Bit Sleeve with Compression Band Retainers

A bit sleeve for holding a tool bit in a block having a bore that is at least partially tapered, including a collar having a front face for supporting a flange on the tool bit, a flange located rearward of the collar and having a diameter larger than that of the collar, a shank located rearward of the flange and having a diameter smaller than that of the flange, a body adapted to be received into the bore of the block and having a front spherically-shaped portion joined to a rear straight cylindrical portion, a front compression band mounted in a groove in the front portion, and a rear compression band mounted in a groove in the rear portion, wherein when the bit sleeve is installed in the bore, the first and second compression bands are compressed between the body and the bore to secure the sleeve within the bore.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD

The present disclosure relates to a bit sleeve for retaining a tool bit in a holder block. More particularly, the present disclosure relates to a bit sleeve retained in the holder using two or more compression band retainers and having a shoulder located to concentrate force applied by a removal tool along the centerline of the bit sleeve.

BACKGROUND

In the discussion of the background that follows, reference is made to certain structures and/or methods. However, the following references should not be construed as an admission that these structures and/or methods constitute prior art. Applicant expressly reserves the right to demonstrate that such structures and/or methods do not qualify as prior art.

Road milling, mining, and trenching equipment generally have blocks each having a replaceable sleeve to hold a cemented carbide-tipped bit. The sleeve is designed and made to be replaceable should it become damaged or worn. The sleeve is retained mechanically in the holder and therefore does not require burning or welding. However, the sleeve typically must be pressed into the holder, which necessitates tight tolerance machining and grinding to maintain the proper interference fit. Alternatively, the sleeve may have a metal spring retainer which can lose its resilience or become brittle and crack or break. In these cases, dust, debris, corrosion, and rust between the steel components may become a problem, increasing the forces necessary to remove the sleeve from the holder block. In some cases, threaded fasteners on the sleeve are used in lieu of a press fit or a metal retainer to secure the sleeve in the holders. However, threads often loosen due to the vibration prevalent in this type of equipment. And if the threads do not loosen they become “frozen” due to the rust and corrosion in the threaded area, and they must then be torched off.

Accordingly, there is a need in the art for a mechanism to retain a bit sleeve in a holder that both secures the bit during use and is readily removable when necessary for maintenance and/or replacement.

SUMMARY

A bit sleeve as disclosed herein does not require a taper lock surface or a Morris taper surface, and removes the need for a tight tolerance press fit. Instead, the bit sleeve is retained within the bore of a holder block by compression bands retained in grooves on the body of the bit sleeve. The compression bands create an annular space between the bit sleeve and the bore of the block, and retain the bit sleeve in the bore by being resiliently compressed between the bit sleeve and the bore. Additionally, the compression sleeves seal the annular space to prevent intrusion of water, moisture, dust, debris, and the like, so as to inhibit the formation of rust and to prevent binding of the bit sleeve to the block.

An exemplary embodiment of a bit sleeve for holding a tool bit in a block having a bore that is at least partially tapered includes a collar, a flange, a shank, and a body adapted to be received into the bore. The collar has a front face for supporting a flange on the tool bit, the flange is located rearward of the collar and has a diameter larger than that of the collar, the shank is located rearward of the flange and has a diameter smaller than that of the flange, and the body has a front portion joined to a rear portion. The body includes a first groove in the front portion of the body configured to receive a first compression band and a second groove in the rear portion of the body configured to receive a second compression band. In one variation, the front portion of the body has a spherically-curved wall and the rear portion of the body has a straight cylindrical wall, which correspond to a front tapered portion the bore and a rear straight cylindrical portion of the bore. In another variation, the bit sleeve further includes a shoulder extending rearwardly from the flange and having a pair of rearwardly-oriented corners substantially aligned with the centerline of the bit sleeve.

Another exemplary embodiment of a bit sleeve for holding a tool bit in a block having a bore that is at least partially tapered includes a collar, a flange, a shank, and a body adapted to be received into the bore of the block. The collar has a front face for supporting a flange on the tool bit, the flange is located rearward of the collar and has a diameter larger than that of the collar, the shank is located rearward of the flange and has a diameter smaller than that of the flange, and the body has a front spherically-curved portion joined to a rear straight cylindrical portion. A first compression band is mounted in a groove in the front portion of the body, and a second compression band mounted in a groove in the rear portion of the body. When the bit sleeve is installed in the bore of the block, the first and second compression bands are compressed between the body and the bore to secure the bit sleeve within the bore.

