Dynamic stabilization assembly having pre-compressed spacers with differential displacements
A dynamic longitudinal connecting member assembly includes an anchor member having an integral or otherwise fixed elongate core extending through at least two elastic spacers and at least one outer sleeve or trolley. The anchor member and the outer sleeve each attach to at least one bone anchor. The spacers have differing durometers and/or geometries, resulting in greater axial movement of the sleeve in one direction than in an opposite direction. The spacers are compressed prior to attachment to the bone anchors.
This application is a continuation of U.S. patent application Ser. No. 12/459,492, filed Jul. 1, 2009 which claimed the benefit of U.S. Provisional Patent Application Ser. No. 61/134,480, filed Jul. 10, 2008 and claimed the benefit of U.S. Provisional Patent Application Ser. No. 61/137,743, filed Aug. 1, 2008, all of which are incorporated by reference herein. U.S. application Ser. No. 12/459,492 is also a continuation-in-part of U.S. patent application Ser. No. 12/148,465, filed Apr. 18, 2008, that claims the benefit of U.S. Provisional Patent Application Ser. No. 60/927,111, filed May 1, 2007, all of which are incorporated by reference herein. Application Ser. No. 12/459,492 is also a continuation-in-part of U.S. patent application Ser. No. 12/156,260, filed May 30, 2008, now U.S. Pat. No. 7,951,170, issued May 31, 2011, that claimed the benefit of U.S. Provisional Patent Application Ser. No. 60/932,567, filed May 31, 2007, and the benefit of U.S. Provisional Patent Application Ser. No. 60/994,068, filed Sep. 17, 2007, all of which are incorporated by reference herein.
BACKGROUND OF THE INVENTIONThe present invention is directed to dynamic fixation assemblies for use in bone surgery, particularly spinal surgery, and in particular to longitudinal connecting members and cooperating bone anchors or fasteners for such assemblies, the connecting members being attached to at least two bone anchors.
Historically, it has been common to fuse adjacent vertebrae that are placed in fixed relation by the installation therealong of bone screws or other bone anchors and cooperating longitudinal connecting members or other elongate members. Fusion results in the permanent immobilization of one or more of the intervertebral joints. Because the anchoring of bone screws, hooks and other types of anchors directly to a vertebra can result in significant forces being placed on the vertebra, and such forces may ultimately result in the loosening of the bone screw or other anchor from the vertebra, fusion allows for the growth and development of a bone counterpart to the longitudinal connecting member that can maintain the spine in the desired position even if the implants ultimately fail or are removed. Because fusion has been a desired component of spinal stabilization procedures, longitudinal connecting members have been designed that are of a material, size and shape to largely resist bending (flexion, extension and lateral), torsion, shear, distraction and compression, and thus substantially immobilize the portion of the spine that is to be fused. Thus, longitudinal connecting members are typically uniform along an entire length thereof, and usually made from a single or integral piece of material having a uniform diameter or width of a size to provide substantially inelastic rigid support in all planes.
An alternative to fusion, which immobilizes at least a portion of the spine, and the use of more rigid longitudinal connecting members or other rigid structure has been a “soft” or “dynamic” stabilization approach in which a flexible loop-, S-, C- or U-shaped member or a coil-like and/or a spring-like member is utilized as an elastic longitudinal connecting member fixed between a pair of pedicle screws in an attempt to create, as much as possible, a normal loading pattern between the vertebrae in flexion, extension, side bending, distraction, compression and torsion. Another type of soft or dynamic system known in the art includes bone anchors connected by flexible cords or strands, typically made from a plastic material. Such a cord or strand may be threaded through cannulated spacers that are disposed between adjacent bone anchors when such a cord or strand is implanted, tensioned and attached to the bone anchors. The spacers typically span the distance between bone anchors, providing limits on the bending, movement of the cord or strand and thus strengthening and supporting the overall system. Shear forces are not well resisted by the typical cord and spacer stabilization systems. Such tensioned cord and spacer systems may also cause facet joint compression during spinal movement, especially flexion.
