CURTAIN RODS

- Maytex Mills, Inc.

A curtain rod includes a stationary rod having an end cap adjacent an end thereof; a movable rod axially movable with respect to the stationary rod having another end cap adjacent an end thereof; and a locking mechanism for securing the movable rod in a desired axial position with respect to the stationary rod, wherein at least one of the end caps is axially adjustable and comprises a contact member rotatably mounted on the at least one end cap structured and arranged to contact a wall of a window opening.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Continuation-In-Part of U.S. patent application Ser. No. 13/177,129, filed Jul. 6, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/361,735 filed Jul. 6, 2010, both of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to curtain rods for installation in window openings or bath and shower stalls.

BACKGROUND INFORMATION

Conventional curtain tension rods are very clumsy to put up, requiring many rotations to twist them to the desired length. Further, as they are tightened, the rubber type caps move from their intended position. This movement is often referred to as walking. The curtain rods of the present invention overcome the cumbersome installation associated with conventional tension rods.

SUMMARY OF THE INVENTION

The present invention provides improved curtain rods that are faster and easier to install in comparison with conventional rods.

An aspect of the present invention is to provide a curtain rod including a stationary rod having an end cap adjacent an end thereof; a movable rod axially movable with respect to the stationary rod having another end cap adjacent an end thereof; and a locking mechanism for securing the movable rod in a desired axial position with respect to the stationary rod, wherein at least one of the end caps is axially adjustable and comprises a contact member rotatably mounted on the at least one end cap structured and arranged to contact a wall of a window opening.

Another aspect of the present invention is to provide a curtain rod including a stationary rod; a telescoping rod axially movable with respect to the stationary rod; and a locking mechanism for securing the telescoping rod in a desired axial position with respect to the stationary rod, wherein the locking mechanism includes a pin fixedly mounted on an end of the telescoping rod along an axis offset from a longitudinal axis of the telescoping rod and positioned inside the stationary rod, and a locking cam sleeve mounted on the pin structured and arranged to engage an inner surface of the stationary rod to thereby secure the telescoping rod in a selected axial position with respect to the stationary rod.

These and other aspects of the present invention will be more apparent from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side view of a shower curtain tension rod in accordance with an embodiment of the present invention.

FIGS. 2 and 3 are side views of an adjustable end cap for a shower curtain tension rod in accordance with an embodiment of the present invention.

FIG. 4 is an exploded view showing the components of an adjustable end cap for a shower curtain tension rod in accordance with an embodiment of the present invention.

FIG. 5 is an isometric view and FIG. 6 is a perspective view of the body of an end cap in accordance with an embodiment of the present invention.

FIG. 7 is an isometric view and FIG. 8 is an end view showing the opposite side of the end cap body of FIGS. 5 and 6.

FIGS. 9 and 10 are end views, and FIG. 11 is a side view, of a retainer that may be installed in an end cap in accordance with an embodiment of the present invention.

FIGS. 12 and 13 are end views, and FIG. 14 is a side view, of a rotatable contact disk that may be mounted on an end cap in accordance with an embodiment of the present invention.

FIG. 15 is a side sectional view illustrating the rotatable contact disk of FIGS. 12-14 rotatably mounted on the retainer of FIGS. 9-11.

FIG. 16 is a side sectional view of the end portion of a stationary end cap including a rotatable contact disk in accordance with an embodiment of the present invention.

FIG. 17 is a side view, and FIG. 18 is an isometric view, of a torsional locking mechanism for securing a telescoping rod in position with respect to a stationary rod in accordance with an embodiment of the present invention.

FIG. 19 is an isometric view, and FIG. 20 is an end view, of a locking cam sleeve that is a component of the torsional locking mechanism shown in FIG. 17.

FIG. 21 is an end view of another locking cam sleeve.

FIG. 22 is an isometric view of the locking cam sleeve of FIG. 21.

FIG. 23 is an elevation view of the locking cam sleeve of FIG. 21.

FIG. 24 is a side view of elements of another torsional locking mechanism.

FIGS. 25 and 26 are isometric views, of a locking mechanism that includes the elements of FIGS. 21-24.

FIG. 27 is an elevation view of a curtain rod mounted in a window opening.

