Multi Purpose Exercise Apparatus
The disclosed invention is an exercise device being capable of providing aerobic exercise and abdominal muscle conditioning. The device is comprised of an upper frame and a lower frame. The upper frame includes a seat back which supports the upper portion of the torso of a user. The lower frame includes a pelvis support and a bicycle pedaling mechanism. The preferred embodiment includes a linkage system that connects the upper frame to the lower frame. This linkage is capable of providing a translating center of rotation when the upper frame rotates with respect to the lower frame. This is done to follow the body's translating center of rotation during trunk flexion. An alternative to the preferred embodiment includes a arcuate roller attached to the upper frame.
1. Field of the Invention
The invention herein relates to a device for exercising the human body and more specifically to a combination abdominal exercise machine and a stationary exercise bike.
2. Overview of Prior Art
A variety of art exists in the area of exercise devices and inclusive of the areas of bikes for aerobic conditioning as well as abdominal exercisers. What has eluded the art thus far is a functional combination device that provides the capability to adequately perform in both realms of fitness.
The most apparent attempt was made by Shirley in U.S. Pat. No. 4,534,553 where a pedal and crank assembly drove an eccentric cam. The cam articulated with a plurality of bearings on the posterior of the seat back of the machine. Movement of the cam caused an angular displacement of the seat back and therefore some type of upper body flexion of the user. One of the problems with the device is the point of rotation (14 in
The human body primarily undergoes trunk flexion by rotating the five lumbar vertebrae, each with respect to the adjacent vertebrae, including the fifth lumbar with the sacrum and the first lumbar with the twelfth thoracic vertebrae. This involves a translating center of rotation that runs aligned through the vertebral bodies, clearly above the seat. This misalignment would cause the user to slide on the seat back making it virtually non functional as a support for the user performing trunk flexion.
The second and most prevalent problem with the disclosure is that the cam causes the seat back to rotate up, which is driven by the pedaling motion.
This means that the muscles of the user's legs are driving this movement, not the user's abdominal muscles. The movement may make the device somewhat enjoyable to use but it clearly does not function as an abdominal exerciser.
Another bike apparatus is disclosed by Zibell in U.S. Pat. No. 4,538,804 which includes an inclined slant board. Though the board could conceivably be used as a board for doing abdominal exercises, the board offers no support for the user during that movement. The disclosure specifies the purpose being to pull isometrically with the arms of the user while pedaling with the legs, not to function as an abdominal exerciser. The bench is also not disclosed to be able to be changed in angle, thereby disallowing the device to the used in a semi-recumbant position as an exercise bike, which would be most comfortable to most users.
An abdominal exercise device was disclosed by Abelbeck in U.S. Pat. No. 5,697,874 which includes a pad to place the pelvis of the user, creating a slight posterior rotation of the pelvis. The disclosure also specifies a mechanism that creates a translating center of rotation that is aligned with the vertebral rotation of the user's body during trunk flexion. The invention also includes a pad to support the head of the user, but the there is no device disclosed, nor anticipated to add an aerobic element of training to the device, specifically an exercise bike.
Another abdominal exercise device is disclosed in U.S. Pat. No. 4,729,562 by Pipasik. This disclosure relates only to a device that is intended to work the abdominal muscles of the user. The device uses two stationary pivots, one apparently near the lower chest of the user and the other near the hip. It is intended to stimulate the abdominal muscles by a flexion movement of a narrow region of the vertebral column and the hip. The latter would be primarily the hip flexor muscles, namely the Iliacus and the Psoas major, not the Rectus Abdominis.
Though the arcuate seat could place the user's pelvis in posterior rotation, it is the pelvis not the entire trunk that should be in constant slight flexion. The purpose of an abdominal exercise device is to cause the movement of trunk flexion. If, as here, the trunk is completely flexed before the exercise begins, there can be no flexion under load, because there is little if any flexion. The only realistic flexion could come from the hip, thus actuating the hip flexors, not the abdominal muscles. Therefore the disclosure would enable a device that is only marginally functional in terms of an abdominal exerciser and no suggestion to a combination with a device to provide aerobic exercise is made by the reference.