The complex dynamic conditions associated with spinal movement create challenges for the design of elongate elastic longitudinal connecting members that exhibit an adequate fatigue strength to provide stabilization and protected motion of the spine, without fusion, and that allow for some natural movement of the portion of the spine being reinforced and supported by the elongate elastic or flexible connecting member. A further challenge are situations in which a portion or length of the spine requires a more rigid stabilization, possibly including fusion, while another portion or length may be better supported by a more dynamic system that allows for protective movement.
SUMMARY OF THE INVENTIONA longitudinal connecting member assembly according to the invention has an inner elongate core of circular or non-circular cross-section that is integral or otherwise fixed to a first bone anchor attachment portion. A first elastic spacer surrounds the core and is slidable along the core at a location between a pair of adjacent bone anchors. At least one outer inelastic sleeve or tube-like trolley member also surrounds the core and is in sliding relationship with the core. The outer sleeve also engages at least one bone anchor. A second elastic spacer of durometer or geometry differing from the first elastic spacer also surrounds the core and is located at a side of the at least one sleeve member opposite the first elastic spacer. The inner core, elastic spacers and inelastic sleeve or sleeves cooperate dynamically, with the spacers being at least somewhat pre-compressed resulting in little-to-no or more substantial deformation of the spacers prior to insertion, and controlling movement of the sleeve allowing greater travel of the sleeve along the core in a single direction; for example, advantageously allowing greater operative travel of the sleeve in a cephalad or cranial direction and more limited movement in a caudal or caudad direction after insertion. In addition, in certain embodiments, the sleeve or tube trolley members feature inner surfaces having non-linear relief for improved core member function with respect to bending stress, wear and fatigue life concerns.
In another embodiment, an improved longitudinal connecting member adapted for cooperating with a plurality of bone anchors that are implanted in a patient's spine is provided, wherein the longitudinal connecting member includes a substantially rigid anchor portion that extends along a longitudinal axis of the connecting member and is joined with a core portion that also extends along the longitudinal axis. The anchor portion formed of a first material and the core portion is formed of a second material. The core portion includes a reduced diameter relative to the anchor portion, such that the second material and the reduced diameter cooperate so as to enable at least some flexing of the core portion. The anchor portion is directly engaged by first and second bone anchors while the core portion is indirectly engaged by a third bone anchor. Furthermore, the longitudinal connection member provides for greater movement in the cephalad direction than in the caudad direction.
A first inelastic sleeve is slidingly received over the core portion so as to be located between the third bone anchor and the core portion. A pair of elastic spacers is received over the core portion such that each of the spacers is adjacent to an end of the first sleeve. A crimp ring engages the core portion and is located so as to bias the spacers. Additionally, an elastic over-mold surrounds at least one of the spacers and a respective adjacent end of the first sleeve.
In a further embodiment, the elastic over-mold grips both the anchor portion and the first sleeve.
In another further embodiment, the anchor portion includes has a first end plate and the elastic over-mold is molded about the first end plate.
In some further embodiments, the elastic over-mold is made from a composite material comprising elongate reinforcement strands imbedded in a polymer.
In some further embodiments, the core is made from a polymer. Furthermore, in some embodiments, the polymer is polyetheretherketone.
In another further embodiment, the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve. Additionally, in some embodiments, the core flexes primarily between the first sleeve and the anchor portion.
In yet another further embodiment, the longitudinal connecting member also includes a second inelastic sleeve slidingly received over the core portion so as to be located between a fourth bone anchor and the core portion; a third elastic spacer received over the core portion so as to be located between the second inelastic sleeve and the crip ring; and a second elastic over-mold surrounding a second end of the first sleeve, the third spacer and an adjacent end of the second sleeve. In some embodiments, the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve; and the second sleeve substantially blocks flexing of the portion of the core that is surrounded by the second sleeve. Accordingly, in some embodiments, the core flexes primarily between the first sleeve and the anchor portion; and between the first sleeve and the second sleeve.
Objects and Advantages of the InventionAn object of the invention is to provide dynamic medical implant stabilization assemblies having longitudinal connecting members that include a flexible, pre-tensioned portion that can allow for controlled bending, torsion, compression and distraction of the assembly. Another object of the invention is to provide such an assembly including elastic pre-compressed spacers of various durometers and/or geometries. A further object of the invention is to provide dynamic medical implant longitudinal connecting members that may be utilized with a variety of bone screws, hooks and other bone anchors. Additionally, it is an object of the invention to provide a lightweight, reduced volume, low profile assembly including at least two bone anchors and a longitudinal connecting member therebetween. Furthermore, it is an object of the invention to provide apparatus and methods that are easy to use and especially adapted for the intended use thereof and wherein the apparatus are comparatively inexpensive to make and suitable for use.
Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.
The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. It is also noted that any reference to the words top, bottom, up and down, and the like, in this application refers to the alignment shown in the various drawings, as well as the normal connotations applied to such devices, and is not intended to restrict positioning of the connecting member assemblies of the application and cooperating bone anchors in actual use.
With reference to
As illustrated in
In the particular embodiment of the assembly 1 being illustrated herein, wherein the sleeves 12 and 16 are advantageously relatively thin so as to result in an assembly having a low profile, the bone screws 25 are equipped with upper and lower pressure inserts to closely hold the sleeves and yet not crush the sleeves against the inner core 6. In particular, with reference to
The illustrated shank 27 is top loaded into the receiver 28 and has a curved head for sliding, pivotal engagement with an inner surface of the receiver 28. However, a variety of polyaxial connections may be possible. For example, a spline capture connection as described in U.S. Pat. No. 6,716,214, and incorporated by reference herein, may be used wherein the bone screw shank includes a capture structure mateable with a retaining structure disposed within the receiver. The retaining structure includes a partially spherical surface that is slidingly mateable with a cooperating inner surface of the receiver, allowing for a wide range of pivotal movement between the shank 27 and the receiver 28. Polyaxial bone screws with other types of capture connections may also be used according to the invention, including but not limited to, threaded connections, frictional connections utilizing frusto-conical or polyhedral capture structures, integral top or downloadable shanks, and the like. Also, as indicated above, polyaxial and other bone screws for use with connecting members of the invention may have bone screw shanks that attach directly to the connecting member or may include compression members or inserts, such as the members 29 and 30 that engage the bone screw shank and cooperate with the shank, the receiver and the closure structure to secure the connecting member assembly to the bone screw and/or fix the bone screw shank at a desired angle with respect to the bone screw receiver that holds the longitudinal connecting member assembly. Furthermore, although the closure structure 32 of the present invention is illustrated with the polyaxial bone screw 25 having an open receiver or head 28, it foreseen that a variety of closure structures may be used in conjunction with any type of medical implant having an open or closed head or receiver, including monoaxial bone screws, hinged bone screws, hooks and the like used in spinal surgery.
To provide a biologically active interface with the bone, the threaded shank 27 may be coated, perforated, made porous or otherwise treated. The treatment may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the shank surface, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding. It is also foreseen that combinations of the above can be used, such as a composite of titanium plasma spray and hydroxyapatite.
The closure structure 32 can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the interior surface of the upstanding arms of the receiver 28. The illustrated closure structure 27 is in two pieces with the outer fastener 33 rotatable between the spaced arms and the inner set screw 34 rotatable within the outer fastener 33. However, single piece closures may be used and other structures, such as slide-in closure structures may be used as an alternative to helically wound closures. The illustrated outer fastener 33 is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of a flange form that may take a variety of forms, including those described in Applicant's U.S. Pat. No. 6,726,689, which is incorporated herein by reference. It is also foreseen that according to the invention the closure structure guide and advancement structure could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structure for operably guiding under rotation and advancing the closure structure downward between the receiver arms and having such a nature as to resist splaying of the arms when the closure structure is advanced into the U-shaped channel formed by the arms. The illustrated closure 32 further includes the inner set screw 34 with an internal drive in the form of an aperture utilized for assembly of the set screw and removal of the entire closure 32. It is foreseen that the closure structure may alternatively include an external drive, such as a break-off head designed to allow such a head to break from a base of the closure at a preselected torque, for example, 60 to 120 inch pounds. Such a closure structure would also include a base having an internal drive to be used for closure removal.
