length, the second turbine length and the third turbine length may be the same. In some embodiments, some or all of the first turbine length, the second turbine length and the third turbine length may be different from each other.

The first annular turbine may be configured to rotate at a first turbine rotation rate at a design fluid energy. The second annular turbine may be configured to rotate at a second turbine rotation rate at the design fluid energy. The third annular turbine may be configured to rotate at a third turbine rotation rate at the design fluid energy. In some embodiments, some or all of the first turbine rotation rate, the second turbine rotation rate and the third turbine rotation rate may be the same. In some embodiments, some or all of the first turbine rotation rate, the second turbine rotation rate and the third turbine rotation rate may be different from each other.

The first annular turbine may be configured to generate a first turbine torque at a design fluid energy. The second annular turbine may be configured to generate a second turbine torque at the design fluid energy. The third annular turbine may be configured to generate a third turbine torque at the design fluid energy. In some embodiments, some or all of the first turbine torque, the second turbine torque and the third turbine torque may be the same. In some embodiments, some or all of the first turbine torque, the second turbine torque and the third turbine torque may be different from each other.

The first proximal support ring may be comprised of one or more first diverter vanes for directing a fluid through the first proximal support ring. In some embodiments, the first diverter vanes may be arranged to have a first diverter vane angle relative to the longitudinal tool axis. In some embodiments, the first diverter vane angle may be in a direction relative to the longitudinal tool axis which is opposite to the first turbine vane angle. In some embodiments, the first diverter vane angle may be substantially zero, so that the first diverter vanes are substantially parallel with the longitudinal tool axis and thus direct the fluid through the first proximal support ring in a direction which is substantially parallel to the longitudinal tool axis.

The first distal support ring may be comprised of one or more distal diverter vanes for directing a fluid through the first distal support ring. In some embodiments, the distal diverter vanes may be arranged to have a distal diverter vane angle relative to the longitudinal tool axis. In some embodiments, the distal diverter vane angle may be in a direction relative to the longitudinal tool axis which is opposite to the first turbine vane angle. In some embodiments, the distal diverter vane angle may be substantially zero, so that the distal diverter vanes are substantially parallel with the longitudinal tool axis and thus direct the fluid through the first distal support ring in a direction which is substantially parallel to the longitudinal tool axis.

The second proximal support ring may be comprised of one or more second diverter vanes for directing a fluid through the second proximal support ring. In some embodiments, the second diverter vanes may be arranged to have a second diverter vane angle relative to the longitudinal tool axis. In some embodiments, the second diverter vane angle may be in a direction relative to the longitudinal tool axis which is opposite to the second turbine vane angle. In some embodiments, the second diverter vane angle may be substantially zero, so that the second diverter vanes are substantially parallel with the longitudinal tool axis and thus direct the fluid through the second proximal support ring in a direction which is substantially parallel to the longitudinal tool axis.

The second distal support ring may be comprised of one or more distal diverter vanes for directing a fluid through the second distal support ring. In some embodiments, the distal diverter vanes may be arranged to have a distal diverter vane angle relative to the longitudinal tool axis. In some embodiments, the distal diverter vane angle may be in a direction relative to the longitudinal tool axis which is opposite to the second turbine vane angle. In some embodiments, the distal diverter vane angle may be substantially zero, so that the distal diverter vanes are substantially parallel with the longitudinal tool axis and thus direct the fluid through the second distal support ring in a direction which is substantially parallel to the longitudinal tool axis.

The third proximal support ring may be comprised of one or more third diverter vanes for directing a fluid through the third proximal support ring. In some embodiments, the third diverter vanes may be arranged to have a third diverter vane angle relative to the longitudinal tool axis. In some embodiments, the third diverter vane angle may be in a direction relative to the longitudinal tool axis which is opposite to the third turbine vane angle. In some embodiments, the third diverter vane angle may be substantially zero, so that the third diverter vanes are substantially parallel with the longitudinal tool axis and thus direct the fluid through the third proximal support ring in a direction which is substantially parallel to the longitudinal tool axis.

The third distal support ring may be comprised of one or more distal diverter vanes for directing a fluid through the third distal support ring. In some embodiments, the distal diverter vanes may be arranged to have a distal diverter vane angle relative to the longitudinal tool axis. In some embodiments, the distal diverter vane angle may be in a direction relative to the longitudinal tool axis which is opposite to the third turbine vane angle. In some embodiments, the distal diverter vane angle may be substantially zero, so that the distal diverter vanes are substantially parallel with the longitudinal tool axis and thus direct the fluid through the third distal support ring in a direction which is substantially parallel to the longitudinal tool axis.

In some embodiments, each of the support rings may have the same number of diverter vanes, the same vane angles and/or the same direction for the vane angles. In some embodiments, the number of first diverter vanes, the number of second diverter vanes, the number of third diverter vanes and/or the number of distal diverter vanes may be different from each other, and/or some or all of the vane angles may be different from each other, and/or some or all of the directions of the vane angles may be different from each other.

In some embodiments, the second diverter vane angle and the distal diverter vane angle of the first distal support ring may be the same angle and may be in the same direction. In some embodiments, the second diverter vane angle and the distal diverter vane angle of the first distal support ring may be different angles and/or may be in a different direction.

In some embodiments in which the first distal support ring and the second proximal support ring are comprised of a combined first intermediate support ring, the second diverter vane angle may be provided along substantially the entire length of the first intermediate support ring.

In some embodiments, the third diverter vane angle and the distal diverter vane angle of the second distal support ring may be the same angle and may be in the same direction. In some embodiments, the second diverter vane angle and the distal diverter vane angle of the second distal support ring may be different angles and/or may be in a different direction.

In some embodiments in which the second distal support ring and the third proximal support ring are comprised of a combined second intermediate support ring, the third diverter vane angle may be provided along substantially the entire length of the second intermediate support ring.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the invention will now be described with reference to the accompanying drawings, in which:

FIG. 1A-1D is a complete longitudinal section assembly drawing of a vibration tool according to an exemplary embodiment of the invention, wherein FIG. 1B is a continuation of FIG. 1A, FIG. 1C is a continuation of FIG. 1B, and FIG. 1D is a continuation of FIG. 1C.

FIG. 2 is a partial cutaway complete pictorial view of the embodiment of the vibration tool depicted in FIG. 1, in which the main housing has been removed to more clearly show components of the annular turbine assembly.

DETAILED DESCRIPTION

The present invention is a downhole vibration tool for connection with a pipe string.

Referring to FIGS. 1-2, an exemplary embodiment of the downhole vibration tool is depicted. FIG. 1 is a complete longitudinal section assembly drawing of the exemplary embodiment. FIG. 2 is a partial cutaway complete pictorial view of the exemplary embodiment.

Referring to FIG. 1, a downhole vibration tool (10) has a longitudinal tool axis (12). The vibration tool (10) is comprised of a housing (22). In the embodiment of FIGS. 1-2, the housing (22) is comprised of a main housing (24), a proximal sub (26), and a distal sub (28).

