FLUSH VALVE STRUCTURE FOR A TOILET TANK
A toilet tank flush valve structure includes a valve base. A float assembly is movable relative to the valve base between a sealing position and a flushing position, the float assembly being adjustable in buoyancy. An overflow tube is attached to the float assembly and extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank. The upper end of the overflow tube is adjustable relative to the float assembly independently of the buoyancy of the float assembly. A guide member extends upward from the valve base for guiding movement of the float assembly relative to the valve base. A stop member is mounted on the guide member at a location above the float assembly for limiting upward travel of the float assembly from its sealing position. The stop member is adjustable in position lengthwise of the guide member independently of the buoyancy of the float assembly and independently of the upper end of the overflow tube.
The subject matter disclosed herein relates to a flush valve structure for a toilet tank.
SUMMARY OF THE INVENTIONIn accordance with a first aspect of the disclosed subject matter there is provided a toilet tank flush valve structure, for use with a toilet tank that is provided with a water supply valve and has an interior space bounded by a floor formed with an outlet hole, the flush valve structure comprising a valve base for installation in the outlet hole formed in the floor of the toilet tank, the valve base defining a water outflow passage having an upper end and a lower end and including a first valve member at the upper end of the water outflow passage, a float assembly that is movable relative to the valve base between a sealing position in which a second valve member at a lower end of the float assembly engages the first valve member in sealing relationship and a flushing position in which the second valve member is spaced upwardly from the first valve member, the float assembly defining a float chamber that is adjustable in volume and also defining a passage extending upwardly therethrough, and an overflow tube extending upward through the passage defined by the float assembly, wherein the overflow tube is adjustably attached to the float assembly and extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank, and a guide member that extends upward from the valve base through the overflow tube for guiding movement of the float assembly relative to the valve base, the guide member defining a passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, for connection to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base, and wherein the guide member is provided with a stop member at a location above the float assembly for limiting upward travel of the float assembly from its sealing position, and the stop member is adjustably positioned lengthwise of the guide member whereby said upward travel is selectively adjustable.
In accordance with a second aspect of the disclosed subject matter there is provided a toilet tank flush valve structure, for use with a toilet tank that is provided with a water supply valve and has an interior space bounded by a floor formed with an outlet hole, the flush valve structure comprising a valve base for installation in the outlet hole formed in the floor of the toilet tank, the valve base defining a water outflow passage having an upper end and a lower end and including a first valve member at the upper end of the water outflow passage, a float assembly that is movable relative to the valve base between a sealing position in which a second valve member at a lower end of the float assembly engages the first valve member in sealing relationship and a flushing position in which the second valve member is spaced upwardly from the first valve member, the float assembly being adjustable in buoyancy, and an overflow tube that is attached to the float assembly and extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank, the upper end of the overflow tube being adjustable relative to the float assembly independently of buoyancy of the float assembly, a guide member that extends upward from the valve base for guiding movement of the float assembly relative to the valve base, the guide member defining a passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, for connection to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base, and a stop member mounted on the guide member at a location above the float assembly for limiting upward travel of the float assembly from its sealing position, the stop member being adjustably in position lengthwise of the guide member independently of the buoyancy of the float assembly and independently of the upper end of the overflow tube.
In accordance with a third aspect of the disclosed subject matter there is provided a toilet tank installation comprising a toilet tank having an interior space bounded by a floor formed with an outlet hole, a water supply valve positioned inside the tank and connected to a water source, and a flush valve structure comprising a valve base installed in the outlet hole formed in the floor of the toilet tank, the valve base defining a water outflow passage having an upper end and a lower end and including a first valve member at the upper end of the water outflow passage, a float assembly that is movable relative to the valve base between a sealing position in which a second valve member at a lower end of the float assembly engages the first valve member in sealing relationship and a flushing position in which the second valve member is spaced upwardly from the first valve member, the float assembly being adjustable in buoyancy, an overflow tube that is attached to the float assembly and extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank, the upper end of the overflow tube being adjustable relative to the float assembly independently of buoyancy of the float assembly, a guide member that extends upward from the valve base for guiding movement of the float assembly relative to the valve base, the guide member defining a passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, for connection to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base, and a stop member mounted on the guide member at a location above the float assembly for limiting upward travel of the float assembly from its sealing position, the stop member being adjustably in position lengthwise of the guide member independently of the buoyancy of the float assembly and independently of the upper end of the overflow tube.
