CONSTRUCTION ASSEMBLY INCLUDING STACKABLE SUBSTRUCTURE FRAMES AND DISTINCT COMBINED TIE CONNECTION AND REINFORCING MEANS
A stackable modular building enclosure assembly and system including in combination a plurality of prefabricated substructure frames superposed, one above the other, and a combined connection tie and frame reinforcing sustainer member for constructing straight, angled or arced building enclosures including walls and roofs. In a preferred embodiment of the invention, prefabricated substructure frames include preinstalled interior and exterior facer members and utilize a hollow cavity to easily accommodate a hidden locating means for receiving a distinct tie and sustainer element.
This application claims the benefit of priority under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/399,109, filed on Jul. 6, 2010, entitled “CONSTRUCTION ASSEMBLY INCLUDING STACKABLE MODULES AND COMBINED VERTICAL TIE CONNECTION AND REINFORCING MEANS’ which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTIONThe present invention relates generally to modular construction systems and, more particularly, to construction systems which employ a plurality of connectable modular framing components and methods for assembling the various modular framing components to construct modular building structures which can be constructed by both professional and amateur do it yourself builders.
BACKGROUND OF THE INVENTIONThe majority of houses constructed in the USA are built on site and referred to as stick built, i.e. typically constructed of 2×4 or 2×6 structural members and nails forming a wooden structural framework and then covered and finished on the exterior and interior. Most stick build houses now include some component parts, such as engineered wood products, windows, doors, and cabinets, because of the advantages of economy of scale in mass production of such components and because of the reduced onsite labor and time requirements.
Houses made with predominantly preassembled or pre-shaped enclosure components transported to the house-site for assembly are known as System Built homes. Grouped under System Build houses are log houses, timber and steel frame houses, and panelized homes including SIPs, open and closed wall panels, and geodesic domes. Although on site labor of system built homes can be reduced in relation to stick built homes, the labor savings virtues are incomplete. Most modular frame substructure systems focus exclusively on labor savings of primary construction and not finish work—by far the most labor intensive aspect of home building.
Inventors have, for the most part unsuccessfully, long sought a modular building system that could eliminate the need for highly skilled workers, link together strongly, be cheap and well suited to mass production and be easy to handle and quick to assemble. The present invention addresses these objectives.
The use of prefabricated modular framing substructures and connection methods for constructing building enclosures is known to the art.
In U.S. Pat. No. 6,935,075 Sherman, Aug. 30, 2005 there is disclosed a triangular stackable building wall module and method of assembly.
In U.S. Pat. No. 6,609,336 Matsubara, Aug. 26, 2003 there is disclosed a structurally improved modified version of U.S. Pat. No 6,014,842 addressed below.
U.S. Pat. No. 6,014,842 Matsubara, Jan. 18, 2000 illustrates a modular structure having modular units and a mechanical fastening assembly.
In U.S. Pat. No. 4,890,437 Quaile, Jan. 2, 1990, there is illustrated a segmented arch structure assembled in combination with an elongated pre-stressing element.
None of the above mentioned patents disclose a stackable modular building enclosure system with a continuous hollow cavity facilitating a concealed connection means, a mechanical chase means or a pre-installed finished facer capacity.
The Quaile patent is further limited to an arched building enclosure system.
The Sherman and Matsubara patents are further limited to a straight building enclosure system.
SUMMARRY OF THE PRESENT INVENTIONEmbodiments of the present invention address the aforementioned limitations of previous prefabricated component systems and connection methods by providing a stackable modular building frame enclosure system with preinstalled interior and exterior finished wall covering capacity utilizing a hollow cavity to easily accommodate a concealed distinct structural connection and reinforcing sustainer members with concealed fasteners, and mechanical rough in systems.
A first prefabricated framing unit substructure is connected to a base with the distinct connection and reinforcing strap and secured with mechanical fasteners and a second module is stacked on and connected to the first module with the continuous distinct connection and reinforcing strap secured with mechanical fasteners. The modules are stacked and connected to the desired wall height and then connected to the top plate and roof structure with the distinct structural strapping secured with mechanical fasteners. Through utilization of a concealed cavity and a combined vertical tie connection and reinforcement means, embodiments of the present invention provides a finished facer surface capacity with a concealed connection means capable of effectively withstanding internal and external load forces on the building.
