Apparatuses and Systems of Fermentation
A fermentation method and system which includes providing juice to be fermented into a container. The juice having a cap that is a collection of solid components of grapes. The cap has a permeable consistency and floats in the juice. The method includes moving a portion of the juice from below the cap upward into contact with the cap.
The invention pertains to methods, apparatuses and systems of fermentation. The invention further pertains to methods, apparatuses and systems of fermenting juices.
BACKGROUND OF THE INVENTIONFermentation is a process defined as a chemical breakdown of a substance by bacteria, yeasts, or other micro-organisms. In the food industry, a simple definition of fermentation is the conversion of sugar to ethanol by using yeast. Ethanol is a form of alcohol, and is the alcohol in alcoholic beverages. Exemplary food industry products formed by fermentation include wine (converting juice into wine), beer (converting grains into beer), bread (converting carbohydrates into carbon dioxide to leaven the bread), and numerous other food products for the food industry.
It should be understood that all fermentation processes produce thermal energy during the chemical breakdown of the substance, whether by using bacteria, yeasts, or other micro-organisms. Accordingly, fermentation is a heat source process wherein the chemical breakdown of the substance releases heat. However, fermentation occurs only within a specific range of temperatures and chemical conditions. Consequently, for the fermentation process to begin and continue, the temperature of the material to be fermented must be in a specific range of temperatures for the fermentation process to progress. If the temperature of the material to be fermented changes to a temperature value outside the specific temperature range, the fermentation process chemically changes, and ultimately the fermentation ceases, both of which are routinely detrimental to the final product. Moreover, the desired characteristics of the product being produced by the fermentation process are optimized if the process is maintained within a specific temperature range. Therefore, controlling and maintaining the temperature of the material during the process is important to continue the process and optimize the characteristics of the final product being produced.
Moreover, gases develop during the fermentation process, and a majority of the gases are detrimental or toxic to the fermentation process. Accordingly, controlling the concentration of gases during the fermentation process, for example carbon dioxide, is important to optimize the characteristics of the final product being produced.
Additionally, an exemplary fermentation process is performed to produce wine. Generally stated, fruit juice is provided in a container or tank and yeast is added to the fruit juice to begin the fermentation process. The yeast reacts with the sugar in the fruit juice to produce wine, carbon dioxide (CO2) gas and thermal energy as heat. The most common fruit used to produce wine is grapes. Some varieties of wine rely on a process of having solid components or portions of the grapes (skins, seeds, pulp and stems) soaking in the grape juice during fermentation to provide the character and quality of the finished wine product. That is, for these particular varieties of wine, the solid components create the final wine product, and establish the quality thereof, through the extraction and release of substances (chemicals or chemistries) from the solid components (particularly the skins) into the grape juice. The solid components of the grapes collect together during the fermentation process which can be referred to as a cap. The cap can include skins, seeds, pulp and stems. However, the stems are routinely removed before the fermentation process begins.
To optimize the wine varieties which rely on the cap during the fermentation process, an ideal goal is to continually move the volume of grape juice to be in contact with a maximum surface area of the cap during fermentation. However, the cap forms a compact collection of the solid components or material within the grape juice which generally floats in the grape juice during fermentation. The compactness of the cap becomes impenetrable during the fermentation. Accordingly, optimizing the quality of the final wine product is difficult. Moreover, a portion of the cap is routinely extending elevationally above an upper surface of the grape juice during floatation, and therefore, that portion of the cap does not contact the grape juice to release its beneficial chemistry into the juice. Moreover, the portion of the cap elevationally above the juice will tend to dry out which can release a different chemistry into the juice that is detrimental to the final product being produced. These problems impede the goal of maximizing a volume of the cap coming in contact with a maximum volume of grape juice which optimizes release of the beneficial chemistry into the juice during fermentation.
The wine industry attempts to resolve these problems by performing several different methods. One method includes various forms of “plunging” or “punching down” actions by individuals wherein the plunging or punching down of the cap moves the cap below the upper surface of the grape juice. That is, the goal is to submerge an entirety of the cap within the grape juice. Another method includes various forms of “spraying over” or “pumping over” actions wherein the grape juice is distributed or sprayed over the cap during fermentation. The ineffectiveness of these alleged corrective methods are disclosed in U.S. Pat. No. 6,125,736 to Marin. For example, the plunging down method promotes disintegration of the cap within the grape juice which “generates an undesired quantity of dregs” being formed in the grape juice (Marin at col. 1, line 47 to col. 2, line 19). “Dregs may give rise to undesirable tastes and require further operations for subsequent cleaning of the wine.” (Marin at col. 2, lines 19-22). Furthermore, the plunging down or punch down method is manually performed which makes the method labor intensive, expensive, inexact and additionally, undesirably exposes the surface of the grape juice to oxygen.