The proximal sub (26) is connected with the main housing (24) with a threaded connection (30). In the embodiment of FIGS. 1-2, the threaded connection (30) is comprised of a box connector (32) on the main housing (24) and a pin connector (34) on the proximal sub (26). An O-ring (36) is positioned between the box connector (32) and the pin connector (34) to provide a seal between the main housing (24) and the proximal sub (26).

The distal sub (28) is connected with the main housing (24) with a threaded connection (40). In the embodiment of FIGS. 1-2, the threaded connection (40) is comprised of a box connector (42) on the main housing (24) and a pin connector (44) on the distal sub (28). An O-ring (46) is positioned between the box connector (42) and the pin connector (44) to provide a seal between the main housing (24) and the distal sub (28).

The proximal sub (26) is comprised of a proximal threaded connector (50) for connecting the vibration tool (10) with a pipe string (not shown). In the embodiment of FIGS. 1-2, the proximal threaded connector (50) is a box connector.

The distal sub (28) is comprised of a distal threaded connector (52) for connecting the vibration tool (10) with a pipe string (not shown). In the embodiment of FIGS. 1-2, the distal threaded connector (52) is a pin connector.

The drill string (not shown) has a nominal inner diameter. The proximal sub (26) has a nominal inner diameter (54). The distal sub (28) has a nominal inner diameter (56). The proximal sub (26) and the distal sub (28) are configured so that the nominal inner diameter (54) of the proximal sub (26) and the nominal inner diameter (56) of the distal sub (28) are substantially similar to the nominal inner diameter of the drill string (not shown) with which the vibration tool (10) will be connected.

The main housing (24) has an inner diameter (60). The inner diameter (60) of the main housing (24) is larger than the nominal inner diameter (54) of the proximal sub (26) and the nominal inner diameter (56) of the distal sub (28). The proximal sub (26) is comprised of a proximal inner diameter transition (62) which provides a transition between the nominal inner diameter (54) of the proximal sub (26) and the inner diameter (60) of the main housing (24). The distal sub (28) is comprised of a distal inner diameter transition (64) which provides a transition between the nominal inner diameter (56) of the distal sub (28) and the inner diameter of the main housing (24).

The housing (22) has an inner housing surface (70). The housing (22) contains an annular turbine assembly (72). The annular turbine assembly (72) is comprised of a sleeve (74) which has an outer sleeve surface (76) and an inner sleeve surface (78). The inner sleeve surface (78) defines a sleeve bore (80) extending through the housing (22). The inner housing surface (70) and the outer sleeve surface (76) define an annular bore (82) extending through the housing (22).

The annular turbine assembly (72) is further comprised of at least one annular turbine which is rotatably contained within the annular bore (82) and which is unbalanced relative to the longitudinal tool axis (12).

In the embodiment of FIGS. 1-2, the annular turbine assembly (72) is comprised of the sleeve (74), a first proximal support ring (90), a first annular turbine (92), a first intermediate support ring (94), a second annular turbine (96), a second intermediate support ring (98), a third annular turbine (100), and a third distal support ring (102).

The support rings (90, 94, 98, 102) and the annular turbines (92, 96, 100) are configured and arranged in the annular bore (82) so that a fluid (not shown) may pass through the annular bore (82). Stated otherwise, the support rings (90, 94, 98, 102) and the annular turbines (92, 96, 100) do not entirely block the annular bore (82).

The first annular turbine (92) is comprised of an annular structure having an outer surface (110) which is adjacent to the inner housing surface (70) and an inner surface (112) which is adjacent to the outer sleeve surface (76). The first annular turbine (92) is provided with sufficient clearance with respect to the inner housing surface (70) and the outer sleeve surface (76) to permit the first annular turbine (92) to rotate relatively freely within the annular bore (82).

In the embodiment of FIGS. 1-2, a plurality of first turbine vanes (114) is located on the outer surface (110) of the first annular turbine (92). In the embodiment of FIGS. 1-2, the first turbine vanes (114) are comprised of blades which extend along substantially the entire first turbine length (116) of the first annular turbine (92). The first turbine vanes (114) are arranged at an angle relative to the longitudinal tool axis (12) so that the first annular turbine (92) has a first turbine vane angle (118). The first turbine vanes (114) are tapered adjacent to the first proximal support ring (90) in order to reduce turbulence and energy losses as a fluid (not shown) passes into the first annular turbine (92).

The first annular turbine (92) is rotatable about a first turbine rotation axis (120) and is unbalanced relative to the longitudinal tool axis (12). In the embodiment of FIGS. 1-2, the first turbine rotation axis (120) is substantially coincident with the longitudinal tool axis (12) and the first annular turbine (92) is unbalanced by configuring the mass of the first annular turbine (92) so that the center of mass is offset from the first turbine rotation axis (120).

In the embodiment of FIGS. 1-2, the first annular turbine (92) is initially fabricated so that the center of mass is substantially coincident with the first turbine rotation axis (120) and is subsequently modified by adding and/or removing mass asymmetrically from the first annular turbine (92). As best depicted in FIG. 4, holes (122) are drilled in one of the first turbine vanes (114) so that the center of mass of the first annular turbine (92) is offset. These holes (122) may either be left as voids, or may be filled with a material which has a lesser or greater density than the material from which the first annular turbine (92) is fabricated in order to provide that the first annular turbine (92) is unbalanced.

The first proximal support ring (90) is comprised of an annular structure having an outer surface (130) which is adjacent to the inner housing surface (70) and an inner surface (132) which is adjacent to the outer sleeve surface (76).

In the embodiment of FIGS. 1-2, a plurality of first diverter vanes (134) is located on the outer surface (130) of the first proximal support ring (90). In the embodiment of FIGS. 1-2, the first diverter vanes (134) are comprised of blades which extend along the length of the first proximal support ring (90). The first diverter vanes (134) are arranged to have a first diverter vane angle (136) relative to the longitudinal tool axis (12).

The first diverter vane angle (136) is in a direction relative to the longitudinal tool axis (12) which is opposite to the first turbine vane angle (118). This configuration of the first diverter vane angle (136) and the first turbine vane angle (118) enables a fluid (not shown) passing through the annular bore (82) to impact the first turbine vanes (114) at a lower angle of incidence than if the first diverter vane angle (136) were parallel to the longitudinal tool axis (12) or in the same direction as the first turbine vane angle (118) relative to the longitudinal tool axis (12), thus potentially increasing the rotational energy which is imparted to the first annular turbine (92) by the fluid (not shown). In the embodiment of FIGS. 1-2, the first diverter vane angle (136) may be minimized in order to minimize turbulence at the interface between the first proximal support ring (90) and the first annular turbine (92).

The second annular turbine (96) is comprised of an annular structure having an outer surface (140) which is adjacent to the inner housing surface (70) and an inner surface (142) which is adjacent to the outer sleeve surface (76). The second annular turbine (96) is provided with sufficient clearance with respect to the inner housing surface (70) and the outer sleeve surface (76) to permit the second annular turbine (96) to rotate relatively freely within the annular bore (82).