Accordingly, it is an object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system employing a plurality of prefabricated framing unit substructures including preinstalled rigid insulation board and facer elements for assembly with other similar prefabricated framing unit substructures that reduces the need for timely and costly on-site finishing labor.
It is another object of a preferred embodiment of the present invention to provide a modular structure which utilizes prefabricated framing unit substructures in combination with a distinct tie and sustainer element to provide a final structural framework capable of assuming a multiplicity of shapes and sizes.
It is also an object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system for construction of a multiplicity of enclosure structure shapes and styles including straight, curved and arced walls and roofs.
It is also an object of a preferred embodiment of the present invention to provide a stackable modular building system for fast assembly of finished surface enclosure modules without a requirement for mechanical lifting equipment and with an easy to comprehend “do it yourself appeal”.
It is another object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system with a high R Value and little or no thermal bridging.
It is yet another object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system that can meet or exceed the requirements of building codes including, but not limited to, the International Residential Code (IRC).
The character of the invention, however, may be better understood by reference to one of its structural forms, as illustrated by the accompanying drawings, in which:
Many configurations and combinations are contemplated and it will be understood that various changes and modifications may be made from the preferred embodiments discussed above without departing from the scope of the present invention.
Claims
1. A stackable modular building enclosure assembly and system comprising in combination:
- (a) a plurality of prefabricated framing unit substructures for assembly with other similar prefabricated framing unit substructures, each said prefabricated framing unit substructure comprising a multiplicity of spaced and braced longitudinal frame member segments, further comprising:
- at least a first said spaced and braced longitudinal frame member segment,
- at least a second said longitudinal frame member segment, in predetermined relation to said first longitudinal framing member segment,
- at least one spacing and rack-resistant bracing element, and
- (b) a plurality of elongated combined distinct tie connection and frame reinforcing sustainer members comprising a structural strap material,
- said plurality of prefabricated framing unit substructures comprising a multiplicity of spaced and braced longitudinal frame member segments,superposed, one above the other,
- hollow cavity or bay locating means for receiving said plurality of elongated combined distinct tie connection and frame reinforcing sustainer members in assembled located load transfer relation to said multiplicity of spaced and braced longitudinal frame segments, positioned end to end, and
- fastening means securing said multiplicity of spaced and braced longitudinal frame member segments and said plurality of elongated combined distinct tie and frame reinforcing sustainer members in mutually fastened relation.
2. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board and facer elements on both the interior and exterior sides.
3. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board on both the interior and exterior sides and a pre-installed facer elements on one side.
4. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed facer elements on at least one side.
5. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board and facer elements on one side.
6. A stackable modular building assembly and system of claim 2, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board on at least one side.
7. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal frame segments are rectangular in side profile.
8. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments are trapezoidal in side profile.
9. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments are an arc in side profile.
10. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments are a combination of side profile shapes.
11. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further comprise a molded structural material.
12. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further comprise a formed structural material.
13. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further comprise a built up composite element.
14. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further include but are not limited to wood, wood products, metal, plastic or fiber-reinforced plastic.
15. A stackable modular building assembly and system of claim 13, wherein said multiplicity of spaced and braced longitudinal framing member segments further include but are not limited to wood, wood products, metal, plastic or fiber-reinforced plastic.
16. A stackable modular building assembly and system of claim 1, wherein said plurality of elongated combined distinct tie connection and frame reinforcing sustainer members further includes but is not limited to coil or flat sheet metal strap, plastic strap and synthetic webbing strap.
17. A stackable modular building assembly and system of claim 1, wherein said fastening means securing said multiplicity of spaced and braced longitudinal frame member segments and said plurality of elongated combined distinct tie and frame reinforcing sustainer members in mutually fastened relation includes but is not limited to screws, nails, staples, integral nail like teeth pressed out of a metal strap surface, bonding agents or a combination thereof.
18. A stackable modular building assembly and system of claim 1, wherein said hollow cavity locating means for receiving said plurality of elongated combined distinct tie connection and frame reinforcing sustainer members further comprising a mechanical rough in chase.
19. A stackable modular building assembly and system of claim 1, further comprising a modular structure.
Type: Application
Filed: Jul 6, 2011
Publication Date: Jan 10, 2013
Inventor: Henry Clay Turner, III (Burnsville, NC)
Application Number: 13/177,456
International Classification: E04B 2/16 (20060101);