For a better understanding of the invention, and to show how the same may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which:
The toilet tank 2 shown in
The flush valve structure that is shown in
A guide 120 extends vertically upward from the valve base. The lower end of the guide 120 is a relatively slender rod 121 that is in threaded engagement with the valve base at one side of the water outflow opening 102 defined by the valve base. Above its lower end, the guide has a tubular segment 122. Four ribs 123 projecting from the rod 121 and from the tubular segment in a cross-like configuration serve to connect the two segments.
The tubular segment 122 of the guide is internally threaded at its upper end and an externally threaded extension tube 124 is in threaded engagement with the tubular segment. Internally threaded lock collars 125 in threaded engagement with the extension tube are tightened against the upper end of the tubular segment and prevent inadvertent loosening of the threaded engagement of the extension tube and the tubular segment of the guide. By loosening the lock collars 125, the extension tube can be removed and replaced with a longer or shorter extension tube, if desired or necessary. At its upper end, the extension tube is provided with a removable retainer member 126 incorporating a hose coupling 127.
The toilet tank is provided with a float-controlled fill valve 130 having a primary outlet (not shown) that discharges water into the interior space of the tank when the fill valve is open and a secondary outlet 131 that is connected by a T-coupling 132 and a flexible hose 133 to the hose coupling 127 at the top of the extension tube 124. It will be appreciated that the hoses and hose couplings are shown only schematically in
The flush valve structure shown in
The inner boss 140 is threaded at its upper end and a nut 142 having an internal flange is in threaded engagement with the threads of the inner boss. When the nut 142 is tightened onto the inner boss 140, an O-ring 144 is clamped between the internal flange of the lock nut and the upper end of the boss. By clamping the O-ring in this manner, the O-ring grips the overflow tube 157, thus holding the outer shell 130 in position relative to the overflow tube 157, and seals the clearance between the inner boss and the overflow tube 157. A locking collar 156 provided with a set screw prevents loosening of the nut 142.
An extension tube 134 that is coaxial with the inner boss is in threaded engagement with a short sleeve that extends downward from the first disc-wall 138. The overflow tube 157 extends within the extension tube 134 in telescoping fashion. At its lower end the extension tube 134 extends downward beyond the lower end of the overflow tube 157.
The guide 120 extends through the overflow tube 157 and the extension tube 134 with a clearance that is sufficient to permit movement of the tubes 157, 134, and the float assembly attached thereto, lengthwise of the guide without binding yet is small enough to ensure that the float assembly remains properly aligned relative to the sealing member 116. In this regard it will be noted that the interior of the extension tube below the overflow tube tapers in order to reduce clearance between the lower end of the extension tube and the ribs 123.
A second or lower annular disc-wall 146 is attached to the extension tube 134. As shown, a short, externally threaded sleeve extends downward from the lower annular disc-wall and a nut 147 having an internal flange is in threaded engagement with the threads of the sleeve. When the nut 147 is tightened onto the sleeve, an O-ring 159 is clamped between the internal flange of the lock nut and the lower end of the sleeve. By clamping the O-ring in this manner, the O-ring grips the extension tube 134, thus holding the lower annular disc-wall in position relative to the extension tube, and seals the clearance between the sleeve and the extension tube. By releasing the nut 147, the lower disc-wall can be adjusted in position relative to the upper disc-wall 138 and the cylindrical outer wall 135. A locking collar 145 provided with a setscrew is positioned tightly against the nut 47 prevents loosening of the nut 147 and thereby prevents movement of the lower disc-wall 146 relative to the extension tube 134.
The outer shell 130, the extension tube 134 and the second annular disc-wall 146 together define a float chamber. By releasing the lock nut 147, moving the lower disc-wall 146 lengthwise of the extension tube 134, and re-tightening the locknut, the position of the lower disc-wall 146 relative to the first annular disc-wall 138, and hence the volume of the float chamber, is adjustable.
Because the O-ring 144 not only grips the overflow tube but also seals the float chamber at the upper end, air cannot be displaced from the float chamber by water entering the chamber through the clearance between the lower annular disc-wall 146 and the cylindrical outer wall 135. Otherwise, water entering the float chamber through the clearance could lead eventually to the float chamber becoming waterlogged.