A unique device is disclosed by Mulenburg et al in U.S. Pat. No. 5,616,104 which includes a bike pedaling exercise apparatus. The disclosure includes the user being in a recumbent position but does not suggest to be used in any form of abdominal exercise. The device is intended to be used as a human centrifuge, the pedaling action causing the user to spin about an axis near the head of the user. The acceleration forces would be useful to counteract the effects of microgravity on persons exposed to an environment such as on prolonged space flights. As such, the addition of abdominal flexion would be of no value because the resistance to the user's muscles in this case is created by the effect of gravity on the body of the user. In a microgravity environment this is of little value.
A device is disclosed by Beistegui Chirapozu in U.S. Pat. No. 4,479,646 that incorporates a trunk vibration mechanism. The vibration mechanism is intended to provide a massage to the user during the exercise. The action of the vibrating mechanism is enabled as a result of the pedaling action of the exercise bike. It is unlikely that any benefit of massage is realized during exercise because the action of massaging a muscle enables it to relax while exercising a muscle causes it to contract. In any case, the vibrating mechanism that contacts the user's abdomen and lower back are adjustable to rigidly secure into place. Therefore the disclosed device does not suggest there be any form of abdominal flexion or other abdominal exercise be realized from the device.
A combination exercise bike is disclosed by Buchmann in U.S. Pat. No. 4,140,312 in that the pedal component can be adjusted into a variety of positions relative to the user. The user can sit in a variety of positions and actuate the pedals with the user's leg muscles. The device can also be oriented such that the user can actuate the pedals with the user's hands, thus exercising the muscles of the upper body. The combination does, in no way, disclose nor suggest functioning as an abdominal exercise device. There is a position that suggests two items (13 and 14 in
The disclosure of semi-recumbant exercise bikes is disclosed in U.S. Pat. No. D362,699 and U.S. Pat. No. 5,031,900 by Heaton et al, and Leask respectively. It is clear that both disclosures are relative to exercise bikes alone and not suggested to include any form of abdominal exercise device therewith.
SUMMARY OF THE INVENTIONThe object of the disclosed invention is to provide a means of aerobic conditioning and abdominal muscle strengthening and upper body muscle body strengthening in one compact machine. Abdominal exercisers are commonly marketed as devices that reduce the user's body fat in the abdominal area. To adequately remove body fat an aerobic exercise is desirable, not just abdominal exercise. An aerobic exercise that uses large muscle groups, such as in the legs, is optimal. The disclosed invention uses a pedaling mechanism similar to that of a stationary exercise bike. The user is placed in a reclined position that is more comfortable, thus further facilitating the use of the invention. The device is further comprised of an abdominal exercise machine that provides a translating center of rotation to follow the actuation of the user's spine at it undergoes trunk flexion. This is done to provide for axial alignment of the machine to the user, thus providing continuous comfortable positioning of the user on the machine during use. When not in use, the device folds up for compact storage.
As technology becomes more advanced, we as a society become less physically active. As a result disease becomes more apparent as well as diminishing the quality of life on an every day level, in that daily activities become difficult due to the atrophy of the human body. To counteract this process physical activity must be a part of our lifestyles. For many, the availability of gyms and health clubs are not a viable option and so fitness equipment that is suitable for home use is the answer.
The accumulation of body fat has long been associated with disease (Manson, et al, 1991; Manson, et al, 1992 and Helmrich, et al). The benefits of exercise alone or in combination with a reduction in body fat is apparent in combating or preventing diseases (Wood, et al; Hyers, et al; Paffenbarger, et al; Helmrich, et al; Manson, et al, 1991; and Manson, et al, 1992). Abdominal products have filtered into the fitness market generating a notion of exercising the midsection would result in reducing the user's body fat in that area. This concept of “spot reduction” has no validity in the scientific community, but never the less “couch potatoes” open their wallets in the hope of creating a lean, ripped midsection with the investment of a few minutes a day.