Returning to the longitudinal connecting member assembly 1 illustrated in
With particular reference to
With particular reference to
The illustrated sleeves 12 and 16 each are substantially cylindrical, having outer cylindrical bone anchor attachment surfaces 50 and 52, respectively, that are each of substantially the same diameter as the outer surface 39 of the bone anchor attachment portion 8. Each of the sleeves 12 and 16 further include a substantially cylindrical inner surface 54 and 56, respectively, that define a through-bore for the passage of the core 6 therethrough. While the surface 56 is shown as being cylindrical, the illustrated surface 54 of the sleeve 12 is preferably curved and shown as slightly hour-glass or hyperboloid-like in configuration running along the axis A, and/or at least has non-linear relief at one or both ends. The slightly curved surface 54 results in at least a partially non-linear inner lumen that decreases both bending stresses along the core 6 and wear debris between the parts. For example, if the core 6 is flexed, the inner surface 54 allows deformation of the core over a longer area or length resulting in reduced stresses and a longer fatigue life. Furthermore, if the core 6 is made from a material such as PEEK, the curved surface 54 and/or end surface non-linear relief reduces contact wear and bending stresses along the core 6 surface that is received in the sleeve 12. The sleeve 12 includes a pair of opposed end plates 58 and 60 and the sleeve 16 includes a pair of opposed end plates 62 and 63. The illustrated plates 58, 60, 62 and 63 have outer cylindrical surfaces 64, 66, 68 and 69, respectively, that are of substantially the same diameter as the buttress plate outer cylindrical surface 46. The sleeve 12 includes opposed curved and slightly concave flanged end surfaces 70 and 72, each running from the inner surface 54 radially outwardly toward respective cylindrical surfaces 64 and 66. The illustrated concave surfaces 70 and 72 are partially spherical. The sleeve 16 includes one concave end surface 74 and an opposed planar end surface 76. The illustrated surface 74 is partially spherical.
With reference to
The illustrated spacers 10 and 14 advantageously cooperate with the core 6 of the anchor member 4, providing directed axial movement, limitation and protection of movement by the sleeves 12 and 16 along the core 6 located between bone screws 25. With particular reference to
With particular reference to
The over-molded coverings 22 and 23 are preferably thin, soft and elastic, primarily provide protection to the body by keeping wear debris within the assembly 1 and keeping scar tissue out of the assembly 1 at the juncture between the spacers, washers and sleeves. Particularly when the assembly 1 is placed in tension as shown in
The illustrated over-mold 22 is fabricated around and about the surfaces 42 and 46 of the anchor plate 40, the entire spacer 10, the entire washer 11 and the entire end plate 60 of the sleeve 12. The illustrated over-mold 23 is fabricated around and about the surfaces of the end plate 58 of the sleeve 12, the entire washer 13, the entire spacer 14, the entire washer 15 and the entire end plate 63 of the sleeve 16. The over-molds 22 and 23 are fabricated from an initially flowing elastomer, as will be described more fully below, with the elastomer engaging and possibly adhering to the surfaces of the sleeves, washers and spacers being covered thereby. Each formed elastomer is substantially cylindrical, but thin so as to also be flexible and deformable when the assembly 1 is bent, compressed or stretched as shown in the drawing figures. In both spinal flexion and extension, the over-molds 22 and 23 completely surround or cover the assembly 1 components as also illustrated in the drawing figures. It is foreseen that the material for the over-molds 22 and 23 may be sized and made from such materials so as to provide for relatively more or less bendability, as well as compressibility and stretchability.
With particular reference to
With particular reference to
The illustrated dynamic connecting member assembly 1 having pre-compressed spacers is shown cooperating with four polyaxial bone screws 25 as shown in
With particular reference to
After the crimping ring 20 is loaded onto the core 6, manipulation tools (not shown) are used to grasp the core 6 near the end 38 and at the bone anchor attachment portion 8, placing some tension on the core 6. The spacer 10, the sleeve 12, the spacer 14, the sleeve 16, the bumper 18 and the crimping ring 20 are moved toward the buttress plate 40 and into contact with one another. A desired amount of axial compressive force is placed on the components loaded on the core 6, followed by deforming the crimping ring at the crimp grooves 120 and against the core 6. When the manipulation tools are released, the crimping ring 20, now firmly and fixedly attached to the core 6 holds the spacers 10 and 14 and the bumper 18 in compression and the spacers and bumper place axial tension forces on the core 6, resulting in a dynamic relationship between the core 6 and the spacers 10, 14 and the bumper 18. The spacers 10 and 16 are slidable with respect to the core 6, but also are limited by the buttress plate of the anchor member 4 and end plates of the sleeves 12 and 16. Furthermore, the bumper 18 that is compressed between the sleeve surface 76 and the crimping ring surface 116 is also slidable with respect to the core 6. The spacers 10 and 14 and the bumper 18 place a distractive force on the core 6 along the axis A and between the buttress plate 40 and the crimping ring 20, but also are movable with respect to the core 6, thus being able to respond to jolting and other body movements and thereafter spring back into an originally set location. The sleeves 12 and 16 that may compress slightly, but are more rigid than the spacers 10 and 14, keep the spacers 10 and 14 in an approximate desired axially spaced relation. However, the spacers 10 and 14 also advantageously slide along the core 6 in response to outside forces. The core 6 is then trimmed to be approximately flush with the end surface 114 of the crimping ring 20.