Above the locking collars 125 the threaded extension tube 124 is provided with a stop member 148. The stop member may comprise a pair of internally threaded collars and/or an internally threaded collar provided with a set screw. It will be understood by those skilled in the art that by tightening the threaded collars against each other and/or by tightening the set screw, the stop member 148 can be secured against movement longitudinally of the extension tube 124; and by loosening the threaded collars and set screw the stop member 148 can be released, allowing movement of the stop member longitudinally of the extension tube 124.
The float assembly 128 is provided with an attachment ring (not shown) that can be connected to a flush lever or rod (not shown) for lifting the float assembly from the seal. The flush lever is connected to a flush actuator located outside the toilet tank. When the flush actuator is operated, and the lever is lifted sufficiently to lift the float assembly, the seal between the sealing members 116 and 136 is broken. The buoyancy of the float assembly overcomes the force due to the pressure of water on the top of the upper annular disc-wall and any downward force acting on the float assembly due to flow of water into the passage defined by the extension. Accordingly, even though the user may immediately release pressure on the flush lever, the float assembly immediately rises until the upper end of the overflow tube 157 engages the stop member 148. When the upper end of the overflow tube engages the stop member, the float assembly initially remains in this position as the water level in the toilet tank falls due to outflow of water through the valve base, When the level of water in the tank has fallen sufficiently for the fill valve 130 to open, water commences to flow into the tank. Nevertheless, the water level in the tank continues to fall until the float assembly is close enough to the sealing member 116 for the force acting on the float assembly due to flow of water into the outflow passage to overcome the buoyancy of the float assembly and pull the sealing member 136 into contact with the sealing member 116. The water level in the tank then rises, as is conventional, until the fill valve shuts off supply of water.
While the fill valve is open, water flows through the flexible hose 127, the extension tube 124 and the tubular guide 122 into the valve base and fills the toilet bowl, sealing the trap at the outlet of the toilet bowl.
When the toilet bowl contains only liquid waste, the user activates the flush valve by pressing the flush actuator and then immediately releases the flush actuator. Depending on the adjustment position of the second annular disc-wall 146 (as discussed below), the quantity of water that is discharged from the tank in response to a press and immediate release activation of the flush lever is sufficient to remove liquid waste and most solid waste from the toilet bowl. In the event that the user observes that solid waste remains in the bowl after pressing the flush lever, the user may maintain pressure on the flush actuator, in which event the float assembly will remain elevated relative to the seal member at the upper rim of the extension and residual tank and fill valve supply water will continue to flow through the valve body and into the toilet bowl. The user releases the flush actuator upon observing that the waste has been removed from the toilet bowl.
The quantity of water discharged from the toilet tank in response to a press and immediate release activation of the flush lever depends on the extent of the upward travel of the float assembly from the lower position, in which the sealing member 136 in contact with the sealing member 116, to the upper position, in which further upward movement is limited by the stop member 148. The greater the distance, the longer is the time between breaking of the seal and restoration of the seal, and the greater is the quantity of water discharged. In the case of
Different models of toilet assemblies (toilet bowl and toilet tank) have different flushing characteristics. The different flushing characteristics of different models of toilet assemblies result in a greater or lesser quantity of water being needed to both remove liquid waste from the toilet bowl and fill the toilet bowl and restore the trap after a flush. It has been found that by adjusting the upward travel of the float assembly, by adjusting the position of the overflow tube 157 relative to the float assembly, it is possible to adjust the quantity of water that is discharged from the toilet tank in response to a press and immediate release activation of the flush lever. Adjustability of the overflow tube 157 relative to the outer shell 130 allows a given model of flush valve structure to be used with multiple models of toilet assemblies, each of which may require its own unique combination of flush volumes for satisfactory liquid and solid waste removal. This is useful because it allows a single model of flush valve structure to be used as a replacement part in multiple models of toilet assemblies.
