Turbine Diffuser
The present application provides a diffuser for use with a gas turbine. The diffuser may include hub, a number of struts extending from the hub, and a number of airfoils extending from the hub.
Latest General Electric Patents:
The present application and the resultant patent relate generally to gas turbine engines and more particularly relate to a turbine diffuser with an airfoil arrangement to reduce swirl and flow separation during partial load operations and the like.
BACKGROUND OF THE INVENTIONGas turbine engines and the like typically include a diffuser downstream of the last stage of a turbine. Generally described, the diffuser converts the kinetic energy of the hot flow gases exiting the last stage into potential energy in the form of increased static pressure. The diffuser directs the hot flow gases through a casing of increasing area in the direction of the flow. The diffuser generally includes a number of struts mounted onto a hub and enclosed by the casing. Other configurations also may be known.
During partial load operations, a bucket exit tangential flow angle (swirl) may increase and may lead to flow separation on the struts and the hub of the diffuser. Flow separation and an increase in swirl may reduce the diffuser static pressure recovery. Such a reduction may have an impact on overall gas turbine engine performance and efficiency.
There is thus a desire for an improved gas turbine engine diffuser design. Such an improved design preferably may limit flow separations and swirl so as to improve overall performance and efficiency.
SUMMARY OF THE INVENTIONThe present application and the resultant patent thus provide a diffuser for use with a gas turbine. The diffuser may include hub, a number of struts extending from the hub, and a number of airfoils extending from the hub.
The present application and the resultant patent further provide a diffuser for use with a gas turbine. The diffuser may include a hub, a number of struts extending from the hub, a number of airfoils extending from the hub such that one of the airfoils is positioned between a pair of the struts, and a casing.
The present application and the resultant patent further provide a diffuser for use with a gas turbine. The diffuser may include a hub, a number of struts extending from the hub, and a number of airfoils extending from the hub. The airfoils may have a number of configurations.
These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The gas turbine engine 10 also may include a diffuser 55. The diffuser 55 may be positioned downstream of the turbine 40. As described above, the diffuser 55 may include a number of struts 60 mounted on a hub 65 and enclosed within an outer casing 70. The diffuser 55 turns the flow of combustion gases 35 in an axial direction. Other configurations and other components may be used.
The gas turbine engine 10 may use natural gas, various types of syngas, and/or other types of fuels. The gas turbine engine 10 may be any one of a number of different gas turbine engines offered by General Electric Company. The gas turbine engine 10 may have different configurations and may use other types of components. Other types of gas turbine engines also may be used herein. Multiple gas turbine engines, other types of turbines, and other types of power generation equipment also may be used herein together.
The diffuser 100 also may have a number of airfoils 130 positioned on the hub 120. In this example, the airfoils 130 may be positioned adjacent to the struts 110. Specifically, an airfoil 130 may be positioned between each pair of the struts 110. Any number of the airfoils 130 may be used herein. The angle, length, size, shape, and configuration of the airfoils 130 may vary. Airfoils 130 of different configurations may be used herein together. A slot 140 may be positioned through a portion of the airfoil 130. The slot 140 serves to direct the flow of combustion gases 35 therethrough. The slot 140 may have any desired size, shape, or configuration. Other components and other configurations may be used herein.
The use of the airfoils 130 thus corrects the creation of swirl and reduces flow separation about the struts 110 and the hub 120 of the diffuser 100 through the entire partial load operations. Moreover, the airfoils 130 may be designed to not incur additional losses during full load ISO and cold day operations. An increase in airfoil count/solidity reduces airfoil-strut pitch so as to correct the swirl and the flow separation. The diffuser 100 thus may provide improved performance so as to improve overall gas turbine performance and efficiency.
The airfoil also may include additional features or mechanisms as shown in for example,
The diffusers described herein thus may elude airfoils 130 of various sizes, shapes, and configurations. The use of the airfoils 130 with the struts 110 thus controls the flow separation and swirl during partial load operations so as to improve overall efficiency. Many other sizes, shapes, and configurations of diffusers and airfoils may be used herein.
It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.
Claims
1. A diffuser for use with a gas turbine, comprising:
- a hub;
- a plurality of struts extending from the hub; and
- a plurality of airfoils extending from the hub.
2. The diffuser of claim 1, wherein one of the plurality of airfoils is positioned between a pair of the plurality of struts.
3. The diffuser of claim 1, wherein one or more of the plurality of airfoils comprises a slot therein.
4. The diffuser of claim 1, wherein one or more of the plurality of airfoils comprises a hunch back airfoil.
5. The diffuser of claim 4, wherein the hunch back air foil comprises a spoiler thereon.
6. The diffuser of claim 1, wherein one or more of the plurality of airfoils comprises a vortex generator airfoil.
7. The diffuser of claim 6, wherein the vortex generator airfoil comprises a sinusoidal configuration.
8. The diffuser of claim 1, wherein one or more of the plurality of airfoils comprises a fluidic airfoil.
9. The diffuser of claim 8, wherein the fluidic airfoil comprises one or more ports thereon.
10. The diffuser of claim 1, wherein one or more of the plurality of airfoils comprises a high lift airfoil.
11. The diffuser of claim 10, wherein the high lift airfoil comprises one or more airfoil elements.
12. The diffuser of claim 1, wherein one or more of the plurality of airfoils comprises a cambered airfoil.
13. The diffuser of claim 12, wherein the cambered airfoil comprises a thickened configuration.
14. The diffuser of claim 1, wherein one or more of the plurality of airfoils comprises an extended airfoil.
15. The diffuser of claim 14, wherein the extended airfoil comprises a forward bend.
16. A diffuser for use with a gas turbine, comprising:
- a hub;
- a plurality of struts extending from the hub;
- a plurality of airfoils extending from the hub such that one of the plurality of airfoils is positioned between a pair of the plurality of struts; and
- a casing.
17. The diffuser of claim 16, wherein one or more of the plurality of airfoils comprises a slot therein.
18. The diffuser of claim 16 wherein one or more of the plurality of airfoils comprises a spoiler thereon.
19. The diffuser of claim 16, wherein one or more of the plurality of airfoils comprises a sinusoidal configuration.
20. A diffuser for use with a gas turbine, comprising:
- a hub;
- a plurality of struts extending from the hub; and
- a plurality of airfoils extending from the hub;
- the plurality of airfoils comprising a plurality of configurations.
Type: Application
Filed: Jan 4, 2012
Publication Date: Jul 4, 2013
Applicant: GENERAL ELECTRIC COMPANY (Schenectady, NY)
Inventors: Moorthi Subramaniyan (Bangalore Karnataka), Vignesh Radhakrishnan (Bangalore Kornataka), Bala M. Singh (Bangalore Karnataka), Manjunath B. C (Bangalore Karnataka)
Application Number: 13/343,021