AUTHENTICATION SYSTEM
A system and method whereby the identity of a person, entity, device or the like attempting to gain access to a secured resource may be securely authenticated includes a means for receiving from a requester purporting to be an authorized user of a secured resource a request for access to the secured resource; means for generating and communicating to the purported authorized user a challenge string adapted to provide a basis for authenticating the identity of the requester; a means for receiving a response string corresponding to the challenge string; and a means for evaluating the response string to authenticate the identity of the requester.
The present invention relates to security protocols for use in securing and/or restricting access to personal other confidential information, physical locations and the like. More particularly, the invention relates to a system whereby the identity of a person, entity, device or the like attempting to gain access to a secured resource may be securely authenticated.
BACKGROUND OF THE INVENTIONThe protection of personal information and/or other secured resources, such as, for example, credit data, medical history, financial account information, secured physical locations and the like is of ever increasing concern to businesses and individuals alike. To be sure, each passing day reveals more sophisticated attacks by those who would gain unauthorized access to such resources absent the constant vigilance of those charged with the protection of such resources. To this end, the various security protocols employed for the protection of such resources almost universally includes some means for authenticating the identity of a person, entity, device or the like attempting to gain access to a secured resource.
More often than not the critical authentication is carried out by the age old process of a providing a privately held password, personal identification number or the like in connection with some generally publicly known identifier for the person, entity, device or the like attempting to gain access to the secured resource. Unfortunately, however, this protocol is dogged by vulnerability to interception through spoofing, eavesdropping, and countless other techniques though which a password, personal identification number or the like may become known to an attacker. Additionally, it is common to find that a single person, entity, device or the like uses the same password, personal identification number or the like in connection with gaining access to multiple secured resources. In such case, a security breach in connection with a single secured resource may jeopardize the security of all other secured resources.
Giving the fundamentally flawed state of the art with respect to password type protection, it is therefore the overriding object of the present invention to improve over the prior art by providing a system by which authentication may be more securely conducted. Additionally, it is an object of the present invention to provide such a system that is robust in specific implementation and readily usable by any manner of person, entity, device or the like. Finally, it is an object of the present invention to provide such a system that is economical in implementation and therefore readily accessible to virtually any application.
SUMMARY OF THE INVENTIONIn accordance with the foregoing objects, the present invention—an authentication system for authenticating the identity of a requester of access to a secured resource—generally comprises a means for receiving from a requester purporting to be an authorized user of a secured resource a request for access to the secured resource; means for generating and communicating to the purported authorized user a challenge string adapted to provide a basis for authenticating the identity of the requester; a means for receiving a response string corresponding to the challenge string; and a means for evaluating the response string to authenticate the identity of the requester.
In at least some implementations of the present invention, the authentication system further comprises a means for evaluating the response string to determine whether as a result of passage of time the response string should be deemed to be invalid regardless of content.
In at least some implementations of the present invention, the authentication system further comprises a means for establishing a test adapted to detect the existence of a spoofing type deception and in at least some embodiments of these implementations the test may also be adapted to at least in part authenticate the identity of the requester.
Finally, many other features, objects and advantages of the present invention will be apparent to those of ordinary skill in the relevant arts, especially in light of the foregoing discussions and the following drawings, exemplary detailed description and appended claims.
Although the scope of the present invention is much broader than any particular embodiment, a detailed description of the preferred embodiment follows together with illustrative figures, wherein like reference numerals refer to like components, and wherein:
Although those of ordinary skill in the art will readily recognize many alternative embodiments, especially in light of the illustrations provided herein, this detailed description is exemplary of the preferred embodiment of the present invention, the scope of which is limited only by the claims appended hereto.
Referring now to the figures, and to
Additionally, as also particularly shown in
In an extension of the present invention particularly useful in implementations comprising an Internet website-based or other user interface 105 generally susceptible to spoofing type deceptions, the service provider 36 may in combination with the means 37 for submitting an authentication credential also be adapted to provide for the end user actor 34 a means 35 for detecting the existence of a spoofing type deception. In implementation of such an extension of the present invention, the service provider 36 may in combination with the means 39 for generating and sending to an end user actor 34 a challenge message 94 also be adapted to provide a means 82 for generating content for use in the means for detecting the existence of a spoofing type deception and to provide such content to the end user actor 34.