Regarding the “pumping over” method, such relies on gravity to move the grape juice through the cap. That is, the force or weight of a stream of juice is relied upon to force the juice through the compact cap. Gravity is not sufficient to move the juice through a substantially portion of the cap due to the compactness of the cap, and therefore, the penetration is minimal. Only a limited number of paths develop through the cap to allow the grape juice to pass or flow. Moreover, the fermentation process produces carbon dioxide that bubbles up from below the cap to further impede the juice moving to pass through the cap from the top (see, for example, Marin at col. 2, lines 26-32). Consequently, the grape juice simply flows through the same few paths of the cap which developed during a previous pump over action, and therefore, the same volume of the cap is being contacted by the juice. Accordingly, this portion of the cap has already released their beneficial chemistries into the grape juice. That is, subsequently spraying or pumping over the cap is providing a minimal benefit. Additionally, other portions of the cap which are still rich in the beneficial chemistries do not come in contact with the grape juice to release their beneficial chemistries.
Some alleged corrective methods include a combination of the “pumping over” and “punching down.” However, this simply means that a combination of the problems discussed above now exist during the fermentation. Accordingly, the alleged corrective methods of “pumping over” and “punching down” are ineffective for optimizing cap contact with the juice during fermentation, and therefore, the quality of the wine greatly suffers.
Moreover, as suggested previously, these alleged resolutions are “labor intensive” requiring extensive man hours. Accordingly, these methods are expensive, and more problematic, inexact. That is, being labor intensive, there is no systematic monitoring and controlling of the fermentation process. The industry does not understand how quickly the fermentation process can get out of control and how drastically the process can be removed from an optimal process. Accordingly, a system or method to quickly address and resolve problems that develop during the fermentation process does not exist.
Still further, the methods that rely on pumping over and plunging actions do not address the fact that the actions can crush or crack open solid components of the cap which can release detrimental chemistries into the juice. For example, the pumps used in these methods routinely receive solid components of the grapes such as seeds that cause the pumps to malfunction and release the detrimental chemistries into the juice.
Accordingly, there is a need to provide fermentation systems that have the capability to monitor and quickly address problems that develop during the fermentation process. For example, monitoring and quick control and adjustment of temperature of the material being fermented is needed. Moreover, there is a need to provide and develop the capability to control and adjust the concentration of gases produced during the fermentation process. Additionally, there is a need to provide and develop the capability to optimize the grape juice contact with the cap during the fermentation process. Furthermore, there is a need to automate the fermentation process thereby doing away with the expense and inexactness of using labor intensive methods during the fermentation process.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
One aspect of the invention includes a fermentation method of providing a container having grape juice to be fermented. The grape juice comprises a cap. The cap comprises a collection of solid components of grapes and has a permeable consistency. The cap floats in the grape juice. The method further includes moving a portion of the grape juice from below the cap upward into contact with the cap.
Another aspect of the invention includes a fermentation method of providing a container having grape juice to be fermented. The grape juice comprises a cap. The cap comprises a collection of grape components having a permeable consistency and floating in the grape juice. The method further includes determining a temperature of the cap. If the temperature of the cap passes a threshold value, adjusting the temperature of the cap.
Still another aspect of the invention includes a fermentation system. The system comprises a container defining a volume to receive material to be fermented. A pump is in fluid communication with a fluid region inside the container above the material and configured to establish a vacuum above the material which produces a fluid pressure differential throughout the container.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSThis disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote” the progress of science and useful arts” (Article 1, Section 8).
The following various embodiments of the invention are directed to discussions and descriptions of fermentation methods and systems directed to fermenting fluids. However, it should be understood that various embodiments of the invention are applicable to fermenting substances or materials other than fluids.