Still referring to
The flush valve structure shown in
In the case of the flush valve structure shown in
The flange 110′ of the valve base shown in
As shown in
The drawings illustrate self-contained flush valve structures having three independent adjustments that do not require modification (e.g. cutting) of any of the basic component parts of the flush valve structure. The three independent adjustments (buoyancy of the float assembly, upward travel of the float assembly, and height of the upper end of the overflow tube) allow the valve structure to be installed in virtually any toilet installation and adjusted to provide a desired flush volume. If desired, the various adjustment mechanisms may then be secured to prevent further adjustment and/or prevent deliberate or inadvertent further adjustment by application of suitable cement.
In general, it will be desirable that the installer should first position the stop member 148 somewhat below the hole in the wall of the toilet tank through which the flush actuator is connected to the flush lever, so that the top of the overflow tube will remain below the hole and prevent overflow of the tank. Then, the installer will adjust the position of the lower disc-wall 146 to achieve a low volume flush. Finally, the installer adjusts the position of the overflow tube relative to the float assembly 128 in order to achieve a particular minimum flush water volume needed for high efficiency toilet (as defined by the United States Environmental Protection Agency). It will be appreciated that the greater the head of water in the toilet tank, the greater the outflow pressure from the toilet tank and the greater the velocity of flow of water into the toilet bowl. The head of water in the toilet tank depends on the fill valve, but during filling of the tank the fill valve must close before the level of water reaches the upper end of the overflow tube. Thus, in order to maximize the head of water available for flushing, the upper end of the overflow tube should be as high as possible, but in no case higher than about 1.3 cm (one half inch) below the flush valve actuator attachment opening in the toilet tank wall.
It will be appreciated that the invention is not restricted to the particular embodiment or embodiments that has or have been described, and that variations may be made therein without departing from the scope of the invention as defined in the appended claims, as interpreted in accordance with principles of prevailing law, including the doctrine of equivalents or any other principle that enlarges the enforceable scope of the claims beyond the literal scope. Unless the context indicates otherwise, a reference in a claim to the number of instances of an element, be it a reference to one instance or more than one instance, requires at least the stated number of instances of the element but is not intended to exclude from the scope of the claim a structure or method having more instances of that element than stated.
Claims
1-27. (canceled)
28. A toilet tank flush valve structure, for use with a toilet tank that is provided with a water supply valve and has an interior space bounded by a floor formed with an outlet hole, the flush valve structure comprising:
- a valve base for installation in the outlet hole formed in the floor of the toilet tank, the valve base defining a water outflow passage having an upper end and a lower end and including a first valve member at the upper end of the water outflow passage,
- a float assembly that is movable relative to the valve base between a sealing position in which a second valve member at a lower end of the float assembly engages the first valve member in sealing relationship and a flushing position in which the second valve member is spaced upwardly from the first valve member, the float assembly defining a passage extending upwardly therethrough, wherein the float assembly comprises an outer shell that is open downwards and has a lower edge at which the shell is provided with said second valve member, and a closure member within the outer shell and cooperating with the outer shell to define a float chamber, and wherein the closure member is adjustable in position relative to the outer shell, whereby the float chamber is adjustable in volume,
- an overflow tube extending upward through the passage defined by the float assembly, wherein the overflow tube extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank and is adjustable in position relative to the float assembly independently of adjustment of the closure member relative to the outer shell, and
- a guide member that extends upward from the valve base through the overflow tube for guiding movement of the float assembly relative to the valve base, the guide member comprising a tubular core and ribs projecting outward from the core, the core having an interior space defining a passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, for connection to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base,
- and wherein the guide member includes a stop element at a location above the float assembly for limiting upward travel of the float assembly from its sealing position, and the stop element is adjustably positioned relative to the valve base whereby a distance of said upward travel is selectively adjustable.