In the embodiment of FIGS. 1-2, a plurality of second turbine vanes (144) is located on the outer surface (140) of the second annular turbine (96). In the embodiment of FIGS. 1-2, the second turbine vanes (144) are comprised of blades which extend along substantially the entire second turbine length (146) of the second annular turbine (96). The second turbine vanes (144) are arranged at an angle relative to the longitudinal tool axis (12) so that the second annular turbine (96) has a second turbine vane angle (148). The second turbine vanes (144) are tapered adjacent to the first intermediate support ring (94) in order to reduce turbulence and energy losses as a fluid (not shown) passes into the second annular turbine (96).

The second annular turbine (96) is rotatable about a second turbine rotation axis (150) and is unbalanced relative to the longitudinal tool axis (12). In the embodiment of FIGS. 1-2, the second turbine rotation axis (150) is substantially coincident with the longitudinal tool axis (12) and the second annular turbine (96) is unbalanced by configuring the mass of the second annular turbine (96) so that the center of mass is offset from the second turbine rotation axis (150).

In the embodiment of FIGS. 1-2, the second annular turbine (96) is initially fabricated so that the center of mass is substantially coincident with the second turbine rotation axis (150) and is subsequently modified by adding and/or removing mass asymmetrically from the second annular turbine (96). As best depicted in FIG. 4, holes (152) are drilled in one of the second turbine vanes (144) so that the center of mass of the second annular turbine (96) is offset. These holes (152) may either be left as voids, or may be filled with a material which has a lesser or greater density than the material from which the second annular turbine (96) is fabricated in order to provide that the second annular turbine (96) is unbalanced.

The first intermediate support ring (94) is comprised of an annular structure having an outer surface (160) which is adjacent to the inner housing surface (70) and an inner surface (162) which is adjacent to the outer sleeve surface (76).

In the embodiment of FIGS. 1-2, a plurality of second diverter vanes (164) is located on the outer surface (160) of the first intermediate support ring (94). In the embodiment of FIGS. 1-2, the second diverter vanes (164) are comprised of blades which extend along the length of the first intermediate support ring (94). The second diverter vanes (164) are arranged to have a second diverter vane angle (166) relative to the longitudinal tool axis (12).

The second diverter vane angle (166) is in a direction relative to the longitudinal tool axis (12) which is opposite to the second turbine vane angle (148). This configuration of the second diverter vane angle (166) and the second turbine vane angle (148) enables a fluid (not shown) passing through the annular bore (82) to impact the second turbine vanes (144) at a lower angle of incidence than, if the second diverter vane angle (166) were parallel to the longitudinal tool axis (12) or in the same direction as the second turbine vane angle (148) relative to the longitudinal tool axis (12), thus potentially increasing the rotational energy which is imparted to the second annular turbine (96) by the fluid (not shown). In the embodiment of FIGS. 1-2, the second diverter vane angle (166) may be minimized in order to minimize turbulence at the interfaces between the first intermediate support ring (94) and the first annular turbine (92) and the second annular turbine (96).

The third annular turbine (100) is comprised of an annular structure having an outer surface (170) which is adjacent to the inner housing surface (70) and an inner surface (172) which is adjacent to the outer sleeve surface (76). The third annular turbine (100) is provided with sufficient clearance with respect to the inner housing surface (70) and the outer sleeve surface (76) to permit the third annular turbine (100) to rotate relatively freely within the annular bore (82).

In the embodiment of FIGS. 1-2, a plurality of third turbine vanes (174) is located on the outer surface (170) of the third annular turbine (100). In the embodiment of FIGS. 1-2, the third turbine vanes (174) are comprised of blades which extend along substantially the entire third turbine length (176) of the third annular turbine (100). The third turbine vanes (174) are arranged at an angle relative to the longitudinal tool axis (12) so that the third annular turbine (100) has a third turbine vane angle (178). The third turbine vanes (174) are tapered adjacent to the second intermediate support ring (98) in order to reduce turbulence and energy losses as a fluid (not shown) passes into the third annular turbine (100).

The third annular turbine (100) is rotatable about a third turbine rotation axis (180) and is unbalanced relative to the longitudinal tool axis (12). In the embodiment of FIGS. 1-2, the third turbine rotation axis (180) is substantially coincident with the longitudinal tool axis (12) and the third annular turbine (100) is unbalanced by configuring the mass of the third annular turbine (100) so that the center of mass is offset from the third turbine rotation axis (180).

In the embodiment of FIGS. 1-2, the third annular turbine (100) is initially fabricated so that the center of mass is substantially coincident with the third turbine rotation axis (180) and is subsequently modified by adding and/or removing mass asymmetrically from the third annular turbine (100). As best depicted in FIG. 4, holes (182) are drilled in one of the third turbine vanes (174) so that the center of mass of the third annular turbine (100) is offset. These holes (182) may either be left as voids, or may be filled with a material which has a lesser or greater density than the material from which the third annular turbine (100) is fabricated in order to provide that the third annular turbine (100) is unbalanced.

The second intermediate support ring (98) is comprised of an annular structure having an outer surface (190) which is adjacent to the inner housing surface (70) and an inner surface (192) which is adjacent to the outer sleeve surface (76).

In the embodiment of FIGS. 1-2, a plurality of third diverter vanes (194) is located on the outer surface (190) of the second intermediate support ring (98). In the embodiment of FIGS. 1-2, the third diverter vanes (194) are comprised of blades which extend along the length of the second intermediate support ring (98). The third diverter vanes (194) are arranged to have a third diverter vane angle (196) relative to the longitudinal tool axis (12).

The third diverter vane angle (196) is in a direction relative to the longitudinal tool axis (12) which is opposite to the third turbine vane angle (178). This configuration of the third diverter vane angle (196) and the third turbine vane angle (178) enables a fluid (not shown) passing through the annular bore (82) to impact the third turbine vanes (174) at a lower angle of incidence than if the third diverter vane angle (196) were parallel to the longitudinal tool axis (12) or in the same direction as the third turbine vane angle (178) relative to the longitudinal tool axis (12), thus potentially increasing the rotational energy which is imparted to the third annular turbine (100) by the fluid (not shown). In the embodiment of FIGS. 1-2, the third diverter vane angle (196) may be minimized in order to minimize turbulence at the interfaces between the second intermediate support ring (98) and the second annular turbine (96) and the third annular turbine (100).

The third distal support ring (102) is comprised of an annular structure having an outer surface (200) which is adjacent to the inner housing surface (70) and an inner surface (202) which is adjacent to the outer sleeve surface (76).

In the embodiment of FIGS. 1-2, a plurality of distal diverter vanes (204) is located on the outer surface (200) of the third distal support ring (102). In the embodiment of FIGS. 1-2, the distal diverter vanes (204) are comprised of blades which extend along the length of the third distal support ring (102). The distal diverter vanes (204) are arranged to be substantially parallel with the longitudinal tool axis (12) in order to direct a fluid (not shown) passing through the annular bore (82) in a direction which is substantially parallel with the longitudinal tool axis (12), so that a distal diverter vane angle (206) is substantially zero.