DETAILED DESCRIPTION

FIG. 1 illustrates a curtain rod 10 in accordance with an embodiment of the present invention. The rod 10 includes a hollow stationary rod 12 and a hollow telescoping rod 14 having a slightly smaller outer diameter than the inner diameter of the stationary rod 12. The telescoping rod 14 is axially movable with respect to the stationary rod 12. The stationary and telescoping rods 12 and 14 may be made of any suitable material, such as metal or the like. A cylindrical bushing 16 made of plastic or other suitable material is partially inserted inside the end of the stationary rod 12 with a portion extending therefrom and surrounding the telescoping rod 14. The overall length of the rod 10 may typically range from 24 to 90 inches.

As shown in FIG. 1, an adjustable end cap 20 is mounted on an end of the telescoping rod 14, while a stationary end cap 60 is mounted on an end of the stationary rod 12. Alternatively, the adjustable end cap 20 could be mounted on the end of the stationary rod 12. As more fully described below, each of the end caps 20 and 60 has a disk-shaped contact member 58 and 64, respectively, which contact the walls of the window opening, bath or shower stall (not shown) in which the curtain rod 10 is mounted.

FIG. 2 illustrates the adjustable end cap 20 in a partially extended position in which the threaded portion 34 of a bolt secured in the adjustable end cap 20 is threadably engaged in a threaded hole 18 at the end of the telescoping rod 14. In FIG. 3, the adjustable end cap 20 has been disengaged from the telescoping rod 14 by unscrewing the threaded portion 34 from the threaded hole 18. Although the adjustable end cap 20 is threadably mounted on the telescoping rod 14 by means of the threaded bolt 34 in FIGS. 2 and 3, it is to be understood that any other suitable threaded arrangement may be used in accordance with the present invention, including a threaded portion integrally foamed with the remainder of the end cap 20, or the use of a threaded nut or threaded hole in the end cap 20 and a threaded shaft extending from the end of the telescoping rod 14.

FIG. 4 is an exploded view showing the components of the adjustable end cap 20. The adjustable end cap 20 includes a generally cylindrical cap body 22, a threaded bolt 30, a retainer 40 and a rotatable contact disk 50. The bolt 30 includes a head 32 and threaded portion 34. Although a hex-head bolt is shown, it is to be understood that any other suitable bolt or mechanical fastener design may be used in accordance with the present invention. As more fully described below, the bolt 30 is held in a stationary position in relation to the cap body 22. The various components of the end cap 20 may be made of any suitable materials such as plastic, metal and the like. For example, the cap body 22 may be made of polypropylene and the bolt 30 may be made of metal.

FIGS. 5-8 illustrate details of the cap body 22 of the adjustable end cap 20. FIGS. 5 and 6 show the outermost end of the cap body 22, while FIGS. 7 and 8 show the opposite end of the cap body 22 that is located adjacent to the telescoping rod 14 when the tension rod is assembled. As shown in FIGS. 6 and 7, a hexagonal bolt head holder 24 in the form of a recessed hexagonal pocket is provided at the center of the cap body 22. The holder 24 includes a central opening 25 through which the threaded portion 34 of the bolt 30 passes. Support arms 26 extend between the interior surface of the generally cylindrical cap body 22 to the exterior surface of the holder 24. Three openings 27 are provided in corresponding sides of the hexagonal holder 24 to provide engagement edges for the finger clips 44 of the retainer 40, shown in FIG. 4. After the head 34 of the bolt 30 mounted inside the hexagonal holder 24, the retainer 40 is inserted through the outside end of the cap body 22 to thereby lock the bolt 30 in place. This is accomplished by the finger clips 44, wherein the arms 45 flex radially outward as the retainer 40 is inserted in the cap body 22 until the locking tabs 46 of the finger clips 44 snap into place in the openings 27 for engagement with the holder 24. In this manner, the retainer 40 is held in a stationary position and does not rotate or move in an axial direction with respect to the cap body 22.

As shown most clearly in FIGS. 4 and 9-11, the retainer 40 includes a generally disk-shaped cylindrical body 42 with three finger clips 44 extending from one surface thereof. Each finger clip 44 includes a flexible atm 45 and a locking tab 46. As shown most clearly in FIGS. 4 and 10, an annular projection with a central hole 48 is located at the center of the cap body 22. The annular projection and hole 48 are used to rotatably mount the end disk 50 thereon, as more fully described below.

