ARTICULATING CAVITATION DEVICE
Provided is an articulating cavitation device configured to cut cancellous bone wholly within a vertebra. The articulating cavitation device includes an end effector, having an extendable cutting element, configured to articulate relative to an insertion tube. The end effector of the cavitation device may be articulated and rotated with the cutting element extended to form a tissue cavity about multiple axes.
This application is a continuation of U.S. Non-Provisional patent application Ser. No. 12/124,727, entitled “Articulating Cavitation Device”, filed May 21, 2008, which claims priority to the disclosures of U.S. Provisional Patent Application Ser. No. 60/939,355, entitled “Articulating Cavitation Device,” filed May 21, 2007, U.S. Provisional Patent Application Ser. No. 60/939,365, entitled “Extendable Cutting Member,” filed May 21, 2007, and U.S. Provisional Patent Application Ser. No. 60/939,362, entitled “Delivery System and Method for Inflatable Devices,” filed May 21, 2007, which are herein incorporated by references in their entirety.
BACKGROUNDVersions of the present invention relate to restoring the anatomy of fractured bone and, more particularly, to restoring the anatomy of fractured bone with an inflatable device.
Increasingly, surgeons are using minimally invasive surgical techniques for the treatment of a wide variety of medical conditions. Such techniques typically involve the insertion of a surgical device through a natural body orifice or through a relatively small incision using a tube or cannula. In contrast, conventional surgical techniques typically involve a significantly larger incision and are, therefore, sometimes referred to as open surgery. Thus, as compared with conventional techniques, minimally invasive surgical techniques offer the advantages of minimizing trauma to healthy tissue, minimizing blood loss, reducing the risk of complications such as infection, and reducing recovery time. Further, certain minimally invasive surgical techniques may be performed under local anesthesia or even, in some cases, without anesthesia, and therefore enable surgeons to treat patients who would not tolerate the general anesthesia required by conventional techniques.
Surgical procedures often require the formation of a cavity within either soft or hard tissue, including bone. Tissue cavities are formed for a wide variety of reasons, such as for the removal of diseased tissue, for harvesting tissue in connection with a biopsy or autogenous transplant, and for implant fixation. To achieve the benefits associated with minimally invasive techniques, tissue cavities are generally formed by creating only a relatively small access opening in the target tissue. An instrument or device may then be inserted through the opening and used to form a hollow cavity that is significantly larger than the access opening.
One surgical application utilizing the formation of a cavity within tissue is the surgical treatment and prevention of skeletal fractures associated with osteoporosis, which is a metabolic disease characterized by a decrease in bone mass and strength. The disease frequently leads to skeletal fractures under light to moderate trauma and, in its advanced state, can lead to fractures under normal physiologic loading conditions. It is estimated that osteoporosis affects approximately 15-20 million people in the United States and that approximately 1.3 million new fractures each year are associated with osteoporosis, with the most common fracture sites being the hip, wrist, and vertebrae.
An emerging prophylactic treatment for osteoporosis, trauma, or the like involves replacing weakened bone with a stronger synthetic bone substitute using minimally invasive surgical procedures. The weakened bone is first surgically removed from the affected site, thereby forming a cavity. The cavity is then filled with an injectable synthetic bone substitute and allowed to harden. The synthetic bone substitute provides structural reinforcement and thus lessens the risk of fracture of the affected bone. Without the availability of minimally invasive surgical procedures the prophylactic fixation of osteoporosis-weakened bone in this manner would not be practical because of the increased morbidity, blood loss, and risk of complications associated with conventional procedures. Moreover, minimally invasive techniques tend to preserve more of the remaining structural integrity of the bone because they minimize surgical trauma to healthy tissue
Other less common conditions in which structural reinforcement of bone may be appropriate include bone cancer and avascular necrosis. Surgical treatment for each of these conditions can involve removal of the diseased tissue by creating a tissue cavity and filling the cavity with a stronger synthetic bone substitute to provide structural reinforcement to the affected bone
Medical balloons are commonly known for dilating and unblocking arteries that feed the heart (percutaneous translumenal coronary angioplasty) and for arteries other than the coronary arteries (non-coronary percutaneous translumenal angioplasty). In angioplasty, the balloon is tightly wrapped around a catheter shaft to minimize its profile, and is inserted through the skin and into the narrowed section of the artery. The balloon is inflated, typically, by saline or a radiopaque solution, which is forced into the balloon through a syringe. Conversely, for retraction, a vacuum is pulled through the balloon to collapse it
Medical balloons also have been used for the treatment of bone fractures. One such device is disclosed in U.S. Pat. No. 5,423,850 to Berger, which teaches a method and an assembly for setting a fractured tubular bone using a balloon catheter. The balloon is inserted far away from the fracture site through an incision in the bone, and guide wires are used to transport the uninflated balloon through the medullary canal and past the fracture site for deployment. The inflated balloon is held securely in place by the positive pressure applied to the intramedullary walls of the bone. Once the balloon is deployed, the attached catheter tube is tensioned with a calibrated force measuring device. The tightening of the catheter with the fixed balloon in place aligns the fracture and compresses the proximal and distal portions of the fractured bone together. The tensioned catheter is then secured to the bone at the insertion site with a screw or similar fixating device.