In the embodiment of FIGS. 1-2, the first intermediate support ring (94) provides a combined first distal support ring and second proximal support ring, and the second intermediate support ring (98) provides a combined second distal support ring and third proximal support ring.

In the embodiment of FIGS. 1-2, a proximal first turbine bearing (210) is located between the first proximal support ring (90) and a proximal first turbine end (212) of the first annular turbine (92), a distal first turbine bearing (214) is located between a distal first turbine end (216) of the first annular turbine (92) and the first intermediate support ring (94), a proximal second turbine bearing (218) is located between the first intermediate support ring (94) and a proximal second turbine end (220) of the second annular turbine (96), a distal second turbine bearing (222) is located between a distal second turbine end (224) of the second annular turbine (96) and the second intermediate support ring (98), a proximal third turbine bearing (226) is located between the second intermediate support ring (98) and a proximal third turbine end (228) of the third annular turbine (100), and a distal third turbine bearing (230) is located between a distal third turbine end (232) of the third annular turbine (100) and the third distal support ring (102).

Referring to FIGS. 1-2, the sleeve (74) has a proximal sleeve end (240) and a distal sleeve end (242).

In the embodiment of FIGS. 1-2, an inlet (244) is defined by the proximal sleeve end (240), the first proximal support ring (90) and the proximal inner diameter transition (62), so that a fluid (not shown) passing through the proximal sub (26) can be introduced into the sleeve bore (80) and the annular bore (82). As depicted in FIGS. 1-2, the proximal sleeve end (240) and the first proximal support ring (90) are tapered adjacent to the inlet (244) in order to reduce turbulence and energy losses at the inlet (244).

In some embodiments, a flow control device (not shown) may be associated with the inlet (244) so that a fluid (not shown) may be selectively directed through the sleeve bore (80) and/or the annular bore (82). In some embodiments, the flow control device (not shown) may be comprised of the proximal sleeve end (240) and/or the first proximal support ring (90) defining a seat (not shown) for receiving a plug such as a ball (not shown) which may be passed through the drill string (not shown) to partially seal or plug the sleeve bore (80) in order to direct the fluid (not shown) through the annular bore (82). In some embodiments, the plug (not shown) may be retrievable. In some embodiments, the flow control device (not shown) may be comprised of a valve (not shown) which is associated with the inlet (244). In some embodiments, the valve (not shown) may be adjustable and/or remotely actuatable.

In the embodiment of FIGS. 1-2, an outlet (246) is defined by the distal sleeve end (242), the third distal support ring (102) and the distal inner diameter transition (64), so that a fluid (not shown) passing through the sleeve bore (80) and the annular bore (82) can be discharged into the distal sub (28).

As previously indicated, in the embodiment of FIGS. 1-2, the annular turbine assembly (72) is comprised of the sleeve (74), the first proximal support ring (90), the first annular turbine (92), the first intermediate support ring (94), the second annular turbine (96), the second intermediate support ring (98), the third annular turbine (100), and the third distal support ring (102).

In the embodiment of FIGS. 1-2, the annular turbine assembly (72) is configured so that it may be inserted into the main housing (24) and removed from the main housing (24) fully assembled.

In the embodiment of FIGS. 1-2, the sleeve (74) is connected with the first proximal support ring (90) by an interference fit between the inner surface (132) of the first proximal support ring (90) and the outer sleeve surface (76). Optionally, the sleeve may also be connected by interference fits between the outer sleeve surface (76) and the first intermediate support ring (94), the second intermediate support ring (98) and/or the third distal support ring (102).

Alternatively, the sleeve (74) may be fixedly connected with one or more of the first proximal support ring (90), the first intermediate support ring (94), the second intermediate support ring (98) and/or the third distal support ring (102). The sleeve (74) may be fixedly connected with one or more of the support rings (90, 94, 98, 102) in any suitable manner.

The annular turbine assembly (72) may be connected with the housing (22) by connecting the first proximal support ring (90), the first intermediate support ring (94), the second intermediate support ring (98) and/or the third distal support ring (102) with the main housing (24). For example, the annular turbine assembly (72) may be fixedly connected with one or more of the support rings (90, 94, 98, 102) in any suitable manner.

In the embodiment of FIGS. 1-2, each of the first proximal support ring (90), the first intermediate support ring (94), the second intermediate support ring (98) and the third distal support ring (102) are fixedly connected with the main housing (24) with one or more dowels (250) which extend through dowel bores (252) in the main housing (24) and into corresponding dowel bores (254) in the support rings (90, 94, 98, 102). Following installation of the dowels (250), pipe plugs (256) may be inserted into the dowel bores (252) to seal the dowel bores (252).

In the embodiment of FIGS. 1-2, the proximal sleeve end (240) is comprised of a projection (260) for engaging with the first proximal support ring (90) in order to limit the movement of the sleeve (74) relative to the first proximal support ring (90). In the embodiment of FIGS. 1-2, the projection (260) is comprised of a radially extending lip or rim at the proximal sleeve end (240).

As a result, in the embodiment of FIGS. 1-2, the annular turbine assembly (72) may be assembled by sliding the annular turbines (92, 96, 100) and the support rings (90, 94, 98, 102) onto the sleeve (74) from the distal sleeve end (242) in sequence, beginning with the first proximal support ring (90).

In order to complete the assembly of the vibration tool (10), the annular turbine assembly (72) may be inserted into the main housing (24) from either end and may be secured to the main housing (24) with the dowels (250) and pipe plugs (256). One of the proximal sub (26) and the distal sub (28) may be threaded onto the main housing (24) before the annular turbine assembly (72) is inserted into the main housing (24), but the other of the subs (26, 28) is threaded onto the main housing (24) after the annular turbine assembly (72) is inserted into the main housing (24).

In order to disassemble the vibration tool (10), one of the proximal sub (26) and the distal sub (28) may be unthreaded from the main housing (24), the pipe plugs (256) and dowels (250) may be removed from the main housing (24), and the annular turbine assembly (72) may be removed from the main housing (24). In the event that the annular turbine assembly (72) becomes stuck in the main housing (24), the sleeve (74) may be removed from the main housing (24) separately from the other components of the annular turbine assembly (72) by pulling on the proximal sleeve end (240) after unthreading the proximal sub (26) from the main housing (24).

The ease of assembly and disassembly of the vibration tool (10) facilitates servicing the vibration tool (10) and/or replacing or substituting parts of the vibration tool (10).

The configuration of the annular turbine assembly (72) supports the ease of assembly and disassembly of the vibration tool (10), enables the annular turbines (92, 96, 100) to be supported within the main housing (24) by the main housing (24), the sleeve (74) and the support rings (90, 94, 98, 102), and may assist in transmitting vibration produced by the annular turbines (92, 96, 100) to the main housing (24).