Strengthening and developing the abdominal muscles does though have value to the user for a number of reasons. When the body fat is absent, a Herculean midsection is only possible if the abdominal muscles are developed. Additionally, the abdominal muscles help support the lumbar spine, a common sight of back pain. Incapacitating back pain will effect between 70 and 90% of Americans at some point in their lives (Margolis et al; 1997) at a cost of $100 billion annually (Margolis et al; 1998). Exercise has been shown to reduce the incidence of back pain (Bravo, et al; 1996). An optimal product would include abdominal exercise as well as cardiovascular conditioning, thus furthering the caloric expenditure of the exercise session, thereby reducing the body fat of the user.
Referring to the drawings,
The invention 26 is shown in
A set of pivoting links 34 connect the upper frame, via the handle 30 to the pelvis support by way of the pivot plate 36. A pedal mechanism 38 is shown here to be pivotally attached to a seat extension frame 40. The pivotal attachment allows for the adjustment of the pedal position relative to the user. This is done to accommodate various body statures of individual users. The seat extension frame 40 is pivotally attached to the pelvis support 32 at pivot shaft 42 to provide a means of folding the invention 26 when it is not in use, thus enabling more convenient storage. This feature is shown in greater detail in
Another common use of the invention is shown in
A novel use of the device which utilizes the pivoting links 34 in shown in
Similar results could be achieved through use of a rolling device such as an annular rail which would be fixed to the seat back 28 on the upper frame by use of the handle 30 with the annular rail being received in a track which would be secured to the pelvis support 32. Though such a device would function well, the bulky nature of such a design and the necessity of controlling the movement of the annular rail in the track would provide additional complications that the disclosed linkage mechanism does not have.
Also shown in
A preferred embodiment of the pedal mechanism 38 is shown in greater detail in
This drive mechanism is not unusual from many exercise bikes and it is not considered necessary to the novelty of the disclosed invention. The use of chains and sprockets to drive a flywheel, and even the existence of the flywheel is desirable, but not critical to the invention. The chain 88 can be replaced with a belt and the flywheel with an electromagnetic resistance device such as an eddy current brake or an alternator. A second reduction in the transmission of rotary power can also be made if higher rotational velocity is desired by the resistance device. The given disclosure is considered to be the most efficient method as per the marketability of the device as dictated by price and function.
Another novelty to the disclosed invention is depicted in
Top and side views of exercise apparatus constructed in accordance the invention are shown in
In another embodiment of the invention, hooks 120, 121, 122, 123 (
In one embodiment of the invention, the supplemental exercise device comprises an elastic strap(s). One end of an elongate elastic strap is attached to a hook 120. The other end of the elastic strap is secured to a handle. A user grasps the handle, pulls the handle away from hook 120 to stretch and elongate the elastic strap, and, while maintaining a grasp on the handle, then reduces and somewhat releases the force pulling the handle away from hook 120 such that the elastic strap can resiliently contract and shorten and such that the strap “pulls” or moves the handle back toward hook 120. This “pull and release” scenario is repeated as many times as desired. The elastic strap (or any other supplement device) can, if desired be utilized at the same time an individual is performing the exercises illustrated in
Attachment means other than hooks 120 to 123 can be utilized. One other attachment means is a nut and bolt. Another attachment means comprises cord that is used to tie a portion of an elastic strap or other supplemental exercise device to the invention 26.
What is disclosed are considered to be preferred embodiments. Variations to the disclosed invention are infinite without changing the function and unique combination of the exercise bike and abdominal exercise device.
Claims
1. An abdominal exercise device which receives a user in a substantially supine position, the device comprising: an upper frame adapted for support of the upper torso of the user; a lower frame adapted to support a portion of the lower torso of the user; an first link with a head end pivotally connected to said upper frame and a foot end pivotally connected to said lower frame; and a second link with a head end pivotally connected to said upper frame above said head end of said first link and a foot end pivotally connected to said lower frame below said foot end of said first link, whereby movement of said upper frame toward said lower frame as guided by said first link and said second link results in a translating rotation of said upper frame.
Type: Application
Filed: Jan 27, 2012
Publication Date: Aug 1, 2013
Inventor: Lawrence S. Kaye (Chatsworth, CA)
Application Number: 13/385,012