As shown in FIGS. 4 and 12-14, the rotatable end disk 50 includes a support disk 52 made of relatively rigid material such as plastic or any other suitable material. For example, the support disk 52 may be made of polypropylene, polyethylene or the like. A mounting assembly 54 includes two flexible mounting fingers 56 that extend from the surface of the support disk 52. An elastomeric contact disk 58 is secured to one surface of the support disk 52 by any suitable means such as adhesive. The elastomeric contact disk may be made of any suitable elastomeric material such as natural rubber, synthetic rubber, foam, resilient polymers and the like. The contact disk 58 may have a relatively high friction coefficient to help secure the rod 10 in position when it is installed in a window opening or a bath or shower stall.

FIG. 15 is a side sectional view illustrating the rotatable mounting arrangement of the end disk 50 on the retainer 40. In the position shown in FIG. 15, the flexible mounting fingers 56 of the end disk 50 have been inserted into the central hole 48 of the retainer 40 with their end tabs engaging the edge of the annular projection. In this position, the interior surface of the support disk 52 contacts the exterior surface of the retainer body 42. However, the end disk 50 is rotatable around its central axis with respect to the retainer 40 because the flexible mounting fingers 56 of the mounting assembly 54 have a sufficient tolerance with respect to the central hole 48 of the annular projection of the retainer 40, e.g., a clearance space is provided between the inner surface of the central hole 48 and the fingers 56, or any contact between the inner surface of the hole 48 and fingers 56 is of relatively minor force which permits the end disk to rotate. Thus, while the rotatable end disk 50 may be snap-fit onto the retainer 40, the fit is such that the end disk 50 is still able to rotate with respect to the retainer 40. As will be appreciated, when the assembled retainer 40 and rotatable end disk 50 as shown in FIG. 15 are installed inside the cap body 22, the retainer 40 is held in a stationary position in relation to the cap body 22 while the end disk 50 is free to rotate with respect to the cap body 22.

FIG. 16 is a side sectional view of the end portion of a stationary end cap 60 that may be mounted on the end of the stationary rod 12 in accordance with an embodiment of the present invention. The stationary end cap 60 includes a generally cylindrical body 62 having an elastomeric contact disk 64 mounted thereon. The elastomeric contact disk 64 may be held in a stationary position in relation to the body 62. However, in a preferred embodiment, the elastomeric contact disk 64 is rotatable in relation to the body 62 of the stationary end cap 60. A mounting projection 66 extends from the inner surface of the contact disk 64. A mounting disk 68 having a central mounting hole 69 is secured to the body 62 of the stationary end cap 60. Sufficient tolerance may be provided between the cylindrical outer surface of the mounting projection 66 and the mounting hole 69 such that the contact disk 64 is free to rotate with respect to the body 62 of the stationary end cap 60. The elastomeric contact disk 64 may be made of any suitable material such as natural rubber, synthetic rubber, foam, resilient polymers and the like. The contact disk 64 may have a relative high friction coefficient to help secure the rod 10 in position when it is installed.

FIGS. 17 and 18 illustrate a torsional locking mechanism 70 for locking the stationary rod 12 and telescoping rod 14 together in a desired position in accordance with an embodiment of the invention. Although not shown in FIGS. 17 and 18, the torsional locking mechanism 70 mounted on the end of the telescoping rod 14 is positioned inside the stationary tube 12 when the tension rod 10 is assembled. The torsional locking mechanism 70 includes a locking pin 72 having a locking cam head 74 at the end thereof. The locking pin 72 is mounted on the end of the telescoping rod 14 by means of a support flange 76 having a central opening that receives the locking pin 72. In the embodiment shown in FIGS. 17 and 18, the pin 72 may reciprocate slightly into the rod 14. A compression spring 78 surrounds the locking pin 72 and presses against the support flange 76 on the telescoping rod 14 and an annular flange 80 of the locking head 74. The compression spring 78 thus forces the locking pin 72 axially outward from the telescoping rod 14 to provide tension for the shower curtain rod. The locking pin 72 reciprocates in the support flange 76 a relatively short distance, e.g., less than about 0.5 inch, typically less than about 0.25 inch.

In another embodiment, the pin 72 is fixedly mounted at the end of the telescoping rod, and the spring 78 is removed. Such a non-reciprocating pin design provides a relatively rigid structure that may increase the holding power of the rod 10. For example, the rod 10 may hold greater than 25 pounds of weight in comparison with prior spring designs that may hold only 15 to 18 pounds.