It is believed that versions of the present invention will be better understood from the following description taken in conjunction with the accompanying drawings. The drawings and detailed description that follow are intended to be merely illustrative and are not intended to limit the scope of the invention.
Referring to
The distal tip (25) of the trocar (12) is configured to access and penetrate the cortical bone of a vertebra, where the vertebra is accessed with the trocar and cannula assembly (10) engaged. Once the vertebra has been accessed by the distal tip (25) of the trocar (12), the cannula (14) may be urged into the passage formed by the trocar (12). The trocar (12), which may be configured from stainless steel, is removable from the cannula (14) after accessing the vertebra Removal of the trocar (12) from the assembly (10) leaves the cannula (14) in place, for example, within the cortical wall of the vertebra as an instrument conduit for the insertion of any suitable instrument or device. In the illustrated version, the trocar (12) is withdrawn from the cannula (14) by removing the first detachable handle portion (18) from the assembly (10) until the trocar (12) is pulled proximally from the cannula (14). The trocar (12) and cannula (14) are shown in more detail in
Referring to
The first penetration member (24) of the trocar (12) is a cylindrical body having a plurality of intersecting flats, bevels, or faces that form a point at the distal tip (25) configured to penetrate tissue and vertebral bone with manual rotation and longitudinal articulation. The first penetration member (24) is configured to provide the initial access, after an incision is made, through a patient's skin and into the cortical bone of a vertebra. The relatively small diameter of the first penetration member (24) facilitates insertion and positioning or repositioning of the trocar (12). The second penetration member (26) is a transition between the smaller diameter first penetration member (24) and the larger diameter body (22) of the trocar (12) and includes a plurality of flats configured to expand the diameter of the passage. In one version, the wider second penetration member (26) has sharp edges that facilitate cutting of bone. Providing dual diameter or stepped tips may ease insertion and improve the stability of the trocar (12). The stepped penetration members (24) and (26) increase the size of the access point to a diameter sufficient to accept the cannula (14) for insertion and retention within the vertebra.
It will be appreciated that the trocar (12) may be configured with any suitable features to facilitate vertebral access, skiving, penetration of cortical bone, or any other suitable use. The trocar (12) may include one or a plurality of stepped tips, including the first and second penetration members (24) and (26), having any suitable cutting effects, diameters, shapes, and/or configurations. The one or a plurality of penetration members may be sharp, dull, fluted, or have any other suitable configuration. The distal end of the trocar (12) may be tapered, have movable cutting members, or may be coated or otherwise associated with materials, such as diamond, that facilitate cutting.
Referring to
Referring to
Referring to
The insertion tube (104) of the vertebral cavity formation and fracture reduction system extends axially along the first linear axis A-A from the distal end of the handle (102) to the proximal end of the end effector (106). The insertion tube (104) may be stainless steel and defines an interior lumen having an opening at both ends. In the illustrated version, with particular reference to
The end effector (106), which has a proximal portion (122) and a distal portion (124), is located at the distal end of the insertion tube (104) and is configured to rotate and articulate relative to the insertion tube (104). The proximal portion (122) of the end effector (106) is coupled to the insertion tube (104) with the pivot pin (116) such that the end effector (106) is restrained from axial movement relative to the insertion tube (104), but is rotatable about the pivot pin (116). In this manner, the end effector (106) can be articulated such that it is offset from first linear axis A-A into alignment, for example, with the second linear axis B-B. The second linear axis B-B is described by way of example only, where any suitable degree or distance of articulation is contemplated.
The distal portion (124) of the end effector (106) which may be, for example, from 1.8 cm to 2.8 cm in length, is configured to rotate, relative to the proximal portion (122) of the end effector (106), about the central axis A-A of the end effector (106). The distal portion (124) of the end effector may also be rotated about the second linear axis B-B, or any other suitable offset axis, when the end effector (106) is in an articulated position. Rotation of the end effector (106), in both the articulated and unarticulated position, facilitates cavity formation by allowing cancellous bone to be cut about or around multiple axes. Providing a wide range of axes about which portions of a cavity can be formed facilitates the creation of a wide range of cavity configurations that may provide greater therapeutic effect.
The end effector (106) further includes a lateral aperture (120) and an aperture (134) through which a deformable cutter (118) is extended and retracted. In the illustrated version, the deformable cutter (118) is an elongate, stainless steel flexible band that may be between 1.5 cm to 3 cm in length; however, any suitable cutting element such as, for example, a wire, an energized cutting element, a filament, a cutting element having a free end, a cutting element having memory retention properties, and/or a cutting element that expands outwardly with rotation may be utilized. Any suitable shape such as oval, triangular, or elliptical is contemplated. In the illustrated version, the distal end of the cutter (118) is fixedly coupled to the end effector (106) and the proximal end of the cutter is attached via a junction member (132) to a movable shaft (128) configured to rotate and translate within the insertion tube (14). The cutter (118) is threaded through the aperture (134) in the distal end of the end effector (106) and is fixedly coupled to a more proximal portion of the end effector, as illustrated in
Referring to
Referring to
Referring to
Referring to
Articulation of the end effector (106) allows for an offset cavity portion to be formed while the insertion tube (104) remains aligned with the first linear axis A-A. The offset cavity portion of the intervertebral cavity facilitates central placement of the balloon (212), which may be advantageous under certain circumstances. For example, an offset cavity may be useful depending on the geometry of the bone, in creating an anchor to provide more torque in an asymmetrical cavity, creating an undercut, or for accessing regions of a bone offset from the access point. Creating an offset cavity may allow for larger cavities to be created. Generally, the range of cavities and access may be increased while permitting the instrument to be inserted through a relatively small access point.