An exemplary one of the various embodiments of the fermentation system 800 includes a medium 815 provided on or over sidewall 806 of vat 802. An exemplary medium 815 comprises a vibrational medium and/or a cooling and heating medium, and any combination thereof. An exemplary vibrational medium comprises a wave forming device, for example an ultrasonic transducers, for producing and transmitting wave energy through sidewall 806 and into material in vat 802. An exemplary use of the wave energy is to agitate, mix, stir and/or loosen material in vat 802. An exemplary cooling and heating medium comprises a structure portion of a heating and cooling apparatus described more thoroughly subsequently.
An exemplary one of the various embodiments of the fermentation system 800 includes an insulating and/or a dampening material 817 provided on or over sidewall 806 of vat 802. Insulating and/or a dampening material 817 communicates with a processor 860 via pathway 430. An exemplary dampening material 817 includes foam materials, bulk materials, rubber materials, clay materials, mastic materials and/or metal materials, or any combination of the various materials. An exemplary purpose for dampening material 817 is to limit or impede wave energy and noise escaping to the environment which are created by an exemplary vibrational medium 815.
At least one access opening 809 is formed in sidewall 806 to allow access to the inside volume of vat 802 and is plugged during use of vat 802. The horizontal cross-sectional configuration of vat 802 can have any configuration imaginable, for example, a square, a rectangle, a hexagon, an octagon, an oval, a trapezoid, a parallelogram, and any other configuration devoid of symmetry. In one embodiment of the invention, the horizontal cross-sectional configuration of vat 802 includes a circle wherein sidewall 806 is configured as a cylinder.
In one embodiment of the invention, the material to be fermented is fruit juice, for example grape juice 810, which is to be fermented into wine. In another of various embodiments of the invention, the grape juice 810 will include a cap 812 during the fermentation process. The cap 812 comprises at least one of grape skins, grape seeds, grape pulp, grape stems, oak wood chips and rice hulls, and any combination of these materials or ingredients. Moreover, any combination for cap 812 includes any percentage of one of grape skins, grape seeds, grape pulp, grape stems, oak wood chips and rice hulls relative the entire combination, or relative any percentage of one of the other of grape skins, grape seeds, grape pulp, grape stems, oak wood chips and rice hulls. In one of various embodiments of the invention, cap 812 will substantially include grape skins and grape seeds. It should be understood that the consistency of cap 812 varies between substantially lacking a cohesiveness (that is, not packed together substantially) to being so densely compacted that cap 812 comprises only minimal permeability.
It should be further understood, in conventional fermentations systems, a cap will float in the grape juice with an exposed portion of cap extending elevationally above an upper surface of the grape juice. The exposed portion of the cap above juice is not contacting the grape juice, and therefore, no benefit to the fermenting process. Moreover, the exposed portions of cap can diminish the permeability of the cap and conditions in the cap become stale.
However, still referring to
An exemplary housing assembly 816 according to one of various embodiments of the invention comprises a sidewall 818 that extends downward from upper wall 820 to terminate and form or define a peripheral rim 822. The horizontal cross-sectional configuration of housing assembly 816 can be any configuration imaginable and is configured to fit inside vat 802 and over cap 812. That is, housing assembly 816 is configured for sliding engagement along a vertical axis within the volume of vat 802 while remaining over at least a portion of cap 812. Moreover, the vertical and horizontal cross-sectional configurations of housing assembly 816 can be any configuration imaginable. An exemplary vertical cross-sectional configuration of a trapezoid is illustrated. The vertical movement of housing assembly 816 means it can move between being proximate upper rim 808, elavationally above upper rim 808, and elavationally below upper rim 808 and proximate bottom wall 804. In one embodiment of the invention, housing assembly 816 comprises a horizontal cross-sectional dimension that is approximately two inches less than a horizontal cross-sectional dimension of vat 802.
An exemplary housing assembly 816 has a first aperture 828 and a second aperture 824, both formed in upper wall 820. First aperture 828 will receive tube 826 discussed below. Second aperture 824 will receive gases 422 and juice 810 moving in direction 404, both moving through second aperture 824 into first conduit 846. In an exemplary embodiment of housing assembly 816 according to the invention, housing assembly 816 comprises a single composition of material such as plastic and/or metal, and any composition of various materials. Such exemplary various materials include polymers, plastics, fiberglass, metals, stainless steel and polyethylene.