The locking cam head 74 includes the annular flange 80 and an end flange 86. The locking head 74 includes two cam surfaces 82 extending between the annular flange 80 and end flange 86 having non-circular, helical or spiral surfaces. One of the cam surfaces 82 is shown in each of FIGS. 17 and 18, with the other cam surface located 180° around the circumference of the locking head 74. The locking head 74 includes two stop surfaces 84 extending between the annular flange 80 and end flange 86. Each stop surface 84 lies substantially in a plane extending radially outward from the central axis of the locking head 74 and defining an interruption or transition between each of the cam surfaces 82.

As shown in FIG. 17, a locking cam sleeve 90 is mounted on the locking head 74 between the annular flange 80 and end flange 86. As shown in FIGS. 19 and 20, the locking cam sleeve 90 includes two cam members 92, each of which has an inner cam surface 94, an outer contact surface 96 and a stop edge 97. The cam members 92 are connected together by a thin web 98. The locking cam sleeve 90 may be made of any suitable flexible or elastomeric material such as natural rubber, synthetic rubber, flexible plastic or the like. The locking cam sleeve 90 preferably has a relatively high friction coefficient in order to help secure the telescoping rod 14 in a selected axial position with respect to the stationary rod 12, as more fully described below.

The torsional locking mechanism 70 operates as follows. The locking cam sleeve 90 is initially located in a radially retracted position on the locking cam head 74 in which the stop edges 97 of the sleeve 90 are in contact or adjacent to the corresponding stop surfaces 84 of the locking head 74. The thicker portions of the cam members 92 are adjacent to the radially recessed portion of the cam surfaces 82. In this radially retracted position, the telescoping rod 14 is free to move axially with respect to the stationary rod 12.

During installation, the telescoping rod 14 is extended from the stationary rod 12 to a desired position in which the rotatable end disk 50 and stationary end cap 60 are in initial contact positions against the window walls, or the bath or shower stall walls. In this position, the telescoping rod 14 is then twisted around its longitudinal axis, which rotates the locking cam head 74 inside the stationary rod 12. Upon such a twisting motion, the outer contact surfaces 96 of the locking cam sleeve 90 contact the inner surface of the stationary rod 12 and frictional forces therebetween hold the locking cam sleeve 90 in a stationary position with respect to the stationary rod 12, i.e., the locking cam sleeve 90 does not rotate inside the rod 12 with the remainder of the torsional locking mechanism 70. As the locking cam head 74 rotates inside the stationary rod 12 with the locking cam sleeve 90 remaining in position, the inner cam surfaces 94 of the locking cam sleeve 90 slide in a generally circumferential direction on the cam surfaces 82 of the locking cam head 74. Due to this relative movement, the cam members 92 move radially outward and press against the inner surface of the stationary rod 12 with sufficient force to lock the cam head 74 into position within the stationary rod 12. Thus, the telescoping rod 14 and stationary rod 12 are held in position with respect to each other, and the only axial movement therebetween results from compression of the optional spring 78. This embodiment permits a slight amount of axial movement between the telescoping rod 14 and stationary rod 12 against the force of the spring 78. Alternatively, in the embodiment in which the spring 78 is eliminated and the pin 72 is fixedly attached to the end of the telescoping rod 14, essentially no axial movement occurs between the stationary and telescoping rods 12 and 14.

With the torsional locking mechanism 70 in the locked position, the adjustable end cap 20 may be rotated with respect to the telescoping rod 14, thereby extending the adjustable end cap 20 into the installed position in which the curtain rod 10 is securely mounted in a window opening or a bath or shower stall.

FIG. 21 is an end view of another locking cam sleeve 100. FIG. 22 is an isometric view of the locking cam sleeve of FIG. 21. FIG. 23 is an elevation view of the locking cam sleeve of FIG. 21. The flexible locking cam sleeve 100 includes a slit 102 between ends 104 and 106. When the ends 104 and 106 are pushed together to touch each other, the locking sleeve has a generally cylindrical outer surface 108 and is shaped to define a generally cylindrical opening 110 having an axis 112 that is offset from an axis 114 of the generally cylindrical outer surface 108. The flexible locking cam sleeve 100 includes two cam portions 116, 118, each of which has an inner cam surface 120, 122, an outer contact surface 124, 126. The cam portions 116, 118 are connected together by a thin web 128. The end 130 shown in FIG. 21 forms a planar surface.