Referring to
Referring to
Although inflation of the balloon (212) is described with reference to saline, it will be appreciated that any suitable flowable material or fluid, which includes air or gases, may be used to inflate and/or deflate the balloon (212). For example, bone cement, biologic material, bone growth materials, bone fragments, bone paste, bone gel, saline, saline mixed with radiopaque additives, pressurized air, or combinations thereof may be utilized. The balloon (212) may be non-porous, semi-porous, or porous where, for example, a porous balloon filled with bone cement may ooze bone cement into a vertebral cavity during inflation.
It will be appreciated that the dual lumen (218) may have any suitable configuration and any suitable number of lumens passing entirely or partially therethrough. The dual lumen (218) may extend through the balloon (212) as illustrated or, alternatively, the dual lumen (218) may be adjacent or set apart from the balloon (212). The saline delivery lumen (222) and the cement delivery lumen (224) may be configured as separate lumens not retained within a single dual lumen (218). Generally, all lumens may be single lumen or multi-lumen tubing, where multi-lumen tubing may provide an advantageous drop in internal diameter by sharing a wall. Additional lumens may be provided, for example, for suction, irrigation, a guide wire, inflation of additional inflatable members or cement containers, or for tamping.
Still referring to
Referring to
It will be appreciated that the illustrated lumens (218), (210) may be bonded or retained by any suitable means, such as the sheath (210), as illustrated, or any suitable adhesive. The delivery tentacle (214) and side lumen (220) may be a contiguous structure, as shown, or, alternatively, the delivery tentacle may be a separate component affixed, coupled, or otherwise attached to the side lumen (220). The side lumen (220) may be rigid and the tentacle (214) may be flexible, both may be flexible, or both may be rigid or semi-rigid. The delivery tentacle (214) further comprises one or a plurality of tentacles having any suitable configuration for the delivery of bone cement, dye, gas, filling agent, therapeutic agent, medicament, and/or any other suitable material. The delivery tentacle (214) may be provided with one or a plurality of apertures and/or may be constructed from a porous material for the delivery of fluid into a vertebra.
Referring to
The balloon (212) may be provided with any suitable features or elements configured to restrain, shape, or otherwise configured the balloon (212) including, for example, internal restraints, external restraints, varying wall thicknesses, bands, and/or variations in material. Although the balloon (212) is shown in a non-axisymmetric configuration, the balloon may have an axisymmetric configuration, or any other shape, and may be aligned along a linear axis. The ends of the balloon (212) may be tapered, as shown, or may be inverted or have any other suitable configuration. Providing a balloon having a uniform diameter along the length thereof is also contemplated. Any suitable partial or complete coating in one or a plurality of layers may be utilized including coatings that are lubricious, rough for trauma applications, radiopaque, anti-bone growth, non-adhesive, barium, bismuth, PET, materials embedded in PET, tungsten powder, tantalum, or combinations thereof. Additionally, radiopaque coatings may be masked in certain sections to aid in visualization, measurement, trauma, placement, guidance, or the like. Any suitable region, band, design, marking, indicia, or writing may be masked or otherwise indicated for visualization.
Referring to
With the cannula (14) in place, the method (300) comprises Removing the Trocar from the Cannula Step (303), which includes withdrawing the trocar (12) proximally from the cannula by uncoupling the two-part handle (16) and withdrawing the first removable handle portion (18). Removing the handle portion (18) and the attached trocar (12) from the lumen of the cannula (14) leaves behind a hollow lumen through which a drill (40), shown in
The step of Providing a Drill Step (304) includes providing a passage creating instrument, such as the drill (40), which is described with reference to
The step of Providing a Cutting Instrument Step (306) includes providing a cavity formation instrument or device such as the cavity formation instrument (100) described with reference to
The step of Laterally Extending a Flexible Cutting Element of the Cutting Instrument Step (308) includes laterally extending the cutter (118) away from the end effector (106). In one version, the cutter (118) is laterally extended by manually rotating the rotational member (112) in a first direction. Manual rotation of the rotational member (112) operates as a jack screw to urge the shaft (128) distally. Distal translation of the shaft (128), which is coupled with the cutter (118) via the junction member (132), urges the cutter (118) outward through the aperture (134). Because, in the illustrated version, the cutter (118) is fixed at one end to a proximal portion of the end effector (106), the cutter (118) is expanded outwardly to form an arcuate shape as the shaft (128) is urged distally. Step (308) includes laterally extending the arcuate shape of the cutter (118) a desired distance as determined by fluoroscope or by resistance from the access passage.