Still referring to
Exemplary first and second permeable membranes 432 and 830 comprise any composition of material such as plastic and/or metal, and any composition of various materials. Exemplary first and second permeable membranes 432 and 830 can comprise the same composition, such as metal. Exemplary various materials for exemplary first and second permeable membranes 432 and 830 include polymers, plastics, fiberglass, metals, papers, stainless steel and polyethylene. Exemplary first and second permeable membranes 432 and 830 can comprise different compositions relative each other, for example, first permeable membranes 432 comprises metal and second permeable membranes 830 comprises plastic, or any of various combinations thereof.
Exemplary first and second permeable membranes 432 and 830 each have openings configured and sized to prevent penetration of solid components of cap 812 (for example, grape skins, grape seeds, grape pulp and/or grape stems). In one of various exemplary embodiments according to the invention, each exemplary first and second permeable membranes 432 and 830 has the same dimensioned or sized holes or openings and the same configuration of holes relative the other. In one of various exemplary embodiments according to the invention, exemplary first and second permeable membranes 432 and 830 have differently dimensioned holes or openings relative the other, and alternatively, the same dimensioned holes or openings relative each other. In one of various exemplary embodiments according to the invention, exemplary first and second permeable membranes 432 and 830 have differently configured holes or openings relative each other, and alternatively, the same configuration of holes or openings relative each other. In one of various exemplary embodiments according to the invention, exemplary first and second permeable membranes 432 and 830 have differently dimensioned holes or openings relative the other and the same configuration of holes or openings relative each other. Alternatively, exemplary first and second permeable membranes 432 and 830 have the same dimensioned holes or openings relative the other and the differently configured holes or openings relative each other, or any of various combinations thereof.
In one of various exemplary embodiments according to the invention, exemplary first permeable membrane 432 has smaller dimensioned openings than the dimensions of the openings for second permeable membrane 830. Exemplary diameter dimensions for openings of first permeable membrane 432 range from about 0.01 inch to about 0.5 inch with an exemplary diameter dimension being about 0.06 inch. Exemplary diameter dimensions for openings of second permeable membrane 830 range from about 0.09 inch to about 1 inch with an exemplary diameter dimension being about 0.2 inch. An exemplary first permeable membrane 432 can be referred to as a filter screen. An exemplary second permeable membrane 830 can be referred to as a spacer screen and additionally functions as a spacer for filter screen 432 relative upper wall 820 of housing assembly 816.
An exemplary spacer screen 830 has horizontal cross-sectional dimensions that equal the horizontal cross-sectional dimensions of housing assembly 816. Alternatively, an exemplary spacer screen 830 has horizontal cross-sectional dimensions that are less than the horizontal cross-sectional dimensions of housing assembly 816. Alternatively, an exemplary spacer screen 830 has horizontal cross-sectional dimensions that are greater than the horizontal cross-sectional dimensions of housing assembly 816. An exemplary spacer screen 830 has horizontal cross-sectional dimensions that are about 4.0 inches less than the horizontal cross-sectional dimensions of housing assembly 816. In this exemplary embodiment, the spacer screen 830 can be arranged in any manner relative the horizontal cross-sectional dimension of housing assembly 816. For example, spacer screen 830 can be centered leaving about two inches spacing between opposite ends of spacer screen 830 and sidewall 818 of housing assembly 816.
An exemplary filter screen 432 has horizontal cross-sectional dimensions that equal the horizontal cross-sectional dimensions of housing assembly 816. Alternatively, an exemplary filter screen 432 has horizontal cross-sectional dimensions that are less than the horizontal cross-sectional dimensions of housing assembly 816. Alternatively, an exemplary filter screen 432 has horizontal cross-sectional dimensions that are greater than the horizontal cross-sectional dimensions of housing assembly 816. An exemplary filter screen 432 has horizontal cross-sectional dimensions that are greater than the horizontal cross-sectional dimensions of housing assembly 816 wherein opposite ends are curved along sidewall 818 of housing assembly 816. In one exemplary embodiment of the invention, opposite ends of filter screen 432 are curved downwardly along sidewall 818 of housing assembly 816. Alternatively, opposite ends of filter screen 432 can be curved upwardly along sidewall 818 of housing assembly 816, and further alternatively, both opposite ends can be curved in both directions, that is, downwardly and upwardly along sidewall 818 of housing assembly 816. Still further, one opposite end of filter screen 432 can be curved upwardly along sidewall 818 and the other opposite end of filter screen 432 can be curved downwardly along sidewall 818.