As shown in FIG. 22, at least a part of cam portion 116 includes a raised portion 132 that forms a stop 134. Cam portion 118 includes a raised portion 136 that forms a stop 138. The space 140 between stops 134 and 138 is recessed with respect to the top surfaces 142, 144 of raised portions 132 and 136. In addition, top surfaces 142 and 144 lie in a common plane. As shown in FIG. 23, that width 146 of cam portion 116 is larger than the width 148 of cam portion 118. The locking cam sleeve 100 may be made of any suitable flexible or elastomeric material such as natural rubber, synthetic rubber, flexible plastic or the like. The locking cam sleeve 100 preferably has a relatively high friction coefficient in order to help secure the telescoping rod 14 in a selected axial position with respect to the stationary rod 12, as more fully described below.

FIG. 24 is a side view of elements of another torsional locking mechanism. FIG. 24 shows a cylindrical pin 150 having a central axis 152 that is offset from a central axis 154 of rod 14. The pin extends between a hub 156 and a disk 158. The outside surfaces of hub 156 and disk 158 lie on a common cylinder. The hub includes a portion, not shown in this view, that extends into rod 14 and is secured in the rod 14 by, for example, indents (or spot welds) 160, 162. A tab 164 extends from the hub. Tab 164 extends in a radial direction from the pin 150. When the locking cam sleeve 100 is positioned on the pin 150, the tab 164 is positioned in a space 140 between the stops 134 and 138. The width of the disk 158 has a slight taper such that the portion 166 of the disk opposite the tab is thicker than the rest of the disk. Thus the distance between that portion 166 of the disk and the hub is smaller than the distance between the bottom portion 168 of the disk and the hub. This feature ensures engagement of the tab and the stops on the locking cam sleeve.

FIGS. 25 and 26 are isometric views, of a locking mechanism 170 that includes the elements of FIGS. 21-24. FIGS. 25 and 26 illustrate a torsional locking mechanism 170 for locking the stationary rod 12 and telescoping rod 14 together in a desired position in accordance with an embodiment of the invention. Although not shown in FIGS. 25 and 26, the torsional locking mechanism 170 mounted on the end of the telescoping rod 14 is positioned inside the stationary tube 12 when the tension rod 10 is assembled. FIG. 25 shows the locking mechanism with a first surface 172 of tab 164 adjacent to stop 134 on the locking sleeve. In this position, the outer surface 108 of the locking cam sleeve is positioned close to the cylinder containing the hub and disk such that the outer surface 108 slidably engages the inner surface of rod 12. FIG. 26 shows the locking mechanism with a second surface 174 of tab 164 adjacent to stop 138 on the locking sleeve. In this position, the outer surface 108 of the locking cam sleeve is forced outward such that the outer surface 108 securely engages the inner surface of rod 102.

The torsional locking mechanism 170 operates as follows. The locking cam sleeve 100 is initially located in a radially retracted position on the locking cam head 176 in which the stop 134 of the sleeve 100 is in contact with or adjacent to the first surface 172 of tab 164. In this radially retracted position, the telescoping rod 14 is free to move axially with respect to the stationary rod 12.

During installation, the telescoping rod 14 is extended from the stationary rod 12 to a desired position in which the rotatable end disk 50 and stationary end cap 60 are in initial contact positions against the window walls, or the bath or shower stall walls. In this position, the telescoping rod 14 is then twisted around its longitudinal axis, which rotates the locking cam mechanism 170 inside the stationary rod 12. Upon such a twisting motion, the outer contact surface 108 of the locking cam sleeve 100 contacts the inner surface of the stationary rod 12 and frictional forces therebetween hold the locking cam sleeve 100 in a stationary position with respect to the stationary rod 12, i.e., the locking cam sleeve 100 does not rotate inside the rod 12 with the remainder of the torsional locking mechanism 170. Thus, the telescoping rod 14 and stationary rod 12 are held in position with respect to each other.

FIG. 27 is an elevation view of a curtain rod mounted between walls 180, 182 in a window opening 184.

The curtain rods of the present invention overcome the cumbersome installation associated with conventional tension rods. The rotatable end disk 50 on the adjustable end cap 20 prevents the rod from walking on the wall during installation. The internal torsional locking mechanism 70 provides improved stability.

An important benefit of the tension rods of the present invention is much improved simplicity of installation. The result is an installation time of about 10 seconds or less versus approximately 1 minute with the existing products. Furthermore, the present tension rods create a much quieter product due to the elimination of the long spring and screw mechanism used in existing products on the market. The present curtain rods are also capable of holding more weight than conventional tension rods. The rods are suitable for residential use, hotels, hospitals and other institutions.

Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.

Claims

1. A curtain rod comprising:

a stationary rod having an end cap adjacent an end thereof;
a movable rod axially movable with respect to the stationary rod having another end cap adjacent an end thereof; and
a locking mechanism for securing the movable rod in a desired axial position with respect to the stationary rod, wherein at least one of the end caps is axially adjustable and comprises a contact member rotatably mounted on the at least one end cap structured and arranged to contact a wall of a window opening.

2. The curtain rod of claim 1, wherein the locking mechanism comprises a locking cam head mounted on the moveable rod and structured and arranged to engage an inner surface of the stationary rod to thereby secure the movable rod in a selected axial position with respect to the stationary rod, the locking cam head including a locking cam sleeve surrounding at least a portion of a pin having an axis offset from a longitudinal axis of the moveable rod, wherein rotation of the movable rod around a longitudinal axis thereof causes the pin to move the locking cam sleeve radially outward to thereby force an outer contact surface of the locking cam sleeve against the inner surface of the stationary rod.

3. The curtain rod of claim 2, wherein the locking cam sleeve comprises an elastomeric material.

4. The curtain rod of claim 2, wherein the pin has a cylindrical surface.

5. The curtain rod of claim 1, wherein the movable rod telescopes inside the stationary rod.

6. The curtain rod of claim 1, wherein the adjustable end cap is threadably mounted on the end of the movable rod.

7. The curtain rod of claim 6, wherein the adjustable end cap comprises a cap body and a threaded bolt fixedly mounted thereon.

8. The curtain rod of claim 7, wherein the cap body includes a recessed holder structured and arranged to hold a head of the threaded bolt to thereby prevent rotation of the threaded bolt with respect to the cap body.

9. The curtain rod of claim 7, wherein the adjustable end cap comprises a retainer mounted in the cap body structured and arranged to prevent axial movement of the threaded bolt with respect to the cap body.

10. The curtain rod of claim 9, wherein the contact member is rotatably mounted on the retainer.

11. The curtain rod of claim 1, wherein the contact member is generally disk shaped.

12. The curtain rod of claim 11, wherein the contact member comprises a support disk and an elastomeric contact disk mounted thereon.

13. The curtain rod of claim 12, wherein the support disk comprises at least one flexible mounting finger structured and arranged for insertion into a central mounting hole in the adjustable cap.

14. The curtain rod of claim 13, wherein the support disk comprises at least two of the flexible mounting fingers, and the central mounting hole is provided in a retainer mounted in the adjustable cap.

15. The curtain rod of claim 1, wherein the end cap of the stationary rod comprises an elastomeric contact disk rotatably mounted on the end cap.

16. A curtain rod comprising:

a stationary rod;
a telescoping rod axially movable with respect to the stationary rod; and
a locking mechanism for securing the telescoping rod in a desired axial position with respect to the stationary rod, wherein the locking mechanism comprises: a pin fixedly mounted on an end of the telescoping rod along an axis offset from a longitudinal axis of the telescoping rod and positioned inside the stationary rod; and a locking cam sleeve mounted on the pin structured and arranged to engage an inner surface of the stationary rod to thereby secure the telescoping rod in a selected axial position with respect to the stationary rod.

17. The curtain rod of claim 16, wherein the locking cam sleeve has a generally cylindrical outer surface and defines a cylindrical opening centered on an axis that is offset from an axis of the generally cylindrical outer surface.

18. The curtain rod of claim 16, wherein the locking mechanism further comprises:

a hub and an end disk, wherein the pin extends between the hub and the end disk.

19. The curtain rod of claim 18, wherein the locking mechanism further comprises:

a tab extending from the hub and configured to contact a first stop on the locking cam sleeve when the hub is in a first position, and to contact a second stop on the locking cam sleeve when the hub is in a second position.

20. The curtain rod of claim 19, wherein the locking cam sleeve defines a recess between the first and second stops.

Patent History
Publication number: 20130112639
Type: Application
Filed: Dec 21, 2012
Publication Date: May 9, 2013
Applicant: Maytex Mills, Inc. (New York, NY)
Inventor: Maytex Mills, Inc. (New York, NY)
Application Number: 13/723,266
Classifications
Current U.S. Class: Horizontal Rod Type (211/123)
International Classification: A47H 1/022 (20060101);