Finally, it is noted that time 44 as an actor may be accommodated as desired in any particular implementation wherein the service provider 36 is also provided with means 45 responsive to the passage of time for revoking or otherwise invalidating an authentication credential such that an authentication credential otherwise correctly determined by an end user actor 34 in response to a service provider generated challenge message 94 may as a result of the passage of time be deemed to be incorrect, thereby resulting in a validation failure upon application of the means 45 for validating the authentication credential.
Referring now then to
As particularly shown in
In any case, once an end user submitted request is forwarded by the access controller 51 to the authenticator 52 the remaining processing of the request is conducted by the authenticator 52. In particular, it is noted that in an important aspect of the present invention the authenticator 52 must be able to evaluate the end user submitted request to determine the specific identity of the resource for which the request is made. To this end, as will be better understood further herein, the forwarded request preferably comprises at least the common identifier for the resource. In any case, if the available information is insufficient for the authenticator 52 to positively determine the identity of the resource for which the end user 34 has requested access the process 47 will generally terminate whereas if the available information is sufficient for the authenticator 52 to positively determine the identity of the resource for which the end user 34 has requested access the process 47 will generally continue.
In the final steps for processing 47 an end user submitted request for access to a secured resource, the authenticator 52 generates a challenge message 94 designed to enable only an authorized end user 34 to determine the content of a transient authentication credential and, thereafter, issues the challenge message 94 to the end user 34. In connection with the step of generating the challenge message 94, however, and as a predicate to the step of issuing the challenge message 94, an authenticator 52 implemented as part of an authentication system 30 that also comprises a means 35 for detecting the existence of a spoofing type deception must be adapted to determine whether under the circumstances of the particular in process request for access to a secured resource such a means 35 for detecting the existence of a spoofing type deception should be deployed. If in such an implementation it is determined that no test for detecting the existence of a spoofing type deception need be established the challenge message 94 is issued without more whereas if it is determined that a test for detecting the existence of a spoofing type deception should be deployed the authenticator 52 will establish the parameters of an appropriate test and include the established parameters in connection with or as part of the issued challenge.
With the challenge message 94 issued by the service provider 36 to the end user 34, the end user 34 then formulates a response to the challenge based upon information generally known only to the end user 34 and the authenticator 52. Once the end user 34 has formulated a response to the challenge, and assuming that the end user 34 desires to continue the in-process transaction, the end user 34 will submit the formulated response to the access controller 51 as an authentication credential.
Referring now then to
In any case, upon successful forwarding by the access controller 51 to the authenticator 52 of the end user submitted authentication credential, the authenticator 52 proceeds to validate the responsive authentication credential by comparing the authentication credential against a key string. As will be appreciated by those of ordinary skill in the art in light of this exemplary description, the key string will prior to or at the time of validation be determined by the authenticator 52 utilizing knowledge of the previously discussed information generally known only to the end user 34 and the authenticator 52 to formulate the key string as the known correct response to at least a portion of the previously issued challenge message 94 (the “primary challenge”). In addition to comparison of the authentication credential to a known key string, however, it is noted that in an authentication system 30 utilizing time 44 as an actor in order to provide a timeout for the validity of an outstanding challenge message 94, the authenticator 52 will be programmed or otherwise adapted to determine as part of the validation step whether as a result of the passage of time the authentication credential should be deemed to be incorrect. In any case, if the authentication credential is found or otherwise deemed to be incorrect, the authenticator 52 will report the incorrect finding to the access controller 51 and the end user 34 will be blocked by the access controller 51 from access to the requested secured resource. If, on the other hand, the authentication credential is found to be correct the authenticator 52 will report the correct finding to the access controller 51 and the access controller 51 will provide the requested access to the end user 34.
With the foregoing broad overview of the general structure and function of the authentication system 30 of the present invention in mind, it is now noted that in accordance with the present invention an end user 34 may comprise any person or machine requiring, in connection with some other use, access or other relationship with a service provider 36, access to a secured resource for which the service provider 36 controls access. By way of simple example, the resource may comprise password protected information (a secured resource) maintained in a computer system under the control of the service provider 36 and to which a human end user 34 desires access. In a critical aspect of all implementations of the present invention, however, the actual password or other information known by the end user 34 and the service provider 36 and through which the authenticator 52 is capable of authenticating the access right of the end user 34 is strictly prohibited from submission through the user interface 105 in connection with the making of a request or submission of an authentication credential.