29. A toilet tank installation comprising:
- a toilet tank having an interior space bounded by a floor formed with an outlet hole,
- a water supply valve positioned inside the tank and connected to a water source, and
- a flush valve structure comprising a valve base installed in the outlet hole formed in the floor of the toilet tank, the valve base defining a water outflow passage having an upper end and a lower end and including a first valve member at the upper end of the water outflow passage; a float assembly that is movable relative to the valve base between a sealing position in which a second valve member at a lower end of the float assembly engages the first valve member in sealing relationship and a flushing position in which the second valve member is spaced upwardly from the first valve member, the float assembly defining a passage extending upwardly therethrough, wherein the float assembly comprises an outer shell that is open downwards and has a lower edge at which the shell is provided with said second valve member, and a closure member within the outer shell and cooperating with the outer shell to define a float chamber, and wherein the closure member is adjustable in position relative to the outer shell, whereby the float chamber is adjustable in volume; an overflow tube extending upward through the passage defined by the float assembly, wherein the overflow tube extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank and is adjustable in position relative to the float assembly independently of adjustment of the closure member relative to the outer shell; and a guide member that extends upward from the valve base through the overflow tube for guiding movement of the float assembly relative to the valve base, the guide member comprising a tubular core and ribs projecting outward from the core, the core having an interior space defining a passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, connected to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base; and wherein the guide member includes a stop element at a location above the float assembly for limiting upward travel of the float assembly from its sealing position, and the stop element is adjustably positioned relative to the valve base whereby a distance of said upward travel is selectively adjustable.
30. A toilet tank installation according to claim 29, wherein the float assembly includes a downward extension tube and the overflow tube extends within said downward extension tube.
31. A toilet tank installation according to claim 30, wherein the extension tube has an upper portion of internal diameter slightly greater than the external diameter of the overflow tube, to provide a snug sliding fit of the overflow tube within said upper portion of the extension tube, and a lower portion of reduced internal diameter relative to the upper portion for cooperating with the guide member for guiding movement of the float assembly.
32. A toilet tank installation according to claim 29, wherein the valve base includes a flange positioned within the tank above the floor of the toilet tank, a water outflow tube that extends downward from the flange to enter the outlet hole formed in the floor of the toilet tank, and an extension that flares upward from the flange, and the first valve member is positioned at an upper end of the extension.
33. A toilet tank installation according to claim 32, wherein the extension is horizontally skewed, whereby the upper end of the extension is horizontally offset from a lower end thereof.
34. A flush valve structure according to claim 33, wherein the valve base has an internally threaded hole at one side of the water outflow passage and the guide member is externally threaded at its lower end and is in threaded engagement with the valve base.
35. A toilet tank installation according to claim 32, wherein the guide member has a lower end at which it is threadedly attached to the valve base.
36. A toilet tank installation according to claim 29, wherein the guide member comprises a lower portion located at least partially below an upper end of the overflow tube, and an upper portion that is releasably attached to the lower portion at an upper end thereof and extends upward from the upper end of the lower portion, and the stop element is mounted on the upper portion at a location above the float assembly.
37. A toilet tank installation according to claim 36, wherein the upper portion of the guide member is adjustable in position lengthwise relative to the lower portion of the guide member.
38. A toilet tank installation according to claim 36, wherein the stop member is adjustable in position lengthwise of the guide member independently of the buoyancy of the float assembly and independently of the upper end of the overflow tube.
39. A toilet tank installation according to claim 29, wherein the float chamber is adjustable in volume independently of adjustment of the overflow tube and said stop element.
40. A toilet tank flush valve structure, for use with a toilet tank that is provided with a water supply valve and has an interior space bounded by a floor formed with an outlet hole, the flush valve structure comprising:
- a valve base for installation in the outlet hole formed in the floor of the toilet tank, the valve base defining a water outflow passage having an upper end and a lower end and including a first valve member at the upper end of the water outflow passage,
- a float assembly that is movable relative to the valve base between a sealing position in which a second valve member at a lower end of the float assembly engages the first valve member in sealing relationship and a flushing position in which the second valve member is spaced upwardly from the first valve member, the float assembly defining a float chamber and also defining a passage extending upwardly therethrough,
- an overflow tube extending upward through the passage defined by the float assembly, wherein the overflow tube is adjustably attached to the float assembly and extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank, and
- a guide member that extends upward from the valve base through the overflow tube for guiding movement of the float assembly relative to the valve base, the guide member comprising a lower portion that extends upward from the valve base through the overflow tube, an upper portion that is releasably attached to the lower portion at an upper end thereof and extends upward from the upper end of the lower portion, and a stop element mounted on the upper portion at a location above the float assembly for limiting upward travel of the float assembly from its sealing position, the stop element being adjustably positioned relative to the valve base whereby a distance of said upward travel is selectively adjustable,
- and wherein the guide member comprises a tubular core and ribs projecting outward from the core over at least the lower portion of the guide member, the core having an interior space defining a passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, for connection to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base.