The step of Cutting a First Vertebral Cavity Portion Step (309) includes forming a cavity within the cancellous bone of a vertebra using the cutting instrument (100). Following Step (308) where the cutter (118) is partially laterally extended, the end effector (106) may be rotated about the first linear axis A-A to cut cancellous bone tissue. In one version, the cavity is formed by manually rotating the rotational member (114), which correspondingly rotates the shaft (128) and end effector (106) to cut into cancellous bone. The cavity formed in Step (309) may be generally axisymmetric about the first linear axis A-A. The cavity may have a greater width than the drilled access passage. In one version, the Steps (308) and (309) are performed simultaneously to extend the cutting element (118) while rotating the end effector (106) to form a cavity. Although described with reference to forming a vertebral cavity, it will be appreciated that a cavity forming instrument described in accordance with methods herein may be used in any suitable orthopedic or medical application such as, for example, to form cavities in long bones or in cardiovascular applications for plaque removal. Other applications include vertebral disc applications, neurosurgery, interventional radiology, and pain management.
Step (309) further includes extending the cutter (118) laterally at increments to form successively larger cavities. The cutter (118), may be extended as described with reference to Step (308), is used to cut a portion of a cavity as described above. In one version, the cutter (118) is then incrementally extended radially outward via rotation of the rotational member (112). The rotational member (114) is then rotated to form a successively larger cavity. The incremental extension of the cutter (118) with subsequent cavity formation via the rotational member (114) is repeated a sufficient number of times to create the desired cavity. A suitable cavity size is determined via fluoroscope. During cavity creation, as the cancellous bone is cut it may be allowed to collect, gather, or pool within the vertebra, it may be compacted against the cortical wall, and/or it may be removed from the vertebra. A suction device may be provided to remove pieces of bone and/or a compaction device may be provided to compact bone against the cortical wall to clear cancellous bone from the cavity.
The step of Articulating the Distal End of the Cutting Instrument Step (310) includes articulating the end effector (106) of the cutting instrument (100) within the cavity formed in accordance with Step (309) such that it is offset from the first linear axis A-A. The end effector may be offset such that it is aligned with a second linear axis such as axis B-B. The articulation may occur at one or a plurality of articulation points or regions, where the end effector (106), for example, may be articulated such that it is offset a first distance from the axis A-A. The first distance may be achieved by pivoting the end effector (106), bending the end effector (106), or otherwise articulating the end effector (106) such that it is offset, pivoted, or spaced apart from the axis A-A. Step (310) includes partially retracting the cutter (118) such that it is adjacent the end effector (106) prior to articulation. The end effector (106) may then be articulated by rotating the distal rotational member (110) in a first direction as described herein.
In one version, articulation in accordance with Step (310) is accomplished by incrementally articulating the end effector (106) toward the opposite side of the intervertebral space of the vertebral body. The rotational member (110) is rotated in a first direction to urge the end effector (106) such that it is incrementally offset from the first linear axis A-A. The rotational member (114) is then rotated to increase the size of the cavity to provide more space for the articulation of the end effector (106). The rotational member (110) is again rotated in the first direction to further articulate the end effector (106) incrementally before again rotating the end effector via the rotational member (114). The incremental articulation of the end effector (106) with subsequent cavity formation via the rotational member (114) is repeated a sufficient number of times, as needed, until the end effector (106) is sufficiently articulated. Alternatively, rotation and articulation may be performed simultaneously. The end effector (106) is properly guided by the surgeon to the central position via fluoroscope. Articulating the end effector (106) towards the opposite side of the vertebral body may allow a cavity to be formed that exposes the cortical endplates for direct contact with the balloon (212) during expansion to reduce a vertebral compression fracture. Once positioned, the end effector (106) may be aligned along a second linear axis B-B angled away from the first linear axis A-A of the insertion tube (104).
The step of Cutting a Second Vertebral Cavity Portion Step (311) includes expanding the cavity portion formed in accordance with Step (309), for example, to expose regions of cortical bone within the intervertebral space. The second cavity portion is formed, in one version, by laterally extending the cutter (118) and rotating the cutter (118) in the stepwise manner as described in accordance with Steps (308) and (309) to expose the end plates of the vertebra. Alternatively, these can be actuated simultaneously. As with Steps (308) and (309), the cutter (118) may be guided via fluoroscope. Specifically, the formation of the second cavity portion may form a central cavity that exposes the endplates of the vertebral cortical bone that will serve as the foundation for expansion of the fracture reduction balloon (212).
In one version, as the endplates are exposed, the cutter (118) may form a pocket within the cancellous bone adjacent the anterior wall of the vertebral body. When a fracture reduction procedure is performed with the patient lying face down, there is a natural tendency for cut cancellous bone to be drawn away from the intervertebral space into the anterior pocket of the cavity. In this manner, the anterior pocket of the cavity may be used as a cancellous bone reservoir that obviates the need for bone compaction or bone removal to access the end plates. Step (311) comprises cutting cancellous bone away from the endplates of a vertebra and allowing the cut cancellous bone to collect in the anterior pocket of the cavity. Cutting away cancellous bone, rather than compacting the cancellous bone, provides for an exposed cortical surface that may be more responsive to more predictable compression forces. Removing as much cancellous bone as possible from the intervertebral body adjacent the endplates may increase the predictability and control of the procedure.