With this in mind, the end user 34 may, for example and without limitation, be a patient wishing to access medical information (a secured resource) held by a caregiver or an insurance carrier (a service provider 36); or may be the holder of a credit card account, banking account, automated teller machine (“ATM”) card and/or card or the like (a secured resource) wishing to authorize a credit card processor, financial institution or the like to complete a transaction; or may be a credit applicant or other holder of an information product wishing to access a credit score or other information (a secured resource) maintained by a credit bureau or other information provider (a service provider 36); or may be the holder of an on-line service account protected by a password (a secured resource) and wherein the on-line account is under the control of the service provider 36.
In any case, in order to better describe the critical and other aspects of the present invention reference is now made to the deployment diagram of
Turning then to
In order to efficiently manage and handle the large quantity of data that may typically be stored in connection with an implementation of the present invention, one or more dedicated database servers 98 hosting database management systems 57 are generally desired. As shown in
Additionally, a preferably unified messaging gateway 60 is provided for use in issuing challenge messages 94 through various communication channels to end users 34. As will be appreciated by those of ordinary skill in the art, such a unified messaging gateway 60 may be utilized to transmit a generated challenge message 94 in any of a plurality of message formats (such as, for example, as a short messaging service (“SMS”) message, a standard text message, an electronic mail message, a synthesized voice message, an alphanumeric page or the like) over any of a plurality of communication channels (such as, for example, an SMS or other text channel, a simple mail transport protocol (“SMTP”) channel, a plain old telephone system (“POTS”) channel, a paging network or private broadcast channel or the like) to be received by any of a plurality of user devices (such as, for example, a mobile or landline telephone, a smart phone, an electronic mail client, a personal data assistant (“PDA”), a numeric or digital pager or the like). Still further, a user interface 105 is provided and adapted to provide input from all manner of users 62, including administrative users and end users 34, to the hardware and/or software systems of the service provider 36 and to provide output from these systems to the various users 62. As will be appreciated by those of ordinary skill in the art, the user interface 105 enables the various users 62 to maintain and/or otherwise manage the data stored in the user database 58 as may be appropriate as well as to generally manage and maintain the implemented authentication system 30 in addition to providing, in accordance with the present invention, a point of access for the end user 34.
As exemplified by
Continuing then with the example generally described with respect to
To begin the process, then, the consumer (end user 34) will use his or her web browser 69 to first navigate to the uniform resource locator (“URL”) of an order completion webpage 75 for the on-line retailer (service provider 36). As is otherwise conventional, the consumer's web browser 69 will send a page request to the on-line retailer's web server 66 where a hosted page processor 64 will create and send back to the consumer's web browser 69 the requested “order completion” webpage 75, making use, if required, of the on-line retailer's database management system 57 to retrieve stored information pertaining to the consumer, the transaction or the like. As shown in
At this point, in an optional feature of the present invention, the on-line retailer may choose to verify that the tentatively identified consumer presenting the credit card is permitted to make use of the on-line retailer's services for the requested purposes. For example, it may be that the on-line retailer requires registration prior to use of the authentication system 30 and method 46 of the present invention which, it is noted, may be utilized in a completely anonymous fashion to conduct extraordinarily secure financial and other transactions. If so, the access controller 51 may access the user table 85 of the user database 58 or any other accessible data store to determine that the tentatively identified consumer is a valid end user 34.
In any case, the access controller 51 will generally continue by creating a transaction reference for the transaction and assembling any other necessary parameters, such as payment amount. As will be appreciated by those of ordinary skill in the art, under many circumstances a service provider 36 will have available all or virtually all information necessary for submitting (on behalf of an end user 34) a request for access to a secured resource without need for the end user 34 to enter additional data. For example, in a case where the consumer is otherwise “logged in” to the on-line retailer's website and the on-line retailer has previously stored the consumer's credit card number the consumer need only indicate that he or she wishes to “pay now” in order to make complete use of the facilities of the present invention.
In any case, once assembled, the consumer's request is forwarded by the access controller 51 to the authenticator 52 which will generally first undertake to determine whether the credit card for which the end user 34 has requested access is recognized at the service provider 36. To this end, the authenticator 52 may access the user database 58, as generally shown in
With the end user 34 and the resource for which the end user 34 requests access both identified and logged to the transaction database 59, the authenticator 52 next undertakes to direct the generation of an appropriate challenge message 94, the response to which may be used to positively authenticate the identity of the presently tentatively identified end user 34. In order to best understand the challenge and response protocols of the present invention, however, it is instructive to expressly define a number of terms. To that end, a “string” shall for purposes of the present invention be expressly defined to mean “an ordered sequence of any subset of symbols selected from a set of symbols wherein each symbol forming the set may be represented in both a format that may be perceived by an end user 34 and a format that may be recognized by software or hardware,” e.g. the set of all alphabetic and numeric characters in the English language, each of which, of course, may be presented in written or audible form for perception by an end user 34 and also may be encoded as binary data for recognition by software or hardware. A “null character” shall for purposes of the present invention be expressly defined as “a specially designated symbol intended to indicate the absence from a sequence of a single symbol,” e.g. a box with an X character, as shown in the drawings forming a part of this specification, any symbol (such as a particular number, particular letter, an asterisk, an underscore or the like) designated at implementation to be defined as being a null character or a blank space. “Random” as applied to the characterization of a string shall for purposes of the present invention be expressly defined to mean that the symbols of the string are arranged in an order that is not readily predictable.