The sleeve (74) as a component of the annular turbine assembly (72) provides several purposes. First, the sleeve (74) facilitates the assembly and disassembly of the vibration tool (10) by providing a structure upon which to assemble the components of the annular turbine assembly (72). Second, the sleeve (74) serves as a barrier between the sleeve bore (80) and the inner surfaces (112, 142, 172) of the annular turbines (92, 96, 100) and thus prevents fluid (not shown) passing through the sleeve bore (80) from interfering with the rotation of the annular turbines (92, 96, 100). Third, the sleeve (74) may assist in protecting the turbine bearings (210, 214, 218, 222, 226, 230) by reducing fluid flow through the bearings (210, 214, 218, 222, 226, 230) from the inner surfaces (112, 142, 172) of the annular turbines and/or the inner surfaces (132, 162, 192, 202) of the support rings (90, 94, 98, 102). Fourth, the tapered proximal sleeve end (240) may assist in directing fluid (not shown) into the annular bore (82) at the inlet (244).

The sleeve (74) has a sleeve bore diameter (262). In the embodiment of FIGS. 1-2, the sleeve bore diameter (262) is maximized in order to enable fluid (not shown) and tools (not shown) to pass through the sleeve bore (80) and the vibration tool (10) without significant restriction.

In the embodiment of FIGS. 1-2, the sleeve bore diameter (262) may be configured to be substantially identical to or within a desired ratio to the nominal inner diameter (54) of the proximal sub (26) and/or the nominal inner diameter (56) of the distal sub (28).

This configuration may be achieved by providing the main housing (24) with a larger outer dimension than the proximal sub (26) and/or the distal sub (28), and/or by providing the main housing (24) with an increased inner diameter (60) in order to accommodate the annular turbine assembly (72) therein.

In achieving this configuration, a balance must be sought between providing an acceptable sleeve bore diameter (262) and providing a suitable ratio between the cross-sectional area of the sleeve bore (80) and the cross-sectional area of the annular bore (82), since a suitable amount of fluid (not shown) must pass through the annular bore (82) in order to drive the annular turbines (92, 96, 100).

In the embodiment of FIGS. 1-2, a goal in configuring the vibration tool (10) is to provide that at least about 25 percent of the fluid (not shown) which passes through the vibration tool (10) passes through the annular bore (82), so that no greater than about 75 percent of the fluid (not shown) which passes through the vibration tool (10) passes through the sleeve bore (80). As a result, in the embodiment of FIGS. 1-2, the main housing (24), the sleeve (74), the annular turbines (92, 96, 100) and the support rings (90, 94, 98, 102) are configured to provide that an adequate amount of the fluid (not shown) passes through the annular bore (82).

In the embodiment of FIGS. 1-2, the vibration tool (10) is comprised of three annular turbines (92, 96, 100). In other embodiments, the vibration tool (10) may be comprised of one annular turbine, two annular turbines, or more than three annular turbines. Each of the annular turbines which may be included in the vibration tool (10) may be configured to provide a desired vibration frequency and a desired vibration amplitude when supplied with a design fluid energy.

The vibration frequency which is provided by an annular turbine is dependent at least in part upon the turbine rotation rate of the annular turbine. The vibration amplitude which is provided by an annular turbine is dependent at least in part upon the turbine torque which is generated by the annular turbine during rotation. The vibration frequency and the vibration amplitude of an annular turbine is dependent at least in part upon the fluid energy which is provided to the annular turbine.

The desired vibration frequencies of the annular turbines may be the same or may be different from each other. The desired vibration frequencies of the annular turbines may be selected to cancel unwanted vibration frequencies in the pipe string (not shown) and/or to impart one or more vibration frequencies to the pipe string (not shown) to reduce the likelihood of the pipe string (not shown) becoming stuck in a borehole (not shown).

In the embodiment of FIGS. 1-2, the first annular turbine (92) is configured to rotate at a first turbine rotation rate at a design fluid energy in order to provide a desired vibration frequency, the second annular turbine (96) is configured to rotate at a second turbine rotation rate at the desired fluid energy in order to provide a desired vibration frequency, and the third annular turbine (100) is configured to rotate at a third turbine rotation rate at the desired fluid energy in order to provide a desired vibration frequency.

In the embodiment of FIGS. 1-2, the first turbine rotation rate, the second turbine rotation rate and the third turbine rotation rate are preferably different from each other. For example, it is believed that a vibration frequency of about 19.2 Hz (about 1150 rpm) which is imparted to a pipe string (not shown) may not significantly interfere with telemetry systems which may be used with the pipe string (not shown), but vibration frequencies above and below about 19.2 Hz (about 1150 rpm) may significantly interfere with telemetry systems and may thus be considered to be unwanted vibration frequencies.

As a result, in the embodiment of FIGS. 1-2, one of the annular turbines (92, 96, 100) may be configured to rotate at a turbine rotation rate which will produce a desired vibration frequency in the pipe string (not shown) which is greater than 19.2 Hz (about 1150 rpm), one of the annular turbines (92, 96, 100) may be configured to rotate at a turbine rotation rate which will produce a desired vibration frequency in the pipe string (not shown) which is less than 19.2 Hz (about 1150 rpm), and one of the annular turbines (92, 96, 100) may be configured to rotate at a turbine rotation rate which will produce a desired vibration frequency in the pipe string (not shown) which is about equal to about 19.2 Hz (about 1150 rpm).

More particularly, in the embodiment of FIGS. 1-2, the first annular turbine (92) may be configured to rotate at a first turbine rotation rate which will produce a desired vibration frequency in the pipe string (not shown) which is greater than 19.2 Hz (about 1150 rpm), the third annular turbine (100) may be configured to rotate at a third turbine rotation rate which will produce a desired vibration frequency in the pipe string (not shown) which is less than 19.2 Hz (about 1150 rpm), and the second annular turbine (96) may be configured to rotate at a second turbine rotation rate which will produce a desired vibration frequency in the pipe string (not shown) which is about equal to about 19.2 Hz (about 1150 rpm).

The turbine rotation rate is dependent at least in part upon both the turbine vane angle and the associated diverter vane angle. For example, the first turbine rotation rate is dependent at least in part upon the first turbine vane angle (118) and the first diverter vane angle (136), the second turbine rotation rate is dependent at least in part upon the second turbine vane angle (148) and the second diverter vane angle (166), and the third turbine rotation rate is dependent at least in part upon the third turbine vane angle (178) and the third diverter vane angle (196).

In general, the lower the angle of incidence between the fluid (not shown) and the turbine vanes when the fluid (not shown) impacts the turbine vanes (and thus the greater the combined turbine vane angle and diverter vane angle), the higher the turbine rotation rate. As a result, the turbine rotation rate of an annular turbine may generally be increased by increasing the turbine vane angle and/or the associated diverter vane angle, and may generally be decreased by decreasing the turbine vane angle and/or the associated diverter vane angle.

The turbine rotation rate of an annular turbine may also be dependent upon other factors, including but not limited to the number of turbine vanes, the length of the turbine vanes, the height of the turbine vanes, and the shape of the turbine vanes, the length of the annular turbine, and the mass of the annular turbine.

