AUGER-DRIVEN ICEMAKER SYSTEM FOR REFRIGERATOR

A system for making ice comprises an auger-driven ice formation portion configured for mounting in a fresh food compartment of a refrigerator appliance, and at least one inlet duct positioned proximate to the auger-driven ice formation portion and configured for receiving and passing ambient air from a freezer compartment of the refrigerator appliance into the auger-driven ice formation portion.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

The subject matter disclosed herein relates to icemaker systems, and more particularly to nugget or auger style icemaker systems.

Nugget icemakers, also known as auger icemakers, have been used in commercial applications for many years. However, the requirements for a drain and the cost and complexity of adapting a refrigerator cooling system have prevented its implementation in refrigerator applications. A typical nugget icemaker is chilled by direct refrigerant cooling of a freezing cylinder. Although a refrigerator cooling system could conceivably be adapted to cool the icemaker using direct refrigerant cooling, there is considerable cost for tubing, valves and controls. There is also a significant increase in manufacturing complexity and labor to install the cooling system components.

BRIEF DESCRIPTION OF THE INVENTION

As described herein, the exemplary embodiments of the present invention overcome one or more disadvantages known in the art.

One embodiment relates to a system for making ice comprising an auger-driven ice formation portion configured for mounting in a fresh food compartment of a refrigerator appliance, and at least one inlet duct positioned proximate to the auger-driven ice formation portion and configured for receiving and passing ambient air from a freezer compartment of the refrigerator appliance into the auger-driven ice formation portion.

Another embodiment relates to a system for making ice comprising the following components. An ice formation chamber is coupled to a water supply and configured for mounting in a fresh food compartment of a refrigerator appliance. A motor-driven auger is moveably positioned in the ice formation chamber. At least one inlet duct is positioned proximate to the ice formation chamber and configured for receiving and passing ambient air from a freezer compartment of the refrigerator appliance into an area around the ice formation chamber. A fan is positioned proximate to the inlet duct and configured for drawing the ambient freezer air into the inlet duct. An auger heater is positioned in heat transfer contact with the motor-driven auger.

Yet another embodiment relates to a refrigerator appliance comprising a fresh food compartment, a freezer compartment, and an auger-driven icemaker system mounted in the fresh food compartment, wherein the icemaker system is configured to receive ambient air from the freezer compartment for use in ice formation. In one example, the auger-driven icemaker system is mounted on a wall separating the fresh food compartment from the freezer compartment. In another example, the auger-driven icemaker system is mounted on a door of the fresh food compartment.

Advantageously, such embodiments of the invention, which position the ice making apparatus in the fresh food compartment but utilize ambient air from the freezer compartment, avoid the considerable cost for tubing, valves and controls that would be required for a direct refrigerant solution. Such embodiments of the invention also avoid a significant increase in manufacturing complexity and labor to install the cooling system components.

These and other aspects and advantages of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. Moreover, the drawings are not necessarily drawn to scale and, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is a diagram of a refrigerator, in accordance with an embodiment of the invention;

FIG. 2 is a diagram of an icemaker system mounted on a wall of a fresh food compartment of a refrigerator, in accordance with an embodiment of the invention;

FIG. 3 is a diagram of a front view of the icemaker system of FIG. 2;

FIG. 4 is a diagram of a rear view of the icemaker system of FIG. 2;

FIG. 5 is a diagram of an auger portion and an extruder portion of the icemaker system of FIG. 2;

FIG. 6 shows a diagram of heat transfer fins installed on the icemaker system of FIG. 2;

FIG. 7 is a diagram of a perspective front view of the icemaker system of FIG. 2;

FIG. 8 is a diagram of a perspective rear view of the icemaker system of FIG. 2;

FIG. 9 is a diagram of a perspective rear view of an icemaker system mounted on a door of a refrigerator, in accordance with an embodiment of the invention;

FIG. 10 is a diagram of a perspective front view of an icemaker system mounted on a door of a refrigerator, in accordance with an embodiment of the invention;

FIG. 11 is a diagram of a perspective top view of an auger heater mounted on an icemaker system, in accordance with an embodiment of the invention; and

FIG. 12 is a diagram of a front view of an auger heater mounted on an icemaker system, in accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS OF THE INVENTION

One or more of the embodiments of the invention will be described below in the context of an icemaker system in a refrigerator appliance, such as a household refrigerator. However, it is to be understood that embodiments of the invention are not intended to be limited to icemaker systems in household refrigerators. Rather, embodiments of the invention may be applied to and deployed in any other suitable refrigerator environments in which it would be desirable to position the ice making apparatus in a fresh food compartment of the refrigerator appliance but utilize ambient air from a freezer compartment of the refrigerator appliance.

