Route Examining System And Method
A route examining system includes an application device, a control unit, a detection unit, and an identification unit. The application device is onboard a first vehicle of a first vehicle system traveling along a route. The control unit controls supply of electric current from a power source to the application device in order to electrically inject an examination signal into the route via the application device. The detection unit is off-board of the first vehicle and monitors electrical characteristics of the route in response to the examination signal being injected into the route. The identification unit is off-board of the first vehicle and examines the one or more electrical characteristics of the route in order to determine whether a section of the route extending between the first vehicle and the detection unit is potentially damaged based on the one or more electrical characteristics.
Latest General Electric Patents:
- CONTROL OF POWER CONVERTERS IN POWER TRANSMISSION NETWORKS
- RELATING TO THE CONTROL OF POWER CONVERTERS IN POWER TRANSMISSION NETWORKS
- ENHANCED TRANSFORMER FAULT FORECASTING BASED ON DISSOLVED GASES CONCENTRATION AND THEIR RATE OF CHANGE
- SYSTEMS AND METHODS FOR ADDITIVELY MANUFACTURING THREE-DIMENSIONAL OBJECTS WITH ARRAY OF LASER DIODES
- CLEANING FLUIDS FOR USE IN ADDITIVE MANUFACTURING APPARATUSES AND METHODS FOR MONITORING STATUS AND PERFORMANCE OF THE SAME
This application claims priority to U.S. Provisional Application No. 61/681,843, which was filed on 10 Aug. 2012, and is entitled “Adaptive Energy Transfer System And Method” (the “'843 Application”). The entire disclosure of the '843 Application is incorporated by reference. This application also claims priority to U.S. Provisional Application Ser. No. 61/729,188, which was filed on 21 Nov. 2012, is titled “Route Examining System And Method,” and the entire disclosure of which is incorporated by reference.
TECHNICAL FIELDEmbodiments of the subject matter disclosed herein relate to examining routes traveled by vehicles for damage to the routes.
BACKGROUNDRoutes that are traveled by vehicles may become damaged over time with extended use. For example, tracks on which rail vehicles travel may become damaged and/or broken. A variety of known systems are used to examine rail tracks to identify where the damaged and/or broken portions of the track are located. For example, some systems use cameras, lasers, and the like, to optically detect breaks and damage to the tracks. The cameras and lasers may be mounted on the rail vehicles, but the accuracy of the cameras and lasers may be limited by the speed at which the rail vehicles move during inspection of the route. As a result, the cameras and lasers may not be able to be used during regular operation (e.g., travel) of the rail vehicles.
Other systems use ultrasonic transducers that are placed at or near the tracks to ultrasonically inspect the tracks. These systems may require very slow movement of the transducers relative to the tracks in order to detect damage to the track. As a result, the transducers are usually manually positioned and moved along the track and/or are moved along the track by a relatively slow moving inspection vehicle. Inspections of the track can take a considerable amount of time, during which the inspected section of the route may be unusable by regular route traffic.
Other systems use wayside devices that send electric signals through the tracks. If the signals are not received by other wayside devices, then a circuit that includes the track is identified as being open and the track is considered to be broken. These systems are limited at least in that the wayside devices are immobile. As a result, the systems cannot inspect large spans of track and/or a large number of devices must be installed in order to inspect the large spans of track.
Other systems use human inspectors who move along the track to inspect for broken and/or damaged sections of track. This manual inspection is slow and prone to errors.
BRIEF DESCRIPTIONIn an embodiment, a system (e.g., a route examining system) includes an application device, a control unit, a detection unit, and an identification unit. The application device is configured to be disposed onboard a first vehicle of a first vehicle system traveling along a route and to be at least one of conductively or inductively coupled with the route during travel along the route. The control unit is configured to control supply of electric current from a power source to the application device in order to electrically inject an examination signal into the route via the application device. The detection unit is configured to be disposed off-board of the first vehicle, the detection unit configured to monitor one or more electrical characteristics of the route in response to the examination signal being injected into the route. The identification unit is configured to be disposed off-board of the first vehicle. The identification unit is configured to examine the one or more electrical characteristics of the route in order to determine whether a section of the route extending between the first vehicle and the detection unit is potentially damaged based on the one or more electrical characteristics.