Another exemplary embodiment of a bit sleeve for holding a tool bit in a block having a bore that is at least partially tapered includes a collar, a flange, a shoulder extending rearwardly from the flange, a shank, and a body adapted to be received into the bore of the block. The collar has a front face for supporting a flange on the tool bit, the flange is located rearward of the collar and has a diameter larger than that of the collar, and the shank is located rearward of the flange and has a diameter smaller than that of the flange. The shoulder has a pair of rearwardly-oriented corners substantially aligned with the centerline of the bit sleeve configured to be contacted by a wedge-shaped removal tool.

An embodiment of a mining machine includes a rotatable member and one or more blocks mounted on the rotatable member, each block including a bit sleeve installed in a block having a bore that is at least partially tapered. The bit sleeve includes a collar having a front face for supporting a flange on the tool bit, a flange located rearward of the collar and having a diameter larger than that of the collar, a shank located rearward of the flange and having a diameter smaller than that of the flange, and a body adapted to be received into the bore of the block, the body having a front portion joined to a rear portion. A first compression band is mounted in a groove in the front portion of the body, and a second compression band is mounted in a groove in the rear portion of the body. The first and second compression bands are compressed between the body and the bore to secure the bit sleeve within the bore.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWING

The following detailed description can be read in connection with the accompanying drawings in which like numerals designate like elements and in which:

FIG. 1 is a side view of a bit sleeve installed in a cut-away bit holder.

FIG. 2 is a side view of a bit sleeve.

FIG. 3 is a side view of a bit sleeve partially removed from a cut-away bit holder showing engagement of a removal tool with a shoulder on a flange of the bit sleeve.

DETAILED DESCRIPTION

FIG. 1 shows a bit sleeve 10 installed in a bore 102 of a block 100. The block 100 may be one of several blocks mounted on a rotating drum of a mining machine or other piece of equipment. At least a front portion of the bore 102 has a substantially linear taper such that the bore 102 has a larger diameter at a front face 106 of the block 100 and a smaller diameter at a rear face 104 of the block 100. A rear portion of the bore 102 may have a straight cylindrical wall substantially free of a taper. The block 100 further includes a flat lateral surface 108 that extends frontwardly from the front face 106 along one side of the bore 102.

The bit sleeve 10 has a bore 12 therethrough from a front face 34 to a rear face 32, the bore 12 being adapted for receiving the shank of a tool bit (not shown), for example as disclosed in FIG. 3 of U.S. Patent Publication No. 2011/0204701, which is incorporated by reference herein. The bit sleeve 10 has a collar 14, a flange 18 located rearward of the collar 14, a shank 22 extending rearward from the flange 18, and a body 30 located rearward of the shank 22. The bit sleeve 10 may also include a tapered portion 16 joining the collar 14 and the flange 18. The flange 18 is generally cylindrical in shape, but may include a flat lateral face 40 on one side for mating with the flat lateral surface 108 of the block 100 to prevent rotation of the bit sleeve 10 within the bore 102.

The body 30 of the bit sleeve 10 is not tapered to match the bore 102 of the block 100. In the depicted embodiment, the bit sleeve 10 includes a front portion 24 having a spherically-curved convex wall that varies from a larger diameter at a frontward end of the front portion 24 to a smaller diameter at a rearward end of the front portion 24. The bit sleeve 10 also includes a rear portion 26 having a straight cylindrical wall and a uniform diameter throughout. The front portion 24 and the rear portion 26 of the body 30 join at a junction 28.

Because the body 30 does not have a tapered shape to match the taper of the bore 102, the bit sleeve 10 must be retained in the bore 102 by another mechanism. As shown in FIG. 2, the front portion 24 of the body 30 includes a front groove 36 adapted to receive a front compression band 52. As also shown in FIG. 2, the rear portion 26 of the body 30 includes a rear groove 38 adapted to receive a rear compression band 54. The embodiment shown in FIG. 1 includes the front compression band 52 mounted in the front groove 36 and the rear compression band 54 mounted in the rear groove 38.