FIG. 1 is a diagram of a refrigerator, in accordance with an embodiment of the invention. More particularly, FIG. 1 illustrates an exemplary refrigerator 100 within which an icemaker system according to an embodiment of the invention may be deployed. As is typical, a refrigerator has a freezer compartment 102 and a fresh food compartment 104 (the compartments are accessible by opening the respective doors shown in the figure). The fresh food compartment typically maintains foods and products stored therein at temperatures at or below about 40 degrees Fahrenheit in order to preserve the items therein, and the freezer compartment typically maintains foods and products at temperatures below about 32 degrees Fahrenheit in order to freeze the items therein.

While the exemplary refrigerator 100 in FIG. 1 illustrates the freezer compartment 102 and the fresh food compartment 104 in a side-by-side configuration, it is to be understood that other configurations are known, such as top freezer (top mount) configurations where the freezer compartment 102 is situated on top of the fresh food compartment 104, and bottom freezer (bottom mount) configurations where the freezer compartment 102 is situated below the fresh food compartment 104. Also, viewing the refrigerator 100 from the front, the freezer compartment 102 may be located to the right of the fresh food compartment 104, as opposed to being located to the left as shown in FIG. 1.

It is to be appreciated that an icemaker system according to one or more embodiments of the invention is deployed in the fresh food compartment 104 of the refrigerator 100. However again, embodiments of the invention are not intended to be limited to deployment in a refrigerator such as the one depicted in FIG. 1.

FIG. 2 is a diagram of an icemaker system mounted in a fresh food compartment of a refrigerator, in accordance with an embodiment of the invention. More particularly, in this embodiment, icemaker 200 (depicted by dashed lines) is shown mounted in fresh food compartment 104 to an inside wall 202 that separates the freezer compartment 102 from the fresh food compartment 104.

It is to be noted that there are openings 204 and 206 formed through wall 202. Opening 206 is an air inlet opening which aligns with an inlet duct of the icemaker system 200, while opening 204 is an air outlet opening which aligns with an outlet duct of the icemaker system 200. As will be further explained below, the icemaker is cooled by cold ambient air drawn in from the freezer compartment 102 through opening 206, which is then returned to the freezer compartment 102 through opening 204. It is to be appreciated that, in alternative embodiments, there may be multiple air inlets, openings and ducts, as well as multiple air outlets, openings and ducts. It should be noted that the direction of airflow does not matter, i.e., the reverse direction would also work.

FIGS. 3 and 4 are respective diagrams of a front view and a rear view of the icemaker system 200 of FIG. 2. As explained above, icemaker system 200 resides in fresh food compartment 104 of refrigerator 100 but, during ice formation, utilizes cooling air drawn from the freezer compartment 102.

As shown in FIG. 3, icemaker system 200 includes an air inlet duct 302 and an air outlet duct 304. The system 200 also includes a freezing cylinder 306 and an auger 308 moveably positioned inside the freezing cylinder 306. A freezer air distribution compartment 310 is coupled to air inlet duct 302 and air outlet duct 304 and substantially surrounds the freezing cylinder 306. The system also includes a fan 312 positioned proximate to the air inlet duct 302 that draws the ambient freezer air into the inlet duct 302 from the freezer compartment 102. The fan is controlled by a controller (assumed to be an integral part of component 312 shown in the figure, although not required to be) whereby it is turned on during ice formation and off at other times. The fan 312 can also be cycled on and off during ice formation to maintain an appropriate ice formation temperature in the freezing cylinder 306. The controller may direct the on/off operation of the fan in response to a software program and/or feedback from one or more temperature sensors (not shown).

In addition, it is preferable to shut off airflow into the icemaker freezing chamber when no ice is being made. This could be accomplished by motorized air dampeners placed inside one or both of the inlet and outlet air ducts. These dampeners could be controlled by the same controller/software that controls the icemaker. The dampeners could also be passive flaps that open when the fan is actuated and close by gravity.

Icemaker system 200 also includes an ice extruder 314 positioned proximate to (directly above in this example) freezing cylinder 306 at an ice producing end (top in this example) of auger 308. The extruder has a plurality of openings 315 that pass there through. A sweep arm 316 is positioned proximate to (directly above in this example) ice extruder 314. Sweep arm 316 sweeps ice away from ice extruder 314 and into an ice chute 320 positioned proximate to the sweep arm. The ice chute receives the ice swept by the sweep arm and deposits the ice into an ice bin 322 where it is stored for subsequent use by the consumer.