Although a method of cutting and collecting cancellous bone is described, it will be appreciated that cancellous bone may be removed, pooled, condensed, and/or compacted to form a cavity or cavity portion in accordance with versions herein. For example, cutting away a portion of the cancellous bone and then compacting a thin region of cancellous bone may act as a seal within the vertebral body to prevent the leakage of bone cement or other fluid. By cutting away a first portion of cancellous bone, prior to compacting a second region of cancellous bone, sufficient cancellous bone may be removed such that a fracture reduction device is sufficiently adjacent the cortical bone of the vertebra to effectively reduce a fracture. Thus, numerous techniques may be combined in forming a desired cavity. Multiple accessing, cutting, tamping, compaction, stoppering, curing, removal, suction, and/or expansion devices may be inserted or otherwise used in any suitable manner or order.
The step of Articulating the Distal End of the Cutting Instrument Step (312) includes articulating the end effector (106) of the cutting instrument (100) in the return direction until it is linearly aligned with the first linear axis A-A. The end effector (106) is articulated into alignment by rotating the distal rotational member (110) in a second direction. In this manner, the cutting instrument (100) may be returned to its pre-insertion linear configuration such that it can be easily removed through the cannula (14). The step of Retracting the Flexible Cutting Element Step (313) includes withdrawing the cutter (118) through the aperture (134) by rotating the rotational member (112) in a second direction. In this manner, the cutter (118) is returned to its pre-insertion retracted configuration such that it can be easily removed through the cannula (14). The step of Removing the Cutting Instrument Through the Cannula Step (314) includes removing the cutting instrument (100) through the cannula after the cutter (118) has been retracted and the end effector (106) has been brought into linear alignment with the insertion tube (104). In one version, the cannula (104) is left in place during all Steps in which the cutting instrument (100) is utilized. It will be appreciated that any suitable number of cavity formation instruments having any suitable configuration may be inserted through the cannula (14). For example, cavity formation devices having a plurality of articulations or joints and/or varying degrees of articulation may be utilized. Although the end effector (106) is described as retaining a substantially linear configuration, it will be appreciated that the end effector (106) may have any suitable shape, such as a curved shape, or be deformable such as, for example, from a substantially linear shape to a curved shape if made from a shape memory alloy such as a nickel-titanium alloy.
The step of Providing a Fracture Reduction Apparatus Step (315) includes providing a fracture reduction apparatus such as the fracture reduction apparatus (200) described with reference to
After insertion of the fracture reduction instrument, the substantially S-shaped or curved distal end of the dual lumen (218) shown in the illustrated version is projected into the vertebral cavity such that the balloon (212) is centrally located within the cavity. In one version, the balloon (212) is positioned such that, upon expansion, the walls of the balloon press against the exposed endplates of the vertebra after cancellous bone has been removed. Other versions may compact substantial or minimal amounts of cancellous bone. The balloon (212) may be constructed from flexible but substantially inelastic PET such that the balloon (212) expands only to a predetermined shape regardless of the level of inflationary pressure. The balloon (212) may be configured to expand against the cortical endplates to reduce a vertebral fracture, but not to penetrate the anterior pocket of the cavity into which the cancellous bone may be collected. Thus, in one version, the vertebral endplates are expanded to reduce the vertebral fracture without compacting or removing cancellous bone. Alternative versions may incorporate removing and/or compacting cancellous bone.
The step of Inflating the Fracture Reduction Apparatus to Reduce a Fracture Step (317) includes inflating the fracture reduction element (200), for example, against the exposed endplates of a vertebra to reduce a fracture. In one version, the balloon (212) is expanded uniformly with the introduction of a flowable material, such as saline, via the access port (202). In one version, the flexible but inelastic PET balloon (212) is configured to expand against the endplates of the vertebra without expanding to fill the entire cavity. In this manner, the bone fracture is reduced without compacting the bone retained within the anterior pocket of the cavity. After being positioned adjacent the endplates of the vertebra in accordance with Step (316), the balloon (212) is inflated with a syringe by introducing saline solution through the access port (202) and saline delivery lumen (222). The inflation of the balloon (212) corresponds to the volume of saline delivered through the syringe. A surgeon determines sufficient inflation by viewing the fracture reduction apparatus (200) under a fluoroscope and by monitoring the pressure gauge. Because the balloon (212), in the illustrated version, is constructed from flexible but substantially inelastic PET, the balloon expands only to its predetermined shape regardless of the level of inflationary pressure. The balloon (212) is configured to expand against the cortical endplates to reduce the fracture, but not to penetrate the anterior pocket of the cavity into which the cancellous bone has collected. Thus, in one version, the vertebral endplates are expanded to reduce the fracture without compacting or removing cancellous bone.