Both compression bands 52, 54 are made from a resilient abrasion-resistant material that is not susceptible to corrosion or rust, for example, a nylon composite material. In one variation, the compression bands 52, 54 are made from a nylon composite material including glass in the composite. Preferably, the nylon composite material includes about 10% to about 50% glass, and more preferably about 30% glass. The material of construction of the compression bands 52, 54 enables the bit sleeve 10 to be installed into and removed from the bore 102 with relative ease (i.e., without binding or seizing) while providing a secure fit that prevents the bit sleeve 10 from walking out of the bore 102 as a result of the vibration imparted by the tool bit. Further, the resilience or compliance of the compression bands 52, 54 enables the fit tolerance between the body 30 and the bore 102 to be wider than is typically required for a compression fit, which reduces manufacturing costs and scrap. Also, because the compression bands 52, 54 are retained in the grooves 36, 38, respectively on the body 30, there are no separate parts that can be potentially lost or damaged.

The spherically-curved surface of the front portion 24 is configured, in combination with the front compression band 52, to carry the loads and forces transmitted from the tool bit through the bit sleeve 10 and into the block 100. At the same time, front compression band 52 maintains a space between most of the front portion 24 and the bore 102, thereby allowing only a small contact area between the spherically-curved surface of the front portion 24 and the tapered bore 102. The small contact area substantially prevents the bit sleeve 10 and the block 100 from locking together.

When a new bit sleeve 10 is installed in the bore 102 so that the compression bands 52, 54 are seated in the bore 102, as shown in FIG. 1, a gap preferably exists between the front face 106 of the block 100 and the shoulder 20. The gap leaves room for the bit sleeve 10 to wear inward into the bore 102 during use. As the contact point between the body 30 (and specifically the front portion 24) and the bore 102 wears, the gap enables the bit sleeve 10 space to move inward until the shoulder 20 finally contacts the front face 106 of the block 100. When the bit sleeve 10 has worked its way to a position in which the shoulder of the bit sleeve 10 contacts the front face 106 of the block 102, the bit sleeve 10 should be replaced. A new (replacement) sleeve 10, when installed, will have a gap between the shoulder 20 and the front face 106 of the block 100. If a new sleeve 10, when inserted such that the compression bands 52, 54 are seated in the bore 102, does not form a gap between the shoulder and the front face 106, the block 100 is too worn and the block 100 should be replaced.

In the depicted embodiment of FIGS. 1-3, the rear groove 38 (and the rear compression band 54) has a length in the axial direction of the bit sleeve 10 that is about twice as large as the length in the axial direction of the front groove 36 (and the front compression band 52). Consequently, the rear compression band 54 provides more compressive force to retain the bit sleeve 10 in the bore 102 than the front compression band 52, while the front compression band 52 serves to prevent the front portion 24 of the body 30 from becoming locked against the bore 102.

The front compression band 52 is preferably located entirely within the bore 102 with a front edge of in alignment with, or near alignment with, the front face 106 of the block 100. Similarly, the rear compression band 54 is preferably located entirely within the bore 102 with a rear edge in alignment with, or near alignment with, the rear face 104 of the block 100. The front band 52 seals the front end of an annular space 110 between the body 30 and the bore 102, and the rear band 54 seals the rear end of the annular space 110, so as to substantially prevent water, moisture , dust, debris, and the like from entering the annular space 110. Consequently, the outer surface of the body 30 and the inner surface of the bore 102, both typically made from steel, are prevented from rusting and seizing together.

The compression bands 52, 54 reduce wear on the bore 102 by absorbing most or all of the vibration imparted to the bit sleeve 10 by the tool bit, and by substantially keeping the bit sleeve 10 from contacting the surface of the bore 102. Additionally, the spherically-curved surface of the front portion 24 of the body 30 can mate with the taper of the bore 102, even if the bore 102 is worn, since contact is essentially at a point (where the spherical curve of the body 30 is tangent to the taper of the bore 102) rather than along mating surfaces. This is in contrast to a conventional bit sleeve arrangement having a tapered body mating with a tapered bore. As disclosed herein, the bit sleeve 10 will also be able to seat tightly against the top surface 106 of the block 100.

In the depicted embodiment, the bit sleeve 10 further includes a shoulder 20 that is stepped to extend rearwardly from the flange 18. The shoulder 20 is convexly curved and includes two rearwardly-oriented corners or steps 21 each situated substantially on the centerline of the bit sleeve 10. The corners 21 provide contact points or surfaces for a removal tool 200.