In accordance then with the authentication system 30 and method 46 of the present invention, the primary challenge is generated to include a random string comprising a plurality of symbols wherein at least one of the symbols of the string is a null character, such a random string being referred to herein as a challenge string 49. Additionally, each end user 34 (and, if desired, any administrative user) will have stored in the user table 85 of the user database 58 a private string, which is a user selected or assigned (depending on implementation preferences) string comprising symbols of the same set as used for generating the challenge string 49 but most preferably excluding use of the null character. A private string is generally only known to the user with which it is associated and the service provider 36 and, in a critical aspect of the present invention, a private string is never required to be openly passed through the user interface 105. In any case, as will be better understood further herein, a user will formulate a response to a challenge string 49 by using the symbols of the user's private string to replace the null character or characters of the challenge string 49 to formulate a response string. In this manner, the response string may be passed through the user interface 105 without risk of interception of the private string and, accordingly, a system of readily established single use “passwords” is presented. Additionally, as also will be better understood further herein, the authentication system 30 and method 46 of the present invention may be implemented such that the protocol for creating a response string from a challenge string 49 is standardized in advance or, in the alternative, instructions 93 may be provided with the challenge message 94 or inferred from the manner of delivery of the challenge or circumstances of the use. For example, the user may be directed to formulate the response string using only numbers of the private string or may assume that only numbers should be used when entering the response string into a limited keypad 95 such as depicted in
Returning then to the example use of the authentication system 30 of the present invention it is noted that in the most preferred embodiment of the present invention prior to directing the generation of a challenge message 94 the authenticator 52 evaluates all available information that may impact the ability of an end user 34 to readily receive a particular challenge message 94 and/or to readily respond to a particular challenge message 94 and, additionally, determines whether any special security requirements may exist for access to the particular resource. In particular, the authenticator 52 will preferably obtain from the channel table 111 of the user database 58 channel data indicating the type of communication channel that will be utilized to transmit the challenge message 94. Additionally, the user attribute table 92 of the user database 58 may indicate whether the end user 34 suffers any disability that would impact the manner of response and/or the resource attribute table 89 of the user database 58 may indicate any special resource dictated security requirements, such as minimum length or desired complexity for a response string. Additionally, the authenticator 52 may also consider any limitations of the user interface 105, such as being limited to entry of numeric characters only. In any case, the authenticator 52 will determine the characteristics that should be exhibited by the challenge string 49, including the manner of issuance, and will then instruct the challenge manager 53 to initiate issuance of a challenge message 94.
At this point it is noted that in accordance with an extension of the present invention, the primary challenge (comprising the challenge string 49 and any necessary response instructions 93) may be supplemented with the provision of a test designed to detect the existence of a spoofing type deception. In particular, the present invention contemplates the use of a dynamically selected image 112 for the conduct of this test. Although the particular conduct of this test will be described in greater detail further herein, it should at this time be noted that in an implementation wherein such a test will be required the challenge manager 53 will generally at this point in the process obtain from the image database 107 image data identifying the selected image 112 and its location on a fileserver and will store the obtained image data in the image table 113 of the transaction database 59. In any case, the challenge manager 53 will continue to by obtaining from the random sequence generator 54 a challenge string 49 generated to meet the requirements established and communicated by the authenticator 52. With the challenge string 49 generated and any image data obtained, the challenge manager 53 will proceed to construct the challenge message 94 which will at least comprise the challenge string 49, any special response instructions 93 and a copy of the image file if required. With the challenge message 94 assembled, the challenge manager 53 queues the challenge message 94 by providing the messaging gateway 60 with the challenge message 94, the type of communication channel to be utilized and the CHANNEL_ID for the channel. For example, if the challenge message 94 is to be sent by SMS text message 79, the challenge manager 53 will inform the messaging gateway 60 that the challenge message 94 is to be transmitted by SMS text message 79 and will provide the messaging gateway 60 with a telephone number for a SMS text capable user device.