The system 200 also includes an auger motor 318 which is positioned above auger 308 in this example. The auger motor has a shaft portion attached to a shaft portion of the auger. The auger motor rotates the shaft portions and thus the auger during ice formation, as will be further explained below.

As shown in FIG. 4, icemaker system 200 also includes a water reservoir 402 which supplies water to the freezing cylinder 306 via water supply line 404. A float valve 406 is positioned in the water reservoir to indicate that the water reservoir is full. A water supply line (not shown) external to the icemaker system supplies water to the water reservoir. The external water supply line is closed by the float valve when the water reservoir is full.

Note that while all the components shown in FIGS. 3 and 4 may be considered part of the icemaker system 200, components including freezing cylinder 306, auger 308, freezer air distribution compartment 310, and ice extruder 314 may be considered part of an ice formation portion of icemaker system 200.

Icemaker system 200 operates as follows. Water from water reservoir 402 is supplied by supply line 404 to freezing cylinder 306. Freezing cylinder 306 is one example of an ice formation chamber. The cylinder or chamber is flooded with water. The outer wall of the cylinder is cooled by the ambient freezer air filling the distribution compartment 310, which is drawn therein by fan 312, as explained above. The cooling of the outer wall of the freezing cylinder causes a thin layer of ice to form on the inner wall of the cylinder.

Motor 318 rotates auger 308. The threads of the auger scrape or shave ice off the inner wall of freezing cylinder 306 and push the ice up into ice extruder (die) 314 and through the plurality of openings 315. The ice pieces are compressed into small cylindrical rods (408 as shown in FIG. 4) as they pass through the extruder. The ice rods are then broken off by sweep arm 316 which is also attached to the auger motor 318 and thereby rotates with the auger. The ice rods are directed into ice bin 322 via ice chute 320. Water reservoir 402 continuously supplies the freezing cylinder with water as ice is extruded.

It is to be realized that ice rods formed by an auger-driven system, also called nuggets, are preferable for consumer use since they are chewable (due to the fact that they are compressed ice shavings).

FIG. 5 is a diagram of an auger portion and an extruder portion of the icemaker system of FIG. 2. More particularly, FIG. 5 shows the threads 502 of auger 308, as well as the plurality of openings 315 in extruder 314 through which the ice scraped from the inside wall of freezing cylinder 306 is forced in order to form the ice rods (nuggets).

FIG. 6 shows a diagram of heat transfer fins installed on the icemaker system of FIG. 2. More particularly, in one embodiment, a plurality of heat transfer fins 602 are shown substantially surrounding freezing cylinder 306. The fins 602 serve to improve heat transfer, i.e., transfer of heat from the relatively warmer freezing cylinder 306 to the relatively cooler freezer air distribution compartment 310 which contains ambient freezer air forced therein by fan 312. FIG. 6 also shows water supply line 404 and sweep arm 316.

FIG. 7 is a perspective front view of the icemaker system 200, and FIG. 8 is a perspective rear view of the icemaker system 200. Note that “front” and “rear” are terms relative to the mounting orientation of the icemaker system in the fresh food compartment of the refrigerator. The perspective views show the spatial proportions of the various components, described in detail above, in accordance with the embodiments of FIGS. 3 and 4. It is to be understood that implementations other than those shown may be realized given the teachings provided herein.

FIGS. 9 and 10 illustrate an icemaker system mounted on a fresh food compartment door of a refrigerator, in accordance with an embodiment of the invention. This embodiment may be employed in a bottom mount freezer configuration, where the freezer compartment 102 is located below the fresh food compartment 104 (see description of FIG. 1 above regarding alternative configurations to the one shown in FIG. 1). FIG. 9 is a perspective rear view and FIG. 10 is a perspective front view.