For removal of the bit sleeve 10 from the block 100, as shown in FIG. 3, a removal tool 200 may be used. A typical removal tool 200, when viewed from the front end 34 of the bit sleeve 10, has a two-pronged fork shape with one prong 201 extending around each side of the bit sleeve 10. Each prong 201 is wedge shaped with a straight rear face 204 adapted to rest against the front face 106 of the block 100 and a sloped front face 202 adapted to contact the bit sleeve 10 for prying the bit sleeve 10 out of the bore 102 (e.g., by use of a prying member 208 such as a hammer exerting force against a lever arm portion 206 of the removal tool 200).

During removal of the bit sleeve 10, the shank 22 is positioned between the two prongs 201 of the fork-shaped removal tool 200 and the sloped face 202 of each prong 201 contacts the corners 21 of the shoulder 20. As each wedge-shaped prong 201 is inserted further, or is pried against the corresponding corner 21 of the shoulder 20, the prong 201 exerts force on the bit sleeve 10 that is primarily along an axial direction of the bit sleeve 10. In particular, the positioning of the corner 21 on the shoulder 20 to be substantially aligned with the centerline of the bit sleeve 10 substantially prevents the removal tool 200 from creating forces that would skew the bit sleeve 10 and make it more likely to bind in the bore 102. Thus, the removal tool 200 enables the bit sleeve 10 to slide straight out of the bore 102.

Although described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without department from the spirit and scope of the invention as defined in the appended claims.

Claims

1. A bit sleeve for holding a tool bit in a block having a bore that is at least partially tapered, the bit sleeve comprising:

a collar having a front face for supporting a flange on the tool bit;
a flange located rearward of the collar, the flange having a diameter larger than that of the collar;
a shank located rearward of the flange, the shank having a diameter smaller than that of the flange;
a body adapted to be received into the bore of the block, the body having a front portion joined to a rear portion;
a first groove in the front portion of the body configured to receive a first compression band; and
a second groove in the rear portion of the body configured to receive a second compression band,
wherein, when the bit sleeve is installed in the bore of the block, the first compression band is located entirely within the bore with a front edge of the first compression band in alignment with a front face of the block and the second compression band is located entirely within the bore with a rear edge of the second compression band in alignment with a rear face of the block.

2. The bit sleeve of claim 1, wherein a front portion of the bore has a tapered wall and wherein the front portion of the body has a spherically-curved wall.

3. The bit sleeve of claim 2, wherein a rear portion of the bore has a straight cylindrical wall and wherein the rear portion of the body has a straight cylindrical wall.

4. The bit sleeve of claim 1, further comprising:

a shoulder extending rearwardly from the flange, the shoulder having a pair of rearwardly oriented corners substantially aligned with the centerline of the bit sleeve, the corners being configured to be contacted by a wedge-shaped removal tool.

5. The bit sleeve of claim 1, wherein the flange includes a flat lateral face configured to engage a flat lateral surface on the block to prevent rotation of the bit sleeve within the bore.

6. A bit sleeve for holding a tool bit in a block having a bore that is at least partially tapered, the bit sleeve comprising:

a collar having a front face for supporting a flange on the tool bit;
a flange located rearward of the collar, the flange having a diameter larger than that of the collar;
a shank located rearward of the flange, the shank having a diameter smaller than that of the flange;
a body adapted to be received into the bore of the block, the body having a front spherically-curved portion joined to a rear straight cylindrical portion;
a first compression band mounted in a groove in the front portion of the body; and
a second compression band mounted in a groove in the rear portion of the body;
wherein, when the bit sleeve is installed in the bore of the block, the first and second compression bands are compressed between the body and the bore to secure the bit sleeve within the bore, the first compression band is located entirely within the bore with a front edge of the first compression band in alignment with a front face of the block, and the second compression band is located entirely within the bore with a rear edge of the second compression band in alignment with a rear face of the block.

7. A bit sleeve for holding a tool bit in a block having a bore that is at least partially tapered, the bit sleeve comprising:

a collar having a front face for supporting a flange on the tool bit;
a flange located rearward of the collar, the flange having a diameter larger than that of the collar;
a shoulder extending rearwardly from the flange and having a pair of rearwardly oriented corners substantially aligned with the centerline of the bit sleeve;
a shank located rearward of the flange, the shank having a diameter smaller than that of the flange; and
a body adapted to be received into the bore of the block;
wherein the corners of the shoulder are configured to be contacted by a wedge-shaped removal tool, and
wherein, when the bit sleeve is installed in the bore of the block, the first compression band is located entirely within the bore with a front edge of the first compression band in alignment with a front face of the block and the second compression band is located entirely within the bore with a rear edge of the second compression band in alignment with a rear face of the block.