At this juncture it is noted that it is considered critical to the present invention that the challenge message 94 be transmitted through a discrete channel, which is herein defined as being a communication channel not readily identifiable by information submitted by an end user 34 in making a request for access to a secured resource. For example, if the end user 34 chooses to utilize his or her electronic mail address as a user or resource identification, the schema for the user database 58 and/or the authenticator 52 should ensure that the challenge message 94 is not transmitted by electronic mail to the same electronic mail address. Likewise, an end user 34 requesting access to a secured resource using his or her mobile telephone number as an identifier will not be able to receive a challenge message 94 by SMS or standard text message 79 or synthesized voice call to the same mobile telephone number. That said, however, it is noted that the schema as depicted in
Referring to
Finally, the authenticator 52 obtains the consumer's private string from the user table 85 of the user database 58, as shown in
Before turning the example to detailed discussion of the steps 48 implicated in validating the purported access right of the user requesting access to the secured resource, however, attention is directed to
Turning the example now to detailed discussion of the steps implicated in validating the purported access right of the user requesting access to the secured resource, it is first noted that an end user 34 of the present invention will necessarily formulate a response string corresponding to a challenge string 49 outside of the hardware and/or software provided as part of the authentication system 30 of the present invention. That said, the validation steps begin with the consumer using his or her web browser 69 to first navigate to the uniform resource locator (“URL”) of a payment confirmation webpage 75 for the on-line retailer (the service provider 36). As is otherwise conventional, the consumer's web browser 69 will send a page request to the on-line retailer's web server 66 where a hosted page processor 64 will create and send back to the consumer's web browser 69 the requested “payment confirmation” webpage 75, making use of the on-line retailer's database management system 57 to retrieve stored information pertaining to the consumer, the transaction or the like. As shown in
As shown in
If, on the other hand, the access controller 51 determines that a test designed to detect the existence of a spoofing type deception should be presented the request handler 51 will retrieve from the image table 113 of the transaction database 59 the previously stored image data associated by the transaction reference with the present transaction. As previously noted, the challenge manager 53 will have previously sent to the consumer, as part of a challenge message 94, an image file. Rather than utilizing an actually image file at this stage, however, the preferred implementation of the test comprises the access controller 51 retrieving the file location for a copy of the image matching the image file transmitted as part of the challenge message 94 and which file location (external web address) has preferably been made temporary on a publicly accessible fileserver associated with the service provider 36. The page processor 64 will then create a page 75 such as depicted in
As previously discussed, the preferred implementation of the test designed to detect the existence of a spoofing type deception comprises providing a web link pointing to a copy of the image file on a fileserver associated with the service provider 36, which file location may then be made temporary. By making the file location temporary, the file can be removed or restricted and/or replaced with a warning image once accessed through the web link. In this manner, if the consumer has accidently navigated to a spoofed website conducting a man-in-the-middle type deception in particular, the bad actor will in the course of accessing the true on-line retailer's website access the image link. In the unlikely case that the bad actor is able to retrieve and replicate the link for presentation to the consumer, however, the image 112 will have been removed or replaced by the time that the consumer links to the web address for the image. In this case, as shown in
Finally, as shown in
In any case, with the response string entered, the consumer's web browser 69 submits the data to the on-line retailer's web server 66 where the hosted page processor 64 may validate the form data for technical completeness and accurate formatting. Assuming that the submitted data is technically correct or is subsequently made technically correct, the page processor 64 submits the consumer's response string to the access controller 51 hosted on the on-line retailer's application server 50 whereafter the response message is submitted to the authenticator 52 hosted on the service provider's application server 50.
The authenticator 52 will then direct the validation tool 55 to evaluate the response string based upon the transaction reference for the response message. The validation tool 55 will access the key string table 97 of the transaction database 59 to retrieve the key string associated with the particular transaction reference and will evaluate the submitted response string against the retrieved key string taking into account, if appropriate for the particular implementation, the passage of time. Additionally, in a case where the selection of a particular image also forms part of the required response in addition to the response string, the validation tool 55 will also determine whether the correct image was selected by the end user 34. In any case, the validation tool 55 will then report the result of the evaluation to the authenticator 52. If the evaluation fails, the process 48 will terminate and the failure will be reported to the access controller 51, which in turn will block the end user 34 from access to the requested secured resource. If, on the other hand, the evaluation passes the authenticator 52 will report the authenticated status to the access controller 51, which in turn will allow the access as requested by the end user 34.