Exemplary filter and spacer screens 432 and 830 are positioned between cap 812 and upper wall 820 of housing assembly 816. In one embodiment of the invention, filter and spacer screens 432 and 830 are secured to housing assembly 816. For an alternative embodiment, filter and spacer screens 432 and 830 are not secured to any structure. Still alternatively, one of filter and spacer screens 432 and 830 is secured to housing assembly 816 and the other of filter and spacer screens 432 and 830 is not secured to housing assembly 816. Exemplary housing assembly 816 has a flexible seal, for example, similar to flexible seal 884 of
Still referring to
According to one of various embodiments, reservoir 832 has an end secured to the upper wall 820 of housing assembly 816. Reservoir 832 has an enclosed end opposite housing assembly 816 and is illustrated positioned elevationally above upper rim 808 of vat 802. An exemplary embodiment of reservoir 832 has the enclosed end forming an orifice 836 to allow gases 422 to escape reservoir 832, and such orifice 836 can be fitted with a removable plug to fluidly seal the enclosed end of reservoir 832. For one of various embodiments of the invention, reservoir 832 is configured to slide or move vertically with housing assembly 816 and tube 826 described subsequently. It should be understood that reservoir 832 slides because the floating cap 812 rises and falls with the rise and fall of upper surface 814 of juice 810 in vat 802 due to the fermentation process. In another embodiment of the invention, portions of the volume of vat 802 which are not occupied by fluid 810 is provided with argon to prevent environmental gases such as air reacting with juice 810.
Still referring to
Still referring to
Still referring to
Still referring to
It should be further understood that during the fermentation process, probes 854 and 856 extend into juice 810, and probe 858 extends into cap 812. Additionally, it should be understood that each probe includes a pathway in communication with pump 848. information from each probe is provided to pump 848 and used to regulate and modify the pumping rate of pump 848, including discontinuing the pumping action of pump 848. The information and regulation of the pumping rate of pump 848 is used to facilitate the fermentation process for developing a high-quality final product, such as quality wine. Still further, it should be understood that cap 812 can have a thickness (defined along the vertical axis) ranging from less than an inch to several feet in thickness, for example, greater than 6 feet. Moreover, it should be understood that in various exemplary embodiments of housing assembly 816, housing assembly 816 does not fully enclose cap 812. That is, in various other embodiments of the invention, housing assembly 816 covers or encloses only a portion of the total volume of cap 812, and that portion includes any percentage of the total volume of cap 812. Alternatively, it should be understood that for other various exemplary embodiments, housing assembly 816 encloses the top and sides of cap 812.
Still referring to
In other of various embodiments of the invention, an exemplary heating and cooling apparatus 424 comprises a fluid jacket to be positioned over any surface area of the vat 802. Exemplary fluid jackets include air and liquid jackets with an exemplary fluid jacket being a glycol jacket. An exemplary embodiment of the jackets can cover any percentage of area of sidewall 806 for vat 802. Moreover, additional exemplary embodiments of jackets can be implemented that do not cover an entirety of sidewall 806 wherein the jacket is provided over any portion of sidewall 806 for vat 802, for example, covering the lower 30% of area for sidewall 806 of vat 802. In still other of various embodiments of the invention, an exemplary heating and cooling apparatus 424 is discrete from vat 802 and located any desired distance from vat 802. For this exemplary embodiment, portions of juice 810 are removed from vat 802 to be placed in fluid communication with heating and cooling apparatus 424. The removed portions of juice 810 are cooled, or heated, and after the removed portions of juice 810 reach a selected temperature, the removed portions of juice 810 are returned to vat 802 at selectively strategic levels.
For one of various embodiments of fermentation system 800, processor 860 comprises a digital signal processor and is coupled to all electrical circuitry, communication pathways, devices, probes, sensor, apparatuses and components of fermentation system 800. It should be understood that devices include electrical devices and mechanical devices, including pneumatic devices and hydraulic devices, and any combination of the different devices. Moreover, the electrical circuitry, communication pathways, devices, probes, sensor, apparatuses and components can be remotely interrogated through various communication protocols, for example, TCP-IP data transfer, RS-485 and USB. Additionally, the extracted probe data and information can be further post-processed by a standard desktop or laptop computer using custom software.