8. A mining machine, comprising:

a rotatable member; and
one or more blocks mounted on the rotatable member, each block including a bit sleeve installed in a block having a bore that is at least partially tapered;
wherein the bit sleeve includes:
a collar having a front face for supporting a flange on the tool bit;
a flange located rearward of the collar, the flange having a diameter larger than that of the collar;
a shank located rearward of the flange, the shank having a diameter smaller than that of the flange;
a body adapted to be received into the bore of the block, the body having a front portion joined to a rear portion;
a first compression band mounted in a groove in the front portion of the body; and
a second compression band mounted in a groove in the rear portion of the body;
wherein the first and second compression bands are compressed between the body and the bore to secure the bit sleeve within the bore, and
wherein, when the bit sleeve is installed in the bore of the block, the first compression band is located entirely within the bore with a front edge of the first compression band in alignment with a front face of the block and the second compression band is located entirely within the bore with a rear edge of the second compression band in alignment with a rear face of the block.

9. The bit sleeve of claim 1, wherein, when the bit sleeve is installed in the bore with the first and second compression bands seated in the bore, a gap exists between the front face of the block and the shoulder.

10. The bit sleeve of claim 1, wherein the groove in the front portion has a first length in the axial direction of the bit sleeve, the groove in the rear portion has a second length, and the second length is larger than the first length.

11. The bit sleeve of claim 10, wherein the second length is about twice as large as the first length.

12. The bit sleeve of claim 1, wherein the second compression band has a planar outer peripheral surface.

13. The bit sleeve of claim 1, wherein, when the bit sleeve is installed in the bore of the block, the first compression band seals the front end of an annular space between the body and the bore, and the second compression band seals the rear end of the annular space.

14. The bit sleeve of claim 13, wherein the seals formed by the first compression band and the second compression band substantially prevents moisture and debris from entering the annular space.

15. The bit sleeve of claim 1, wherein the first compression band and the second compression band are made from a resilient abrasion-resistant material.

16. The bit sleeve of claim 15, wherein the resilient abrasion-resistant is a nylon composite material.

17. The bit sleeve of claim 1, wherein the first compression band and the second compression band are made from a nylon composite material including glass in the composite.

18. The bit sleeve of claim 17, wherein the nylon composite material includes about 10% to about 50% glass.

19. A combination comprising:

a block having a bore that is at least partially tapered; and
a bit sleeve for holding a tool bit in the block,
wherein the bit sleeve includes:
a collar having a front face for supporting a flange on the tool bit;
a flange located rearward of the collar, the flange having a diameter larger than that of the collar;
a shank located rearward of the flange, the shank having a diameter smaller than that of the flange;
a body adapted to be received into the bore of the block, the body having a front portion joined to a rear portion;
a first groove in the front portion of the body configured to receive a first compression band; and
a second groove in the rear portion of the body configured to receive a second compression band, and
wherein, when the bit sleeve is installed in the bore of the block, the first compression band is located entirely within the bore with a front edge of the first compression band in alignment with a front face of the block and the second compression band is located entirely within the bore with a rear edge of the second compression band in alignment with a rear face of the block.

20. The combination of claim 19, wherein, when the bit sleeve is installed in the bore of the block, the first compression band seals the front end of an annular space between the body and the bore, and the second compression band seals the rear end of the annular space.

21. The combination of claim 20, wherein the seals formed by the first compression band and the second compression band substantially prevents moisture and debris from entering the annular space.

22. The combination of claim 19, wherein the first compression band and the second compression band are made from a nylon composite material including glass in the composite.

Patent History
Publication number: 20130169023
Type: Application
Filed: Dec 28, 2011
Publication Date: Jul 4, 2013
Applicant: SANDVIK INTELLECTUAL PROPERTY AB (Sandviken)
Inventors: Kenneth Monyak (Abingdon, VA), Daniel Mouthaan (Williamsburg, MI), Scott Leeth Carter (Clare, MI)
Application Number: 13/338,318
Classifications
Current U.S. Class: Wear Shield Or Replaceable Wear Sleeve (299/104)
International Classification: E21C 35/197 (20060101);