It will be appreciated that the balloon (212) may, alternatively, have an elastic configuration configured to fully fill a cavity, internal or external restraints to define the shape of the balloon, any suitable shape, any suitable radiopaque marker, any suitable surface effect or coating, any suitable number of chambers, compartments, or layers, and/or any suitable combination of materials or wall thicknesses. Although the balloon (212) has been described with reference to vertebral fracture reduction procedures, it will be appreciated that the methods described herein may be useful in other medical procedures such as orthopedic or cardiovascular applications. The balloon (212) may be used to compact cancellous bone to form a cavity and/or to form a seal around cortical bone to prevent bone cement or fluid leakage. The balloon (212) may be filled or inflated with any suitable material such as saline, bone cement, gas, dye, and/or any other fluid and may have a porous or non-porous surface. In one version the balloon (212) is permanently implantable where, for example, the balloon is inflated with bone cement and left within the vertebra
The step of Delivering Bone Cement Into the Cavity Step (318) includes delivering any suitable flowable material, such as bone cement, fluid, air, gas, medicament, bone paste, bone pieces, bone growth factor, or the like, through the cement delivery lumen (224) and the delivery tentacle (214) via access ports (204) and (206), respectively. Flowable material is delivered through the access ports (204) and (206) with a syringe that is manually plunged. Following Step (317), where the balloon (212) is inflated, the flowable material is delivered through the tentacle (214) to fill a portion of the cavity. As the cavity becomes filled with bone cement, or any other suitable flowable material, the balloon (212) may be gradually deflated in accordance with Step (319) to allow bone cement delivered through cement delivery lumen (224) to fill the void within the intervertebral space. Bone cement delivered through the tentacle (214) may be allowed to fully set or only partially set prior to delivering cement through delivery lumen (224). In one version, flowable material may delivered via the cement delivery lumen (224) and/or the delivery tentacle (214) prior to inflation of the balloon (212), where, for example, bone cement may be delivered via the tentacle (214) prior to inflation and, upon inflation, the bone cement is urged into any cracks that may be present in cortical bone.
Step (318) further includes delivering multiple successive layers of a material, such as bone cement, to the inner surface of a vertebral cavity. For example, a layer of bone cement may be delivered through the tentacle (214) and allowed to set for a predetermined period of time. Multiple successive layers of bone cement, therapeutic materials, fluids, or the like, may then be provided within the vertebral cavity. One or a plurality of layers or coatings may be delivered with the fracture reduction element (200) and/or other delivery instruments.
The step of Deflating the Fracture Reduction Apparatus Step (319) includes partially deflating the fracture reduction apparatus (200) such that bone cement can be delivered into the cavity. The balloon (212) of the fracture reduction apparatus (200) is deflated by withdrawing the syringe associated with access port (202) to draw fluid out of the balloon (212). Removing fluid with the syringe decreases the volume of saline within the balloon and creates a vacuum within the balloon that helps with retraction. Step (319) further includes fully deflating the balloon after a sufficient amount of bone cement has been delivered in accordance with Step (319). Step (319) further comprises mechanically wrapping the balloon (212).
The step of Removing the Fracture Reduction Apparatus Through the Cannula Step (320) includes removing the fracture reduction apparatus (200) after the balloon (212) has been substantially deflated and the cavity has been filled with bone cement. While the balloon (212) is mostly removed from the vertebra, bone cement is delivered through the cement delivery lumen (224) to fill the cavity. In this manner, the bone cement is able to fill the cavity while the vertebra is being compressed outwardly to cement the vertebra with the fracture reduced. The fracture reduction apparatus (200) is then removed through the cannula (14). The step of Removing the Cannula Step (321) includes removing the cannula (14) from the vertebral body after the vertebral fracture has been reduced and bone cement injected. Step (321) includes removing the cannula (14) from the patient's body. Step (321) may further include inserting a stopper device through the cannula (14), prior to removal of the cannula, that prevents bone cement or filler material from escaping from the vertebral cavity before beginning to set. Once the material is partially set, the stopper device and cannula (114) may be removed.
In the illustrated version, the flexible cutting element (418) is formed from a flexible material, such as stainless steel, and is coupled at a first end (422) to the end effector (406) at about the proximal end of the aperture (434). The flexible cutting element (418) is coupled at a second end (424) to a distal face of the transition member (432). Couplings may be laser welds or any other suitable connection. The flexible cutting element (418) may be coupled at or near the proximal end of the end effector (406), where a portion of the flexible cutting element (418) may be curled under the proximal lip of the end effector (406), as is shown with reference to end effector (106) in
The transition member (432) is configured to translate along the axis A-A such that axial motion relative to the end effector (406) may be translated to the flexible cutting element (418) to project the flexible cutting element (418) laterally through the aperture (434). The transition member (432) may be slidable along a track (426) of the end effector (406) such that rotational movement of the transition member (432) relative to the end effector (406) is restricted. For example, referring to
Still referring to
In
In one version, the flexible cutting element (418) is configured to extend from the proximal end to the distal end, or past the distal end, of the end effector (106), where the working length of the cutting element (418) may comprise substantially the full length of the end effector (406). A long working length may increase the cutting effectiveness and efficiency of the cutting element (418). Wrapping or curling one end of the flexible cutting element (418) around the proximal end of the end effector (406), such as illustrated in
When extended laterally, partially or fully, the flexible cutting element (418) may be used to form a cavity by rotating the end effector (406). The end effector (406) may be rotated by a second actuation member such as, for example, the rotational member (114) of the cutting device (100) shown in
Referring to
Referring to
Referring to
Version of the flexible cutting element may have a bias toward a “remembered” shape, be configured from a material having a thermal response, have a curvilinear shape when expanded, have a waveform configuration when expanded, or may otherwise be suitably configured. The memory retention aspects of a number of materials, such as Nitinol or stainless steel, allow for a wide range of possible configurations that are contemplated. Shape may be determined or varied depending on the hardness, material, response to temperature, flexibility, and/or other properties of the cutting elements provided.