It is noted that mechanical characteristics of the assembly components, such as creep, may require the spacers 10 and 14 and the bumper 18 to be compressed at a higher load and then allowed to reach a steady state before placement and molding of the over-mold coverings 22 and 23 and eventual operative use with the bone screws 25. The over-molds 22 and 23 are fabricated by first placing the anchor portion 8 and/or the sleeves 12 or 16 in a jig or other holding mechanism such that the jig frictionally engages such portion 8 and/or sleeves 12 and 16, followed by fabricating the over-mold 22 about and between the plate 40, the spacer 10, the pressure washer 11 and an end portion of the sleeve 12 and the over-mold 23 about and between an opposite end portion of the sleeve 12, the washer 13, the spacer 14, the washer 15 and an end portion of the sleeve 16 as best shown in phantom in
With reference to FIGS. 2 and 29-37, the assembly 1 is eventually positioned in an open or percutaneous manner in cooperation with the bone screws 25 with the over-molds 22 and 23 disposed between bone screws 25, with a bone screw attached to each of the sleeves 12 and 16 and, as illustrated, two bone screws 25 attached to the anchor portion 8. A closure structure 32 is used to attach each screw 25 to the assembly 1 with the sleeves 12 and 16 and the anchor portion 8 each being cradled between a lower pressure insert 29 and an upper pressure insert 30.
With particular reference to
With reference to
If removal of the assembly 1 from any of the bone screw assemblies 25 is necessary, or if it is desired to release the assembly 1 at a particular location, disassembly is accomplished by using a driving tool (not shown) with a driving formation cooperating with the closure structure 32 to rotate and remove the closure structure from the receiver 28. Disassembly is then accomplished in reverse order to the procedure described previously herein for assembly.
Eventually, if the spine requires more rigid support, the connecting member assembly 1 according to the invention may be removed and replaced with another longitudinal connecting member, such as a solid rod, having the same diameter as the rod portions 8, utilizing the same bone screw 25 components. Alternatively, if less support is eventually required, a less rigid, more flexible assembly, for example, an assembly 1 made with elastic spacers and bumper of different durometer or geometry may replace the assembly 1, also utilizing the same bone screws 25.
With reference to
In the illustrated embodiment, the anchor member 204 is substantially similar to the anchor member 4 previously described herein with respect to the assembly 1. Therefore, the member 204 includes the core 206, the bone anchor attachment portion 208 and the integral buttress plate 240 identical or substantially similar in size and shape to the respective core 6, attachment portion 8 and buttress plate 40 of the anchor member 4 previously described herein. The member 204 differs from the member 4 only in that the length of the core 206 is shorter than the core 6 as the core 206 holds only one sleeve 216, one cooperating spacer 210 and one washer 211 as compared to the core 6 that holds two sleeves, two spacers and three cooperating washers. The spacer 210 is identical or substantially similar to the spacer 10 previously described herein. The sleeve 216 is identical or substantially similar to the sleeve 16, having a concave end surface 274 identical or substantially similar to the concave end surface 74 of the sleeve 16 previously described herein. The washer 211 is identical or substantially similar to the washer 11 previously described herein, having a substantially convex end surface 304 identical or substantially similar to the end surface 104 os the washer 11. The surface 304 is slidably engageable with the concave surface 274 of the sleeve 216 such that a full and even surface contact occurs between the sleeve 216 and the washer 211, providing better load distribution along the assembly 201, keeping stresses on the inside of the sleeve 216 rather than on an outer surface during angulation, translation and compression. The bumper 218 and the crimping ring 220 are identical or substantially similar to the respective bumper 18 and the crimping ring 20 previously described herein with respect to the assembly 1.