In the embodiment of FIGS. 1-2, the first annular turbine (92) is configured to generate a first turbine torque at a design fluid energy, the second annular turbine (96) is configured to generate a second turbine torque at the desired fluid energy, and the third annular turbine (100) is configured to generate a third turbine torque at the desired fluid energy.

In the embodiment of FIGS. 1-2, the annular turbines (92, 96, 100) may be configured so that the first turbine torque, the second turbine torque and the third turbine torque are either similar to each other or different from each other.

The turbine torque which is generated by an annular turbine during rotation is dependent at least in part upon the turbine length. An annular turbine having a relatively longer turbine length will generally generate more torque than an annular turbine having a relatively shorter turbine length because a longer annular turbine provides greater opportunity for fluid energy to be transferred to the annular turbine as the fluid (not shown) passes around and/or through the annular turbine.

For example, in the embodiment of FIGS. 1-2, the second turbine length (146) may be longer than the first turbine length (116) and/or the third turbine length (176) so that the second annular turbine (96) may be configured to generate a second turbine torque which is greater than the first turbine torque and/or the third turbine torque. This configuration may enable the vibration tool (10) to provide a higher vibration energy for vibrating the pipe string (not shown) than is provided for cancelling unwanted vibrations in the pipe string (not shown).

The turbine torque generated by an annular turbine may also be dependent upon other factors, including but not limited to the number of turbine vanes, the length of the turbine vanes, the height of the turbine vanes, the shape of the turbine vanes, and the mass of the annular turbine. The vibration amplitude of an annular turbine may also be dependent upon the magnitude of the imbalance of the annular turbine.

As indicated above, the desired vibration frequency and the desired vibration amplitude of an annular turbine is dependent at least in part upon a design fluid energy. The design fluid energy may be expressed as the amount of fluid energy to which the vibration tool (10) is expected to be exposed during operation. The design fluid energy is dependent upon the fluid energy requirements and/or limits of the operation which is being conducted in the borehole (not shown) and/or of the components which are included in the pipe string (not shown).

For example, a drilling motor (not shown) may be designed to operate at a maximum fluid flowrate through the drilling motor (not shown). This maximum fluid flow rate may provide an indication of the amount of fluid energy to which the vibration tool (10) may be exposed during operation. The actual fluid energy to which the vibration tool (10) may be exposed during operation may, in addition to the flowrate of the fluid, be influenced by other factors including the pressure, density and temperature of the fluid.

Using empirical data, charts or tables which correlate fluid flow rates (or fluid energy) with rotation rates and vane angles, a combination of turbine vane angle and diverter vane angle can be determined which will provide a desired turbine rotation rate and thus vibration frequency. This combination of turbine vane angle and diverter vane angle should take into account the relative amounts of fluid (not shown) which can be expected to pass through the sleeve bore (80) and the annular bore (82) during operation of the vibration tool (10).

In practice, it may be very difficult to attain or maintain a specific design fluid energy during the operation of the vibration tool (10). As a result, the vibration tool (10) may be configured to operate within a range of vibration frequencies which may conceivably be controlled by the operator of the pipe string during operation of the vibration tool (10) by adjusting the fluid flow rate through the vibration tool (10) within a range of fluid flow rates, or by otherwise controlling the components of the pipe string (not shown).

An exemplary configuration for the vibration tool (10) in the embodiment of FIGS. 1-2 is as follows.

The nominal outer diameter of the vibration tool (10) may be 4.875 inches (about 12.4 centimeters). The nominal inner diameter of the pipe string (not shown) may be 2.25 inches (about 5.7 centimeters). In the exemplary configuration, the vibration tool (10) may be configured to be used in a pipe string (not shown) which includes a positive displacement drilling motor having a nominal outer diameter of 4.75 inches (about 12.1 centimeters) and which is designed for a maximum fluid flow rate of about 275 U.S. gallons per minute (about 1040 liters per minute).

The nominal inner diameter (54) of the proximal sub (26) may be about 3.0 inches (about 7.6 centimeters). The nominal inner diameter (56) of the distal sub (28) may be about 2.25 inches (about 5.7 centimeters). The inner diameter (60) of the main housing (24) may be about 3.8 inches (about 9.7 centimeters). The sleeve bore diameter (262) may be about 2.25 inches (about 5.7 centimeters).

The vibration tool (10) may have an overall length of about 60 inches (about 150 centimeters). The length of the first proximal support ring (90) may be about 3.5 inches (about 8.9 centimeters). The first turbine length (116) may be about 4 inches (about 10.2 centimeters). The length of the first intermediate support ring (94) may be about 2.5 inches (about 6.4 centimeters). The second turbine length (146) may be about 6 inches (about 15.2 centimeters). The length of the second intermediate support ring (98) may be about 2.5 inches (about 6.4 centimeters). The third turbine length (176) may be about 4 inches (about 10.2 centimeters). The length of the third distal support ring (102) may be about 1 inch (about 2.5 centimeters).

The first proximal support ring (90) may be comprised of three first diverter vanes (134). The first annular turbine (92) may be comprised of four first turbine vanes (114). The first intermediate support ring (94) may be comprised of three second diverter vanes (164). The second annular turbine (96) may be comprised of six second turbine vanes (144). The second intermediate support ring (98) may be comprised of three third diverter vanes (194). The third annular turbine (100) may be comprised of eight third turbine vanes (174). The third distal support ring (102) may be comprised of three distal diverter vanes (204).

The first diverter vane angle (136) may be less than about 5 degrees or about 1 degree. The first turbine vane angle (118) may be about 44 degrees. The second diverter vane angle (166) may be about less than about 5 degrees or about 1 degree. The second turbine vane angle (148) may be about 48 degrees. The third diverter vane angle (196) may be less than about 5 degrees or about 1 degree. The third turbine vane angle (178) may be about 52 degrees. The distal diverter vane angle (206) may be less than about 5 degrees or about 1 degree.

In this exemplary configuration for the vibration tool (10), the annular turbines (92, 96, 100) are configured so that a progressively higher restriction to fluid flow is provided from the first annular turbine (92) to the second annular turbine (96) and from the second annular turbine (96) to the third annular turbine (100). This configuration is achieved by adjusting the number of turbine vanes (114, 144, 174), the turbine vane angles (118, 148, 178), and the turbine lengths (116, 146, 176) amongst the annular turbines (92, 96, 100).

In this exemplary configuration for the vibration tool (10), the diverter vane angles (136, 166, 196, 206) are minimized in order to minimize turbulence at the interfaces between the support rings (90, 94, 98, 102) and the annular turbines (92, 96, 100).

An exemplary procedure for using the vibration tool (10) in the embodiment of FIGS. 1-2 is as follows.

First, the vibration tool (10) is assembled. The vibration tool (10) is assembled by assembling the annular turbine assembly (72), inserting the annular turbine assembly (72) into the main housing (24), and securing the annular turbine assembly (72) to the main housing (24) with the dowels (250) and pipe plugs (256). One of the proximal sub (26) and the distal sub (28) may be threaded onto the main housing (24) before the annular turbine assembly (72) is inserted into the main housing (24), or both of the subs (26, 28) may be threaded onto the main housing (24) after the annular turbine assembly (72) is inserted into the main housing (24).