For example, a first cavity portion may be created with a flexible cutting element having a first configuration. After completion of the first cavity portion, the flexible cutting element may be changed, deformed, or transitioned to a second configuration to change or increase the size of the first cavity to form a second cavity. It is contemplated that a user may alternate between shapes, configurations, and directions while creating a cavity without removing the cavitation device from the vertebral body. Configurations from Nitinol, for example, may be predetermined such that a user may select a predictable shape from a selection such that the user knows precisely which shape is being used to cut tissue. It will be appreciated that the shapes may be discreetly selectable configurations or, in an alternate version, may be points along a continuum that may be selected during or prior to a procedure. Providing a plurality of selectable configurations and/or allowing a user to adjust the configurations of the cutting element may permit more precise cavity creation or modification.
Versions of the flexible cutting element may be configured, articulated, or manipulated into any suitable shape such as, for example, an arcuate shape, a plateau shape, a curvilinear shape, a coiled shape, a helical shape, a laterally extended shape, a convex shape, a concave shape, a linear shape, and/or a sinusoidal or wave-shape. The shaft portion may be integral and contiguous with the flexible cutting element or may be a more clearly defined or discreet actuation member coupled with the flexible cutting element. The distal end of the flexible cutting element may be permanently fixed to an insertion tube, such as with a laser weld, such that the distal end remains static as the shaft is tensioned, rotated, compressed, articulated, and/or otherwise moved to change the flexible cutting element from a first shape to a second shape. The shaft and/or the insertion tube may be rotated in a clockwise and/or counterclockwise direction to form or modify a desired cavity.
In addition to being rotatable or movable in one or a plurality of directions, the flexible cutting elements may be provided with one or a plurality of surface effects to create different cutting effects. Multiple cutting edges or surface effects may be combined in a single flexible cutting element to affect tissue differently depending upon the direction of cut. The term “surface effect” shall refer to any geometry, feature, projection, texture, treatment, edging, sharpening, tapering, material type, hardness, memory retention, heat treating, response to heat, roughness, smoothness, sharpness, shape, and/or configuration of one or a plurality of surfaces, faces, edges, points, or the like, of the flexible cutting element or any other component of a cavitation device. Any suitable surface effect is contemplated including, but not limited to, serrations, waves, convexities, concavities, edging, points, sharpened edges, smooth edges, rounded edges, flat edges, hardened edges, or combinations thereof. It is further contemplated that a first surface effect may be provided on a first cutting surface and a second surface effect may be provided on a second cutting surface of a flexible cutting element such that varying the direction of rotation varies the type of cut or tissue effect.
Any suitable cross-section of the flexible cutting element may be provided, where altering the shape, size, and/or configuration of the flexible element may advantageously alter the cutting effect, the stiffness, the sharpness, and/or other properties of the flexible cutting element. It will be appreciated that the illustrated versions are disclosed by way of example only and are not intended to be limiting. Varying the cross-sections of the flexible cutting element along the length thereof may provide advantageous tissue effects and/or may be structurally advantageous.
Referring to
Thus, the versions of inflatable balloons may be particularly useful in minimally invasive surgery and may be used for at least the following specific applications, among others: (1) treatment or prevention of bone fracture, (2) joint fusion, (3) implant fixation, (4) tissue harvesting (especially bone), (5) removal of diseased tissue (hard or soft tissue), (6) general tissue removal (hard or soft tissue), (7) vertebroplasty, and (8) kyphoplasty.
Referring to
The tentacles or projections (714) may be made of any suitable material such as balloon material, semi-rigid material, short segments of rigid material, tacky material, memory retention material, adhesive material, rigid material, elastomeric material, and/or any other suitable material. The tentacles or projections (714) may be used to deliver any suitable material including the addition of an adhesive, bone matrix, bone paste, bone cement, synthetic paste, therapeutic agent, healing agent, structural agent, or other suitable material, may assist or speed the healing process, assist in fitting the balloon properly, provide a dye or visual marker or the like to visually identify the position of the balloon in a bone through scans or x-ray, provide structural support, or serve any other suitable purpose. Any suitable number of chambers for any suitable purpose are contemplated. Projections (714), tentacles, or the like, may then be pressurized or sized via the associated lumen (716) to a desirable pressure, size, configuration, shape, or the like, for the delivery of a particular material. Any suitable number of projections (714) may be used to deliver material at any suitable location.