Referring to
Fermentation system 900 comprises a tank 901 to hold a material 903 to be fermented, for example, grape juice 903. In one embodiment, tank 901 comprises a sidewall 949 that terminates to form an open top 909. One exemplary embodiment of the invention includes the sidewall 949 having a sensor 913 that detects the location and upper surfaces of selected components within tank 901, for example, an upper surface 904 of juice 903. An exemplary sensor 913 is electrically coupled to processor 948 by, for example, pathway 936. An exemplary sidewall 949 further includes a man-way access 914 and a clean-out access 915. The horizontal cross-sectional configuration of tank 901 can have any configuration imaginable, for example, a square, a rectangle, a hexagon, an octagon, an oval, a trapezoid, a parallelogram, and any other configuration devoid of symmetry. In one embodiment of the invention, the horizontal cross-sectional configuration of tank 901 includes a circle wherein sidewall 806 is configured as a cylinder.
Still referring to
Still referring to
Still referring to
Still referring to
Moreover, reservoir 926 is in fluid communication with pump 940 via conduit 929. As reservoir 926 is positioned elevationally higher and higher above juice 903 in tank 901, the purpose for pump 940 is diminished. Reservoir 926 can be positioned high enough to allow gravity to force fluid 944 from reservoir 926 into tank 901 without pump 940. Pump 940 is in fluid communication with heating and cooling apparatus 931 via conduit 938. Heating and cooling apparatus 931 has an inlet 932 to receive heat exchanging fluid 474, for example glycol, and has an outlet 933 to allow heat exchanging fluid 474 to exit heating and cooling apparatus 931. An exemplary inlet 932 includes a flow control device 943. Heating and cooling apparatus 931 is in fluid communication with tank 901 via conduit 987. One exemplary heating and cooling apparatus 931 is in electrical communication with processor 948 via pathway 937. Pump 940 is in electrical communication with processor 948 via pathway 942 and with sensor device 925 of proportioning system 923 via pathway 941. It should be understood that pathways throughout this document can have any combination of a plurality of pathways, including a single pathway from processor 948 with a plurality of extensions of pathways connected with the respective devices and components.
Still referring to
Still referring to
Referring to
An exemplary fermentation system 960 comprises a container 961 to hold a material 970 to be fermented, for example, grape juice 970. In one exemplary embodiment, container 961 comprises a first portion 966 of a sidewall and a second portion 967 of the sidewall that extends downward from the first portion 966 of container 961. The first portion 966 of container 961 comprises a cylinder having a circular, horizontal cross-section. The first portion 966 of container 961 extends upward from second portion 967 and terminates to form an open top having a peripheral rim 965. The second portion 967 of container 961 comprises a three-dimensional hollow cone with the smallest portion of the cone forming the bottommost section of container 961. The bottommost section of container 961 comprises a valve 968 providing fluid communication between container 961 and an inlet conduit 969.
Still referring to
Still referring to
Still referring to
In an exemplary embodiment of fermentation system 960, a conduit 983 provides fluid communication between reservoir 981 and the container 961 through second portion 967 of the sidewall. A pump 984 is in fluid communication with conduit 983 and can be placed anywhere in conduit 983, including inside reservoir 981. Conduit 983 terminates inside container 961 to form a funnel 864. Pump 984 provides the capability to pump juice 982 from reservoir 981 to container 961 and force juice 970 up through cap 866 and through permeable structure 962.
Referring to
Referring to
Referring to
Still referring to
Before we discuss the inventive methods of using the inventive fermentation systems described above, additional problems with conventional methods and systems must be discussed which are not known in the industry. Conventional wisdom in the industry is that during fermentation, generally only the temperature of grape juice below the cap needs to be monitored. Accordingly, routinely a single sensor or probe is placed below the cap for monitoring of temperature of the juice. The industry assumes that temperatures throughout the juice or liquid volume are uniform or at least within an acceptable temperature range. Accordingly, as long as the single probe is reading a temperature within an acceptable range, the industry assumes that the processing of the juice is progressing as planned.
However, the industry is completely unaware that a plurality of regions or strata in the juice develop their own temperatures independent of what is occurring at the one strata or region below the cap. Moreover, the industry is unaware that temperature and nourishment of the cap (nourishment with juice) for fermentation are the more important factors to control to facilitate the development of a quality final product. In fact, the juice region below the cap can be registering an acceptable temperature while the cap is at a temperature completely outside the range for fermentation. That is, the fermentation at the cap can cease while the single probe indicates fermentation is progressing as planned. The cap is where all the beneficial components are located and need to be transferred into the juice to form the final product with quality. However, if the fermentation in the cap ceases, it is not a simple matter of restarting the fermentation process as the yeast can start to die wherein a different chemistry begins which is detrimental to the final product. Accordingly, the temperature at the cap needs to be stringently monitored and controlled to facilitate quality.