Finally, it is noted that in previously describing the manner in which the authentication system 30, implemented according to the exemplary example presented, may determine an otherwise unknown unique USER_ID for the consumer from knowledge of the unique RESOURCE_ID for an identified secured resource (the credit card number in the presented example) it was stated that from the resource table 88 (holding the unique RESOURCE_ID for the credit card) the user table 85 (holding the unique USER_ID for the consumer) could be accessed through the resource user table 99. While those of ordinary skill in the art will recognize that the foregoing example use could have been carried out with an implementation omitting the intermediary resource user table 99, provision of the resource user table 99 as join table for the resource table 88 and the user table 85 establishes a many-to-many relationship between the records of the resource table 88 and the user table 85, whereby additional functionality is imparted to the authentication system 30 and method 46 of the present invention. In particular, by allowing a single secured resource to be associated with a plurality of end users 34, joint or other plural access control may be established for the secured resource.
For example, a parent of child patient presenting for treatment at a medical clinic may provide the child's Social Security Number to the clinic for use by the clinic in requesting access to the child's electronic medical records accessible by either one of two passwords held one each by two parents. In this case, the authentication system 30 implemented to provide for multiple user association with a single secured resource may simply look up each parent end user 34 associated with the child's identified medical record (secured resource) and send a separate challenge message 94 to each, storing the appropriate key strings in separate records of the key string table 97 of the transaction database 59, each record being connected by TRANSACTION_ID to the single transaction record established in the transaction table 86 of the transaction database 59 for the request for access to the child's medical record. As will be appreciated by those of ordinary skill in the art, the validation tool 55 of the authentication system 30 will evaluate a received response string against each key string associated with the transaction and will find valid a response string matching either. By way of further example, and without limitation, it should be appreciated, especially in light of this exemplary description, that this aspect of the present invention will have broad application, including for use in authorizing transactions against shared credit card or banking accounts, accessing shared on-line service accounts, deactivating an alarm system or accessing a computer controlled door for a home, business or other facility shared by many occupants or similar applications. Likewise, this aspect of the present invention may also be implemented such that a correct response string must be received from a plurality of end users 34 in order for the authentication system 30 and process 46 to authenticate a particular request for access to a secured resource. In this manner, “two-person control” and like security protocols may be readily handled within the scope of the present invention.
While the foregoing description is exemplary of the preferred embodiment of the present invention, those of ordinary skill in the relevant arts will recognize the many variations, alterations, modifications, substitutions and the like as are readily possible, especially in light of this description, the accompanying drawings and claims drawn thereto. For example, those of ordinary skill in the art will recognize that a special program logo, such as the exemplary “Secure Payment System Enabled!” logo depicted in various of the figures may be utilized to signal to a potential end user 34 that system, facility or the like for which the end user 34 desires access has implemented the teachings of the present invention. Likewise, those of ordinary skill in the art will recognize that a special program magnetic card or the like may be implemented in order to enable card swipe type initiation of a request for access. In this case, of course, the magnetic card may be encoded with an identification code for the user including no confidential or sensitive information, but preferably useful only in connection with identifying the end user 34 to an authentication system 30 implemented in accordance with the teachings of the present invention. In any case, because the scope of the present invention is much broader than any particular embodiment, the foregoing detailed description should not be construed as a limitation of the scope of the present invention, which is limited only by the claims appended hereto.
Claims
1. An authentication system for authenticating the identity of a requester of access to a secured resource, said authentication system comprising:
- means for receiving from a requester purporting to be an authorized user of a secured resource a request for access to said secured resource;
- means for generating a challenge string, said challenge string being adapted to provide a basis for authenticating the identity of said requester;
- means for communicating said challenge string to said authorized user that said requester purports to be;
- means for receiving a response string corresponding to said challenge string; and
- means for evaluating said response string to authenticate the identity of said requester.
2. The authentication system as recited in claim 1, wherein said means for evaluating said response string further comprises means for invalidating said response string based upon passage of time.
3. The authentication system as recited in claim 1, said authentication system further comprising means for establishing a test adapted to detect the existence of a spoofing type deception.
4. The authentication system as recited in claim 3, wherein said test adapted to detect the existence of a spoofing type deception is further adapted to at least in part authenticate the identity of said requester.
Type: Application
Filed: Oct 23, 2011
Publication Date: Apr 25, 2013
Inventor: Gopal Nandakumar (San Antonio, TX)
Application Number: 13/279,287