The annular turbine assembly (72) is assembled by sliding the annular turbines (92, 96, 100) and the support rings (90, 94, 98, 102) onto the sleeve (74) from the distal sleeve end (242) in sequence, beginning with the first proximal support ring (90).

In assembling the annular turbine assembly (72), the annular turbines (92, 96, 100) and the support rings (90, 94, 98, 102) may be configured to provide desired vibration frequencies of the annular turbines (92, 96, 100) by selecting annular turbines (92, 96, 100) with appropriate turbine vane angles (118, 148, 178) and by selecting support rings (90, 94, 98) with appropriate diverter vane angles (136, 166, 196).

In assembling the annular turbine assembly (72), the annular turbines (92, 96, 100) may also be configured to provide desired vibration amplitudes of the annular turbines (92, 96, 100) by selecting annular turbines (92, 96, 100) having appropriate turbine lengths (116, 146, 176) and appropriate magnitudes of imbalance. If necessary, spacers (not shown) may be included in the annular turbine assembly (72) to accommodate the selected turbine lengths (116, 146, 176) in order to ensure that the dowels (250) line up with the dowel bores (252) in the main housing (24) and the dowel bores (254) in the support rings (90, 94, 98, 102). Alternatively or additionally, support rings (90, 94, 98, 102) having varying lengths may be provided to accommodate the selected turbine lengths (116, 146, 176) in order to ensure that the dowels (250) line up with the dowel bores (252) in the main housing (24) and the dowel bores (254) in the support rings (90, 94, 98, 102). Alternatively or additionally, the main housing (24) may be provided with extra dowel bores (252) and corresponding pipe plugs (256) to accommodate different turbine lengths (116, 146, 176) which may be selected.

Second, the vibration tool (10) is incorporated into a pipe string (not shown) using the proximal threaded connector (50) on the proximal sub (26) and the distal threaded connector (52) on the distal sub (28).

Third, the pipe string (not shown) is lowered into a borehole (not shown).

Fourth, a fluid (not shown) is circulated through the pipe string (not shown) so that the fluid (not shown) passes through the vibration tool (10). The fluid (not shown) passes through the proximal sub (26) to the inlet (244).

If the vibration tool (10) does not include a flow control device (not shown), the fluid (not shown) is introduced into both the sleeve bore (80) and the annular bore (82) at the inlet (244). If the vibration tool (10) does include a flow control device (not shown), the fluid (not shown) is selectively introduced into the sleeve bore (80) and/or the annular bore (82), depending upon the actuation state of the flow control device (not shown).

Fifth, the fluid (not shown) which is introduced into the annular bore (82) passes through the annular bore (82), impacts upon the turbine vanes (114, 144, 174), and causes the annular turbines (92, 96, 100) to rotate. The imbalance of the annular turbines (92, 96, 100) causes the vibration tool (10) to vibrate as the annular turbines (92, 96, 100) rotate. The vibration of the vibration tool (10) is transmitted to the pipe string (not shown) via the subs (26, 28).

The vibration tool (10) may be configured to provide continuous vibration by continuously permitting some amount of fluid (not shown) to flow through the annular bore (82). Alternatively, if the vibration tool (10) is provided with a flow control device (not shown), the flow control device (not shown) may facilitate some control over the flow of fluid (not shown) through the sleeve bore (80) and the annular bore (82) in order to control the vibration of the vibration tool (10).

The vibration frequencies and the vibration amplitudes of the annular turbines (92, 96, 100) will be dependent upon many factors, including the selected configuration of the annular turbines (92, 96, 100) and the support rings (90, 94, 98, 102), the fluid energy which is provided to the vibration tool (10), and the actuation state of any flow control device (not shown) which is included in the vibration tool (10). The vibrations provided by the vibration tool (10) to the pipe string (not shown) may serve to reduce the likelihood of the pipe string (not shown) becoming stuck in the borehole (not shown), cause the pipe string (not shown) to become unstuck, and/or cancel unwanted vibrations in the pipe string (not shown).

If more than one vibration tool (10) is incorporated into the pipe string (not shown), the vibration tools (10) may be spaced along the pipe string (not shown) to allow for vibration of extended lengths of the pipe string (not shown), and/or may be positioned within the pipe string (not shown) in close proximity to sections of the pipe string (not shown) which may be particularly vulnerable to becoming stuck or which may be particularly prone to experiencing unwanted vibrations.

In this document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there be one and only one of the elements.

Claims

1. A downhole vibration tool for connection with a pipe string, comprising:

(a) a housing, the housing having an inner housing surface;
(b) a sleeve contained within the housing, the sleeve having an outer sleeve surface and an inner sleeve surface, wherein the inner sleeve surface defines a sleeve bore extending through the housing, and wherein the inner housing surface and the outer sleeve surface define an annular bore extending through the housing;
(c) a first annular turbine rotatably contained within the annular bore, wherein the vibration tool has a longitudinal tool axis, and wherein the first annular turbine is unbalanced relative to the longitudinal tool axis;
(d) an inlet for introducing a fluid into the sleeve bore and the annular bore; and
(e) an outlet for discharging the fluid from the sleeve bore and the annular bore:.

2. The vibration tool as claimed in claim 1 wherein the vibration tool is adapted to be connected with the pipe string, wherein the pipe string has a nominal inner diameter, wherein the sleeve bore has a sleeve bore diameter, and wherein a ratio of the sleeve bore diameter to the nominal inner diameter of the pipe string is at least 0.5:1.

3. The vibration tool as claimed in claim 1 wherein the first annular turbine has a proximal first turbine end and a distal first turbine end, further comprising a first proximal support ring contained within the annular bore adjacent to the proximal first turbine end and a first distal support ring contained within the annular bore adjacent to the distal first turbine end.

4. The vibration tool as claimed in claim 3, further comprising a proximal first turbine bearing located between the first proximal support ring and the proximal first turbine end and a distal first turbine bearing located between the distal first turbine end and the first distal support ring.

5. The vibration tool as claimed in claim 3 wherein the first proximal support ring and the first distal support ring are fixedly connected with the housing.

6. The vibration tool as claimed in claim 3 wherein the sleeve is supported within the housing by the first proximal support ring.

7. The vibration tool as claimed in claim 6 wherein the sleeve has a proximal sleeve end and wherein the proximal sleeve end is comprised of a projection for engaging with the first proximal support ring in order to limit the movement of the sleeve relative to the first proximal support ring.

8. The vibration tool as claimed in claim 1, further comprising a second annular turbine rotatably contained within the annular bore, wherein the second annular turbine is unbalanced relative to the longitudinal tool axis.

9. The vibration tool as claimed in claim 8 wherein the first annular turbine has a proximal first turbine end and a distal first turbine end, further comprising a first proximal support ring contained within the annular bore adjacent to the proximal first turbine end and a first distal support ring contained within the annular bore adjacent to the distal first turbine end.