Furthermore, the industry is completely unaware of how quickly and how drastic the temperature in the cap can change. The temperature of the juice in the cap (and the cap) can spike from a temperature range of about 1° F. to about 20° F. outside the fermentation temperature, and this can occur in at time span of about 1.5 hours to about 3 hours (and quicker if environmental factors are more drastically different from the desired temperature of the juice). In the meantime, the single probe measuring temperatures of the region of the juice below the cap is registering an acceptable temperature for fermentation, and the industry thinks the fermentation is progressing as desired.
Parameter control of the cap means the invention is capable of manipulating the temperature, nourishment and exhaustment of gases from the cap which is most conducive to extracting the chemical properties and components from the solid components in the cap. Furthermore, the rate and quantity of extracting beneficial components from the cap into the juice is selectively controlled by controlling the flow rate, quantity, and temperature of the juice being moved into the cap. Exemplary beneficial components include sugar, enzymes, alcohol, phenols, polyphenols or polymeric phenols, acids and tannins. Moreover, pumping juice from bottom of the cap to move up through the cap facilitates the removal of gas produced in the cap during fermentation. In contradiction, conventional methods of spraying juice over the top of the cap or pumping down from the top of the cap simply drives the gases back down into the juice.
Exemplary embodiments of inventive methods for using the various fermentation systems are described according to various embodiments of the invention. For this discussion, the exemplary fermentation system 960 previously described in
Referring to
It should be understood that juice can be provided into container 961 at a pre-selected range of temperatures, for example, from about 40° F. to about 110° F. It should be understood that any number of probes, less than or greater than three probes, can be provided in exemplary fermentation systems. It should be further understood that the probes can be configured to monitor and register any type of parameter of juice 970, for example, physical parameters such as temperature and chemical parameters such as concentration of tannins. Probes 974, 975 and 976 continually monitor the physical and chemical aspects of juice 970 and cap 866. The inventor has determined that fermentation most beneficially occurs in cap 866, and therefore, the more controlled the fermentation process within cap 866, the potential exists to optimize the final product. With the cap 866 being monitored by probe 974, any indication of the temperature of cap 866 moving out of a specific temperature range can be immediately addressed and adjusted. That is, the temperature of cap 866 can be adjusted if the temperature passes a threshold value, wherein an exemplary threshold value is pre-selected as a boundary temperature for optimizing the fermentation process (and therefore, the final product). Temperature adjustment and modification of juice 970 includes providing information from respective probes (for example, of the temperature passing the threshold value) to processor 977 which will coordinate activating pumps and heating and cooling apparatuses to adjust the temperature of any respective region of container 961.
Still referring to
Referring to
It should be understood that for exemplary fermentations systems 800 and 900 of
Referring to
In one exemplary method, processor 977 turns off valve 968 and activates pump 984 at substantially the same time. In another exemplary method, processor 977 staggers the timing of turning off valve 968 and activating pump 984. Accordingly, valve 968 can be turned off after starting pump 984, and alternatively, valve 968 can be turned off before starting pump 984. It should be understood that the pumping action of starting pump 984 creates a fluid pressure below the permeable structure 962 that is greater than the fluid pressure above the permeable structure 962. The fluid pressure differential develops an upward movement of the juice in container 961 through permeable structure 962 to reservoir 981. This movement of juice begins the cyclic movement of juice through fermentation system 960.
Referring to
Still referring to
Still referring to
Referring to
It should be understood that any selected parameter, of any selected region of juice in system 960, can be selectively controlled and adjusted by cycling juice through system. The fermentation process is further facilitated by automatically providing, and selectively combining, the selective activation of the heating and cooling apparatus, the selective addition of yeast nutrients and the selective extraction of detrimental components from the juice such as vinegar. It should be further understood that probes 974, 975 and 976 continually sense or detect the various parameters, including temperatures of juice, located at the respective positions of respective probes. The fermentation system 960 has the capability to repeatedly cycle the juice through system 960 for a selected length of time and for a selected number of cycles. It should be understood, since the temperature of any exemplary region of juice can be adjusted or modified, the temperature throughout the container 961 can be selected to be any combination of regions of juice having non-uniform temperatures. Moreover, at this stage of an exemplary method according to the invention, since juice 970 is substantially at an uniform temperature as selected, pump 984 is turned off and system 960 is ready to begin the fermentation process.