The assembly 201 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 1, the assembly 201 however, does not include a second spacer or second sleeve. Therefore, the core 206 is first received within a through bore of the spacer 210, followed by the washer 211, then within an inner surface of the sleeve 216, followed by an inner through bore of the bumper 218 and then an inner through bore of the crimping ring 220. Similar to what has been described previously with respect to the assembly 1, the core 206 may initially be of a longer length measured along the axis AA than is shown in the drawing figures, allowing for a manipulation tool to grasp the core 206 near an end thereof that extends through the crimping ring bore. The spacer 210 and bumper 220 are compressed, followed by deformation of the crimping ring 220 against the core 206. Then, the covering 222 is fabricated about the plate 240, the spacer 210, the washer 211 and an end portion of the sleeve 216. The assembly is now in dynamic relationship with the spacer 210, washer 211, sleeve 216 and bumper 218 being slidable with respect to the core 206, the sleeve 216 being more readily movable in a direction toward the bumper 218 due to the greater elasticity of the bumper 218 as compared to the spacer 210.
The assembly 201 may then be implanted, cooperating with three bone screws 25 as illustrated in
With reference to
With reference to
With reference to
The anchor member 304, the spacer 310, the pressure washer 311, the sleeve 312, the bumper 318 and the crimping ring 320 are identical or substantially similar to the respective anchor member 4, spacer 10, pressure washer 11, sleeve 12, bumper 18 and crimping ring 20 of the assembly 1 and therefore shall not be discussed in great detail herein. The sleeve 312 has a curved inner surface 354 substantially similar to the curved inner surface 54 previously described herein with respect to the sleeve 12. The sleeve 316 has a curved inner surface 355 that is also substantially similar to the curved inner surface 54 previously described herein with respect to the sleeve 12. In substantially all other aspects of form and function, the sleeve 316 is substantially similar to the sleeve 16 previously described herein with respect to the assembly 1. The sleeve 312 includes a pair of opposed end plates 358 and 360 and the sleeve 316 includes a pair of opposed end plates 362 and 363. The illustrated plates 358, 360, 362 and 363 have outer cylindrical surfaces 364, 366, 368 and 369, respectively, that are substantially smaller in diameter than an outer diameter of the spacer 314 and the washers 313 and 315, allowing gaps for greater relative tilting or articulation of the sleeves 312 and 316 with respective adjacent washers 313 and 315, as will be described in greater detail below.
Thus, the assembly 301 primarily differs from the assembly 1 in the geometry of the washers 313 and 315 and the spacer 314. The elastic spacer 314 is substantially similar to the spacer 14 in form, function and materials with the exception that rather than having opposed planar side surfaces 90 and 91, the spacer 314 has opposed side surfaces 390 and 391 that are curved and concave. In particular, the illustrated surfaces 390 and 391 are cupped shaped, sized and shaped to closely slidingly mate with the dome shaped washers 313 and 315, as will be described in greater detail below, allowing for articulating movement between the spacer 314 and the washers 313 and 315, in addition to compression of the spacer 314.
The pressure washers 313 and 315 are identical to one another and also are substantially similar to the pressure washer 11 previously described above with the exception that the washers 313 and 315 have opposed, curved, convex side surfaces sized and shaped for cooperation with a substantially concave surface of a cooperating sleeve 312 or the concave surfaces 390 or 391 of the spacer 314. The illustrated washer 313 has opposed curved surfaces 402 and 404 and the washer 315 has opposed curved surfaces 402′ and 404′.
The assembly 301 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 1. Also, similar to what has been described previously with respect to the assembly 1, the core 306 may initially be of a longer length measured along the axis AAA than is shown in the drawing figures, allowing for a manipulation tool to grasp the core 306 near an end thereof that extends through the crimping ring bore. The spacers 310 and 314 and the bumper 318 are compressed, followed by deformation of the crimping ring 320 against the core 306. Then, the coverings 322 and 323 are fabricated on the assembly 301 at the locations shown in the figures and as described above. The assembly 301 is now in dynamic relationship with the spacers 310 and 314, washers 311, 313 and 315, sleeves 312 and 316 and bumper 318 being slidable with respect to the core 306, both sleeves 312 and 316 being more readily movable in a direction toward the bumper 318 due to the greater elasticity of the bumper 318 as compared to the spacers 310 and 314.