10. The vibration tool as claimed in claim 9 wherein the second annular turbine has a proximal second turbine end and a distal second turbine end, further comprising a second proximal support ring contained within the annular bore adjacent to the proximal second turbine end and a second distal support ring contained within the annular bore adjacent to the distal second turbine end.

11. The vibration tool as claimed in claim 10 wherein the first distal support ring and the second proximal support ring are comprised of a combined first intermediate support ring.

12. The vibration tool as claimed in claim 10, further comprising a proximal second turbine bearing located between the second proximal support ring and the proximal second turbine end and a distal second turbine bearing located between the distal second turbine end and the second distal support ring.

13. The vibration tool as claimed in claim 12, further comprising a proximal first turbine bearing located between the first proximal support ring and the proximal first turbine end and a distal first turbine bearing located between the distal first turbine end and the first distal support ring.

14. The vibration tool as claimed in claim 10 wherein the second proximal support ring and the second distal support ring are fixedly connected with the housing.

15. The vibration tool as claimed in claim 14 wherein the first proximal support ring and the first distal support ring are fixedly connected with the housing.

16. The vibration tool as claimed in claim 15 wherein the first distal support ring and the second proximal support ring are comprised of a combined first intermediate support ring.

17. The vibration tool as claimed in claim 8 wherein the first annular turbine is configured to rotate at a first turbine rotation rate at a design fluid energy, wherein the second annular turbine is configured to rotate at a second turbine rotation rate at the design fluid energy, and wherein the first turbine rotation rate is different from the second turbine rotation rate.

18. The vibration tool as claimed in claim 8 wherein the first annular turbine has a first turbine vane angle, wherein the second annular turbine has a second turbine vane angle, and wherein the first turbine vane angle is different from the second turbine vane angle.

19. The vibration tool as claimed in claim 8 wherein the first annular turbine is configured to generate a first turbine torque at a design fluid energy, wherein the second annular turbine is configured to generate a second turbine torque at the design fluid energy, and wherein the first turbine torque is different from the second turbine torque.

20. The vibration tool as claimed in claim 8 wherein the first annular turbine has a first turbine length, wherein the second annular turbine has a second turbine length, and wherein the first turbine length is different from the second turbine length.

21. The vibration tool as claimed in claim 8, further comprising a third annular turbine rotatably contained within the annular bore, wherein the third annular turbine is unbalanced relative to the longitudinal tool axis.

22. The vibration tool as claimed in claim 21 wherein the first annular turbine has a proximal first turbine end and a distal first turbine end, further comprising a first proximal support ring contained within the annular bore adjacent to the proximal first turbine end and a first distal support ring contained within the annular bore adjacent to the distal first turbine end.

23. The vibration tool as claimed in claim 22 wherein the second annular turbine has a proximal second turbine end and a distal second turbine end, further comprising a second proximal support ring contained within the annular bore adjacent to the proximal second turbine end and a second distal support ring contained within the annular bore adjacent to the distal second turbine end.

24. The vibration tool as claimed in claim 23 wherein the third annular turbine has a proximal third turbine end and a distal third turbine end, further comprising a third proximal support ring contained within the annular bore adjacent to the proximal third turbine end and a third distal support ring contained within the annular bore adjacent to the distal third turbine end.

25. The vibration tool as claimed in claim 24 wherein the first distal support ring and the second proximal support ring are comprised of a combined first intermediate support ring.

26. The vibration tool as claimed in claim 25 wherein the second distal support ring and the third proximal support ring are comprised of a combined second intermediate support ring.

27. The vibration tool as claimed in claim 24, further comprising a proximal third turbine bearing located between the third proximal support ring and the proximal third turbine end and a distal third turbine bearing located between the distal third turbine end and the third distal support ring.

28. The vibration tool as claimed in claim 27, further comprising a proximal first turbine bearing located between the first proximal support ring and the proximal first turbine end and a distal first turbine bearing located between the distal first turbine end and the first distal support ring.

29. The vibration tool as claimed in claim 28, further comprising a proximal second turbine bearing located between the second proximal support ring and the proximal second turbine end and a distal second turbine bearing located between the distal second turbine end and the second distal support ring.

30. The vibration tool as claimed in claim 24 wherein the third proximal support ring and the third distal support ring, are fixedly connected with the housing.

31. The vibration tool as claimed in claim 30 wherein the first proximal support ring and the first distal support ring are fixedly connected with the housing.

32. The vibration tool as claimed in claim 31 wherein the second proximal support ring and the second distal support ring are fixedly connected with the housing.

33. The vibration tool as claimed in claim 32 wherein the first distal support ring and the second proximal support ring are comprised of a combined first intermediate support ring.

34. The vibration tool as claimed in claim 33 wherein the second distal support ring and the third proximal support ring are comprised of a combined second intermediate support ring.

35. The vibration tool as claimed in claim 21 wherein the first annular turbine is configured to rotate at a first turbine rotation rate at a design fluid energy, wherein the second annular turbine is configured to rotate at a second turbine rotation rate at the design fluid energy, wherein the third annular turbine is configured to rotate at a third turbine rotation rate at the design fluid energy, and wherein the first turbine rotation rate, the second turbine rotation rate and the third turbine rotation rate are all different from each other.

36. The vibration tool as claimed in claim 21 wherein the first annular turbine has a first turbine vane angle, wherein the second annular turbine has a second turbine vane angle, wherein the third annular turbine has a third turbine vane angle, and wherein the first turbine vane angle, the second turbine vane angle and the third turbine vane angle are all different from each other.

37. The vibration tool as claimed in claim 3 wherein the first annular turbine has a first turbine vane angle, wherein the first proximal support ring defines a plurality of first diverter vanes for directing the fluid through the first proximal support ring, wherein the plurality of first diverter vanes have a first diverter vane angle, and wherein the first diverter vane angle is in a direction opposite to the first turbine vane angle relative to the longitudinal tool axis.

38. The vibration tool as claimed in claim 10 wherein the second annular turbine has a second turbine vane angle, wherein the second proximal support ring defines a plurality of second diverter vanes for directing the fluid through the second proximal support ring, wherein the plurality of second diverter vanes have a second diverter vane angle, and wherein the second diverter vane angle is in a direction opposite to the second turbine vane angle relative to the longitudinal tool axis.

39. The vibration tool as claimed in claim 24 wherein the third annular turbine has a third turbine vane angle, wherein the third proximal support ring defines a plurality of third diverter vanes for directing the fluid through the third proximal support ring, wherein the plurality of third diverter vanes have a third diverter vane angle, and wherein the third diverter vane angle is in a direction opposite to the third turbine vane angle relative to the longitudinal tool axis.

Patent History
Publication number: 20120160476
Type: Application
Filed: Dec 22, 2010
Publication Date: Jun 28, 2012
Inventor: Gary James BAKKEN (Edmonton)
Application Number: 12/975,480
Classifications
Current U.S. Class: Vibrator (166/177.6)
International Classification: E21B 28/00 (20060101);