It should be understood that at this stage of the method for fermentations systems 800 and 900 of
Referring to
Referring to
Still referring to
Referring to
Referring to
At this stage of exemplary methods according to the invention for respective fermentation systems 800 and 900, gases escape respective vats or tanks through respective conduits, through respective pumps, and through respective reservoirs to the environment.
Referring to
Referring to
Still referring to
Referring to
Still referring to
Referring to
It should be understood that the respective probes of the exemplary fermentation systems will continually monitor respective temperatures of the differing regions of juice 970 within container 961. As the temperatures of regions of juice 970 reach threshold temperature values defined as unacceptable temperatures for optimizing the fermentation process, processor 977 will automatically coordinate activation of pump 984 and heating and cooling apparatus to automatically adjust and modify the temperatures to reach selected and/or acceptable temperature values. It should be understood that parameters other than temperatures of juice 970, such as chemical parameters, can prompt processor 977 to automatically coordinate activation of pump 984 and heating and cooling apparatus which will automatically adjust and modify the chemical parameters of the juice. Accordingly, the exemplary methods of using the exemplary fermentation systems described herein can be configured to be completely automated, and alternatively, configured with any one step to be implemented manually.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims
1-15. (canceled)
16. A fermentation system comprising:
- a container defining a volume to receive material to be fermented; and
- a pump in fluid communication with a fluid region inside the container above the material and configured to establish a vacuum above the material which produces a fluid pressure differential throughout the container.
17. The system of claim 16 further comprising a permeable membrane configured to remain over an upper surface of the material.
18. The system of claim 16 further comprising a reservoir in fluid communication with the pump.
19. The system of claim 16 further comprising a sensor extending into the volume of the container and configured to detect at least one of temperature, flow rate, gas concentration and chemistry composition.
20. The system of claim 16 further comprising:
- a permeable membrane configured to remain over an upper surface of the material; and
- a sensor extending through the permeable membrane and electrically coupled to the pump to provide information.
21. A fermentation apparatus comprising:
- a tank defining a volume to receive material to be fermented; and
- an housing assembly in the volume of the tank and configured to be positioned over the material to be fermented.
22. The apparatus of claim 21 wherein the housing assembly is configured to move along a vertical axis within the volume of the tank.
23. The apparatus of claim 21 wherein the housing assembly comprises:
- a first opening configured to allow fluid in the tank to move through the housing assembly; and
- a second opening configured to receive at least a portion of the fluid from the first opening.
24. The apparatus of claim 23 wherein the at least a portion of the fluid is a gasless liquid.
25. The apparatus of claim 23 further comprising a reservoir in fluid communication with the first and second openings.
26. The apparatus of claim 25 wherein the fluid is separated in to a gas and a liquid in the reservoir.
27. The apparatus of claim 21 further comprising:
- a reservoir having an inner volume and positioned over the housing assembly; and
- a tubular structure providing fluid communication between the inner volume of the reservoir and the volume of the tank.
28. The apparatus of claim 27 wherein the tubular structure comprises an adjustable length dimension.
29. The apparatus of claim 21 further comprising at least one permeable membrane in the housing assembly.
30. The apparatus of claim 29 wherein the at least one permeable membrane comprises a first permeable membrane adjacent a second permeable membrane.
31. The apparatus of claim 30 wherein the first permeable membrane comprises the same structure as the second permeable membrane.
32. The apparatus of claim 30 wherein the first permeable membrane comprises a different structure relative the structure of the second permeable membrane.
33. The apparatus of claim 21 further comprising at least one probe located inside the tank, the at least one probe comprising the capability to be incrementally adjusted in a plurality of different locations in the tank.
34. The apparatus of claim 21 wherein the housing assembly comprises an outer periphery, and further comprising a flexible seal secured to and surrounding the outer periphery of the housing assembly.
Type: Application
Filed: Mar 14, 2013
Publication Date: Aug 8, 2013
Inventor: David D. Rule (Weiser, ID)
Application Number: 13/829,837
International Classification: C12G 1/02 (20060101);