The assembly 301 may then be implanted, cooperating with three bone screws 25 as previously illustrated with respect to the assembly 1. Like the assembly 1, the assembly 301 provides for a dynamic and flexible connection between three bone anchors. Furthermore, the double domed articulating wear washers 313 and 315 cooperating with the cupped spacer 314 allow for increased flexion and extension over the assembly 1 having the spacer 14 with planar surfaces. While the assembly 1 spacer 14, for example, elastically compresses when the assembly bends during spinal flexion or extension, the pressure washers 313 and 315 may slidingly articulate along the surfaces 390 and 391 of the spacer 314 during spinal flexion or extension. If compression accompanies the bending movement, the spacer 314 may also compress slightly in response to the spinal movement. As illustrated in FIG. 47, the end plates 358 and 360 of the sleeve 312 and the end plates 362 and 363 of the sleeve 316 are sized and shaped to have a smaller outer diameter than the pressure washers and spacers of the assembly 301 as well as provide a gap between such plates and adjacent components of the assembly 301, providing clearance for articulated movement between the components.
It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
Claims
1. A longitudinal connecting member adapted for cooperation with a plurality of bone anchors implanted in a spine, the improvement wherein the longitudinal connecting member comprises:
- a) a substantially rigid anchor portion extending along a longitudinal axis of the connecting member, the anchor portion being formed of a first material and being directly engaged by first and second bone anchors;
- b) a core portion joined with an end of the anchor portion, extending along the longitudinal axis and indirectly engaged by a third bone anchor, the core portion being formed of a second material and having a reduced diameter relative to the anchor portion, wherein the second material and the reduced diameter cooperate so as to enable at least some flexing of the core portion;
- c) a first inelastic sleeve slidingly received over the core portion so as to be located between the third bone anchor and the core portion;
- c) a pair of elastic spacers received over the core portion such that each of the spacers is adjacent to an end of the first sleeve;
- d) a crimp ring engaging the core portion and being located so as to bias the spacers; and
- e) an elastic over-mold surrounding the at least one of the spacers and a respective adjacent end of the first sleeve; wherein
- f) the longitudinal connection member provides for greater movement in the cephalad direction than in the caudad direction.
2. The improvement of claim 1, wherein
- a) the elastic over-mold grips both the anchor portion and the first sleeve.
3. The improvement of claim 1, wherein
- a) the anchor portion includes has a first end plate and the elastic over-mold is molded about the first end plate.
4. The improvement of claim 1, wherein
- a) the elastic over-mold is made from a composite material comprising elongate reinforcement strands imbedded in a polymer.
5. The improvement of claim 1, wherein
- a) the core is made from a polymer.
6. The improvement of claim 5, wherein
- a) the polymer is polyetheretherketone.
7. The improvement of claim 1, wherein
- a) the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve.
8. The improvement of claim 7, wherein
- a) the core flexes primarily between the first sleeve and the anchor portion.
9. The improvement of claim 1, wherein the longitudinal connecting member further comprises:
- a) a second inelastic sleeve slidingly received over the core portion so as to be located between a fourth bone anchor and the core portion;
- b) a third elastic spacer received over the core portion so as to be located between the second inelastic sleeve and the crip ring; and
- c) a second elastic over-mold surrounding a second end of the first sleeve, the third spacer and an adjacent end of the second sleeve.
10. The improvement of claim 9, wherein:
- a) the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve; and
- b) the second sleeve substantially blocks flexing of the portion of the core that is surrounded by the second sleeve.
11. The improvement of claim 10, wherein
- a) the core flexes primarily: i) between the first sleeve and the anchor portion; and ii) between the first sleeve and the second sleeve.
Type: Application
Filed: Jan 23, 2013
Publication Date: May 30, 2013
Inventor: Roger P. Jackson (Prairie Village, KS)
Application Number: 13/694,982
International Classification: A61B 17/70 (20060101);