41. A flush valve structure according to claim 40, wherein the lower portion of the guide member comprises a tubular core and ribs projecting outward from the core and the upper portion is tubular, whereby the guide defines an internal passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, for connection to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base.
42. A toilet tank installation comprising:
- a toilet tank having an interior space bounded by a floor formed with an outlet hole,
- a water supply valve positioned inside the tank and connected to a water source, and
- a flush valve structure comprising a valve base installed in the outlet hole formed in the floor of the toilet tank, the valve base defining a water outflow passage having an upper end and a lower end and including a first valve member at the upper end of the water outflow passage; a float assembly that is movable relative to the valve base between a sealing position in which a second valve member at a lower end of the float assembly engages the first valve member in sealing relationship and a flushing position in which the second valve member is spaced upwardly from the first valve member, the float assembly defining a float chamber and also defining a passage extending upwardly therethrough; an overflow tube extending upward through the passage defined by the float assembly, wherein the overflow tube is adjustably attached to the float assembly and extends upward from a lower end in fluid communication with the water outflow passage of the valve base to an upper end in fluid communication with the interior space of the toilet tank; and a guide member that extends upward from the valve base through the overflow tube for guiding movement of the float assembly relative to the valve base, the guide member comprising a lower portion that extends upward from the valve base through the overflow tube, an upper portion that is releasably attached to the lower portion at an upper end thereof and extends upward from the upper end of the lower portion; and a stop element mounted on the upper portion at a location above the float assembly for limiting upward travel of the float assembly from its sealing position, the stop element being adjustably positioned relative to the valve base whereby a distance of said upward travel is selectively adjustable; and wherein the guide member comprises a tubular core and ribs projecting outward from the core over at least the lower portion of the guide member, the core having an interior space defining a passageway extending longitudinally of the guide member from an inlet at an upper end region of the guide member, connected to the water supply valve, to an outlet at a lower end region of the guide member in fluid communication with the water outflow passage of the valve base.
43. A toilet tank installation according to claim 42, wherein the float assembly includes a downward extension tube and the overflow tube extends within said downward extension tube.
44. A toilet tank installation according to claim 43, wherein the extension tube has an upper portion of internal diameter slightly greater than the external diameter of the overflow tube, to provide a snug sliding fit of the overflow tube within said upper portion of the extension tube, and a lower portion of reduced internal diameter relative to the upper portion for cooperating with the guide member for guiding movement of the float assembly.
45. A toilet tank installation according to claim 42, wherein the valve base includes a flange positioned within the tank above the floor of the toilet tank, a water outflow tube that extends downward from the flange to enter the outlet hole formed in the floor of the toilet tank, and an extension that flares upward from the flange, and the first valve member is positioned at an upper end of the extension.
46. A toilet tank installation according to claim 45, wherein the extension is horizontally skewed, whereby the upper end of the extension is horizontally offset from a lower end thereof.
47. A toilet tank installation according to claim 45, wherein the valve base has an internally threaded hole at one side of the water outflow passage and the guide member is externally threaded at its lower end and is in threaded engagement with the valve base.
48. A toilet tank installation according to claim 44, wherein the guide member has a lower end at which it is threadedly attached to the valve base.
49. A toilet tank installation according to claim 42, wherein the guide member comprises a lower portion located at least partially below an upper end of the overflow tube, and an upper portion that is releasably attached to the lower portion at an upper end thereof and extends upward from the upper end of the lower portion, and the stop element is mounted on the upper portion at a location above the float assembly.
50. A toilet tank installation according to claim 49, wherein the upper portion of the guide member is adjustable in position lengthwise relative to the lower portion of the guide member.
51. A toilet tank installation according to claim 49, wherein the stop member is adjustable in position lengthwise of the guide member independently of the buoyancy of the float assembly and independently of the upper end of the overflow tube.
52. A toilet tank installation according to claim 42, wherein the float chamber is adjustable in volume independently of adjustment of the overflow tube and said stop element.
Type: Application
Filed: Apr 25, 2012
Publication Date: Oct 31, 2013
Inventor: Douglas P. Hand (Lake Oswego, OR)
Application Number: 13/455,865