More particularly, as shown, icemaker system 200 (i.e., the same or similar implementation as shown in FIGS. 3 and 4) is mounted on the inside of a door 900 of fresh food compartment 104. Next to the icemaker system is an icebox 902 where the ice rods (nuggets) formed by the icemaker system are deposited (icebox 902 serves the function of ice bin 322). Note that icemaker system 200 and icebox 902 are positioned in an icebox enclosure 901. Openings 904 and 906 formed through a side of enclosure 901 serve the same purposes as openings 204 and 206 formed in the fresh food/freezer separating wall 202, i.e., allowing ambient freezer air to enter (via 906) the icemaker system and to exit (via 904) the icemaker system. Openings 904 and 906 align with corresponding openings (not shown) in the side wall of the fresh food compartment when the door 900 is closed. The openings in the side wall of the fresh food compartment are attached to ducts (not shown) that run up and down the wall to the evaporator area of a freezer compartment below the fresh food compartment.

The ambient freezer air (used for ice formation by system 200 as explained in detail above) from the freezer evaporator below the fresh food compartment is pulled up through the corresponding one of the side wall ducts, through opening 906, and into air inlet duct 302 (of icemaker system 200). Return air goes out air outlet duct 304 (of icemaker system 200), through opening 904, and down through the corresponding other of the side wall ducts back to the freezer (evaporator) compartment below.

The embodiment of FIGS. 9 and 10 is advantageous since it is realized that it would be very difficult to run refrigerant lines through the door hinges to an icebox enclosure mounted on the fresh food compartment door. Since the embodiments use forced ambient freezer air, no such refrigerant lines are needed by the icemaker system. It is also realized that ice making and storage on the refrigerator door is a desirable feature in refrigerator designs.

FIG. 11 is a perspective top view of an auger heater mounted on an icemaker system, in accordance with an embodiment of the invention. FIG. 12 is a front view of the auger heater. It is realized that it is advantageous to provide an auger heater to prevent the auger from freezing up due to the cooling ambient air provided from the freezer compartment. Thus, as shown in FIG. 11, an auger heater 1102 is mounted above ice extruder 314 and below auger motor 318.

Further, as more particularly shown in FIG. 12, a shaft 1202 of motor 318 engages a shaft 1204 of auger 308. This allows the auger to rotate (as well as sweep arm 316).

As further shown, a metal sleeve 1206 is placed around auger shaft 1204. A coil of electric resistance heater wire 1208 is wrapped around the sleeve 1206. Energizing the wire (from a current source not shown) heats the sleeve 1206 which then heats auger 308. A heated auger resists freezing up in freezer compartment temperatures.

It is to be appreciated that one skilled in the art will realize that well-known heat exchange and heat transfer principles may be applied to determine appropriate dimensions and materials of the various assemblies illustratively described herein, given the inventive teachings provided herein. While embodiments of the invention are not limited thereto, the skilled artisan will realize that such quantities, dimensions and materials may be determined and selected in accordance with well-known heat exchange and heat transfer principles as described in R. K. Shah, “Fundamentals of Heat Exchanger Design,” Wiley & Sons, 2003 and F. P. Incropera et al., “Introduction to Heat Transfer,” Wiley & Sons, 2006, the disclosures of which are incorporated by reference herein.

It is to be further appreciated that the icemaker systems described herein may have control circuitry including, but not limited to, a microprocessor (processor) that is programmed, for example, with suitable software or firmware, to implement one or more techniques as described herein. By way of example only, such control circuitry may control fan (312) operation and auger motor (318) operation. In other embodiments, an ASIC (Application Specific Integrated Circuit) or other arrangement could be employed. One of ordinary skill in the art will be familiar with icemaker systems and given the teachings herein will be enabled to make and use one or more embodiments of the invention; for example, by programming a microprocessor with suitable software or firmware to cause the icemaker system to perform illustrative steps described herein. Software includes but is not limited to firmware, resident software, microcode, etc. As is known in the art, part or all of one or more aspects of the invention discussed herein may be distributed as an article of manufacture that itself comprises a tangible computer readable recordable storage medium having computer readable code means embodied thereon. The computer readable program code means is operable, in conjunction with a computer system or microprocessor, to carry out all or some of the steps to perform the methods or create the apparatuses discussed herein. A computer-usable medium may, in general, be a recordable medium (e.g., floppy disks, hard drives, compact disks, EEPROMs, or memory cards) or may be a transmission medium (e.g., a network comprising fiber-optics, the world-wide web, cables, or a wireless channel using time-division multiple access, code-division multiple access, or other radio-frequency channel). Any medium known or developed that can store information suitable for use with a computer system may be used. The computer-readable code means is any mechanism for allowing a computer or processor to read instructions and data, such as magnetic variations on magnetic media or height variations on the surface of a compact disk. The medium can be distributed on multiple physical devices. As used herein, a tangible computer-readable recordable storage medium is intended to encompass a recordable medium, examples of which are set forth above, but is not intended to encompass a transmission medium or disembodied signal. A microprocessor may include and/or be coupled to a suitable memory.