Tentacles or projections (714), which include tubes, rigid tubes, semi-rigid tubes, lumens, flexible lumens, bars, spines, protuberances, extensions, support members, combinations thereof, or the like, may be inserted into, attached to, affixed to, coupled with, or formed integrally with the inflatable device (700), such as the fracture reduction apparatus (200) shown in
Additionally, the tentacles or projections (714) may be provided with multiple chambers, cavities, lumens, tubes, or the like configured to perform various functions. The projections may include a porous outer surface that is connected to a delivery lumen, where an adhesive or the like may be administered. Individual projections may be inflatable and may, for example, further include concentric or concatenated chambers.
Referring to
The versions presented in this disclosure are examples. Those skilled in the art can develop modifications and variants that do not depart from the spirit and scope of the disclosed cavitation devices and methods. Thus, the scope of the invention should be determined by appended claims and their legal equivalents, rather than by the examples given.
Claims
1. An apparatus for orthopedic cavity formation comprising:
- (a) an insertion member, wherein the insertion member includes an elongated body extending along a first axis;
- (b) an end effector, wherein the end effector is associated with the insertion member and is located distal to the insertion member;
- (c) a first articulation region, wherein the end effector is configured for articulation relative to the insertion member at the first articulation region such that the end effector is offset from the first axis; and
- (d) a cutting member, wherein the cutting member is configured to be selectively extended from the end effector between a retracted position and an extended position.
2. The apparatus of claim 1, wherein the first articulation region is a pivot pin about which the end effector articulates relative to the insertion member.
3. The apparatus of claim 1, wherein the end effector is configured to articulate relative to the insertion member into alignment with a second axis.
4. The apparatus of claim 3, wherein the cutting member is configured to extend outward when the end effector is articulated.
5. The apparatus of claim 1, wherein the end effector is configured to articulate relative to the insertion member with mechanical articulation.
6. The apparatus of claim 1, wherein the end effector is configured to rotate relative to the insertion member such that, when the cutting member is in the extended position, rotating the end effector causes the cutting member to cut cancellous vertebral bone.
7. The apparatus of claim 1, wherein the articulated end effector is configured to rotate with the cutting member extended to form a cavity.
8. The apparatus of claim 1, wherein the end effector is configured to be rotated and articulated simultaneously.
9. The apparatus of claim 1, further comprising a second articulation region, wherein a distal portion of the end effector is configured to articulate relative to a proximal portion of the end effector.
10. A method of tissue cavity formation comprising the steps of:
- providing a tissue cavity formation device, the tissue cavity formation device comprising: (a) an insertion member, having a proximal end and a distal end, extending along a first axis; (b) an end effector, the end effector being fixedly coupled at about the distal end of the insertion member, wherein the end effector is configured to pivot relative to the distal end of the insertion member from a first position, substantially aligned with the first axis of the insertion member, to a second position, and to rotate relative to the distal end of the insertion member; and (c) a cutting member, the cutting member being associated with the end effector, wherein the cutting member is selectively extended from the end effector;
- inserting the tissue cavity formation device into tissue
- transitioning the end effector relative to the insertion member from the first position to the second position;
- extending the cutting member from the end effector; and
- rotating the end effector relative to the distal end of the insertion member to form a tissue cavity.
11. The method of claim 10, wherein the step of transitioning the end effector relative to the insertion member comprises pivoting the end effector at about 40 degrees to at about 60 degrees relative to the first axis.
12. The method of claim 10, further comprising the step of forming an initial access passage in tissue, wherein the cavity formation device is inserted into the initial access passage.
13. The method of claim 10, wherein the step of inserting the cavity formation device into tissue comprises extending the cutting member from the end effector and rotating the end effector when the end effector is in the first position.
14. The method of claim 10, wherein the step of transitioning the end effector occurs concomitantly with the step of rotating the end effector.
15. The method of claim 10, wherein the tissue cavity is an orthopedic cavity.
16. The method of claim 15, wherein the orthopedic cavity is a spinal cavity.
17. The method of claim 16, wherein the spinal cavity is a vertebral cavity.
18. The method of claim 10, wherein the step of transitioning the end effector comprises the steps of:
- pivoting the end effector a first distance to form a first portion of the tissue cavity;
- and
- pivoting the end effector a second distance to form a second portion of the tissue cavity, wherein the second distance is greater than the first distance.
19. The method of claim 10, further comprising the steps of:
- providing a fracture reduction apparatus;
- inserting the fracture reduction apparatus into the tissue cavity;
- inflating the fracture reduction apparatus to reduce a fracture; and
- delivering bone cement into the tissue cavity.
20. The method of claim 10, wherein the step of transitioning the end effector comprises pivoting the end effector in a stepped manner such that a successively larger cavity is created.
Type: Application
Filed: Oct 22, 2013
Publication Date: Feb 13, 2014
Inventors: Brian Schumacher (Orlando, FL), Mark Goldin (Orlando, FL)
Application Number: 14/060,431
International Classification: A61B 17/16 (20060101);