Furthermore, it is also to be appreciated that methods and apparatus of the invention may be implemented in electronic icemaker systems under control of one or more microprocessors and computer readable program code, as described above, or in electromechanical icemaker systems where operations and functions are under substantial control of mechanical control systems rather than electronic control systems.

Thus, while there have been shown and described and pointed out fundamental novel features of the invention as applied to exemplary embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. Moreover, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Furthermore, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.

Claims

1. A system for making ice, comprising:

an auger-driven ice formation portion configured for mounting in a fresh food compartment of a refrigerator appliance; and
at least one inlet duct positioned proximate to the auger-driven ice formation portion and configured for receiving and passing ambient air from a freezer compartment of the refrigerator appliance into the auger-driven ice formation portion.

2. The system of claim 1, further comprising at least one outlet duct positioned proximate to the auger-driven ice formation portion and configured for receiving and returning ambient freezer air used for ice formation to the freezer compartment.

3. The system of claim 1, further comprising a fan positioned proximate to the inlet duct and configured for drawing the ambient freezer air into the inlet duct.

4. The system of claim 3, further comprising a controller configured for controlling operation of the fan.

5. The system of claim 1, wherein the auger-driven ice formation portion further comprises an ice formation chamber.

6. The system of claim 5, wherein the auger-driven ice formation portion further comprises an ambient freezer air receiving compartment coupled to the at least one inlet duct and substantially surrounding the ice formation chamber.

7. The system of claim 6, wherein the auger-driven ice formation portion further comprises an auger moveably positioned in the ice formation chamber.

8. The system of claim 7, further comprising an auger heater positioned in heat transfer contact with the auger.

9. The system of claim 7, wherein the auger-driven ice formation portion further comprises an ice extruder positioned proximate to the ice formation chamber at an ice producing end of the auger.

10. The system of claim 9, further comprising a sweep arm positioned proximate to the ice extruder and configured for sweeping ice away from the ice extruder.

11. The system of claim 10, further comprising an ice chute positioned proximate to the sweep arm and configured for receiving the ice swept by the sweep arm.

12. The system of claim 9, further comprising an ice bin positioned proximate to the ice chute and configured for storing ice received from the ice chute.

13. The system of claim 7, further comprising a motor operatively coupled to the auger and configured for rotating the auger.

14. The system of claim 13, wherein the motor is positioned above the auger.

15. The system of claim 5, further comprising a water reservoir proximate to the ice formation chamber and configured for supplying water for ice formation.

16. The system of claim 5, wherein the auger-driven ice formation portion further comprises a plurality of heat transfer fins substantially surrounding the ice formation chamber.

17. A system for making ice, comprising:

an ice formation chamber coupled to a water supply and configured for mounting in a fresh food compartment of a refrigerator appliance;
a motor-driven auger moveably positioned in the ice formation chamber;
at least one inlet duct positioned proximate to the ice formation chamber and configured for receiving and passing ambient air from a freezer compartment of the refrigerator appliance into an area around the ice formation chamber;
a fan positioned proximate to the inlet duct and configured for drawing the ambient freezer air into the inlet duct; and
an auger heater positioned in heat transfer contact with the motor-driven auger.

18. A refrigerator appliance comprising:

a fresh food compartment;
a freezer compartment; and
an auger-driven icemaker system mounted in the fresh food compartment, wherein the icemaker system is configured to receive ambient air from the freezer compartment for use in ice formation.

19. The refrigerator appliance of claim 18, wherein the auger-driven icemaker system is mounted on a wall separating the fresh food compartment from the freezer compartment.

20. The refrigerator appliance of claim 18, wherein the auger-driven icemaker system is mounted on a door of the fresh food compartment.

Patent History
Publication number: 20130276472
Type: Application
Filed: Apr 18, 2012
Publication Date: Oct 24, 2013
Inventors: Alan Joseph Mitchell (Louisville, KY), Charles Benjamin Miller (Louisville, KY), Bart Andrew Nuss (Louisville, KY)
Application Number: 13/449,593
Classifications
Current U.S. Class: With Product Receiving And Storing Means (62/344); Means Producing Shaped Or Modified Congealed Product (62/340); Electrical Heater (62/351)
International Classification: F25C 1/10 (20060101); F25C 5/18 (20060101); F25C 5/08 (20060101);