In an embodiment, a method (e.g., for examining a route being traveled by a vehicle system) includes electrically injecting an examination signal into a route being traveled by a first vehicle system having at least a first vehicle. The examination signal is injected into the route using the first vehicle in the first vehicle system. The method also includes monitoring one or more electrical characteristics of the route at a monitoring location that is off-board of the first vehicle and identifying a potentially damaged section of the route disposed between the first vehicle and the monitoring location based on the one or more electrical characteristics.
In an embodiment, a system (e.g., a route examining system) includes an application device, a control unit, a detection unit, and an identification unit. The application device is configured to be disposed onboard a first vehicle system having at least first and second vehicles interconnected with each other along a route. The application device is configured to be disposed onboard the first vehicle of the first vehicle system and to engage the route during travel of the first vehicle system along the route. The control unit is configured to control supply of electric energy to the application device in order to electrically inject an examination signal into the route via the application device. The detection unit is configured to be disposed onboard the second vehicle of the vehicle system and to monitor one or more electrical characteristics of the route at the second vehicle in the first vehicle system. The identification unit is configured to identify a potentially damaged section of the route disposed between the first vehicle and the second vehicle based on the one or more electrical characteristics.
In an embodiment, a system (e.g., a route examining system) includes an application device, a control unit, a detection unit, and an identification unit. The application device is configured to be disposed onboard a first vehicle of a first vehicle system traveling along a route and to be at least one of conductively or inductively coupled with the route during travel along the route. The control unit is configured to control supply of electric current from a power source to the application device in order to electrically inject an examination signal into the route via the application device. The detection unit is configured to be disposed onboard the first vehicle and to monitor one or more electrical characteristics of the route in response to the examination signal being injected into the route. The identification unit is configured to be disposed onboard the first vehicle. The identification unit is configured to examine the one or more electrical characteristics of the route in order to determine whether a section of the route traversed by the first vehicle and electrically disposed between the application device and the detection unit is potentially damaged based on the one or more electrical characteristics.
Reference is made to the accompanying drawings in which particular embodiments and further benefits of the invention are illustrated as described in more detail in the description below, in which:
Embodiments of the inventive subject matter relate to methods and systems for examining a route being traveled upon by a vehicle system in order to identify potential sections of the route that are damaged or broken. In an embodiment, the vehicle system may examine the route by injecting an electrical signal into the route from a first vehicle in the vehicle system as the vehicle system travels along the route and monitoring the route at another, second vehicle that also is in the vehicle system. Detection of the signal at the second vehicle and/or detection of changes in the signal at the second vehicle may indicate a potentially damaged (e.g., broken or partially broken) section of the route between the first and second vehicles. In an embodiment, the route may be a track of a rail vehicle system and the first and second vehicle may be used to identify a potentially broken or partially broken section of one or more rails of the track. The electrical signal that is injected into the route may be powered by an onboard energy storage device, such as one or more batteries, and/or an off-board energy source, such as a catenary and/or electrified rail of the route. When the potentially damaged section of the route is identified, one or more responsive actions may be initiated. For example, the vehicle system may automatically slow down or stop. As another example, a warning signal may be communicated (e.g., transmitted or broadcast) to one or more other vehicle systems to warn the other vehicle systems of the potentially damaged section of the route, to one or more wayside devices disposed at or near the route so that the wayside devices can communicate the warning signals to one or more other vehicle systems. In another example, the warning signal may be communicated to an off-board facility that can arrange for the repair and/or further examination of the potentially damaged section of the route.
The term “vehicle” as used herein can be defined as a mobile machine that transports at least one of a person, people, or a cargo. For instance, a vehicle can be, but is not limited to being, a rail car, an intermodal container, a locomotive, a marine vessel, mining equipment, construction equipment, an automobile, and the like. A “vehicle system” includes two or more vehicles that are interconnected with each other to travel along a route. For example, a vehicle system can include two or more vehicles that are directly connected to each other (e.g., by a coupler) or that are indirectly connected with each other (e.g., by one or more other vehicles and couplers). A vehicle system can be referred to as a consist, such as a rail vehicle consist.
“Software” or “computer program” as used herein includes, but is not limited to, one or more computer readable and/or executable instructions that cause a computer or other electronic device to perform functions, actions, and/or behave in a desired manner. The instructions may be embodied in various forms such as routines, algorithms, modules or programs including separate applications or code from dynamically linked libraries. Software may also be implemented in various forms such as a stand-alone program, a function call, a servlet, an applet, an application, instructions stored in a memory, part of an operating system or other type of executable instructions. “Computer” or “processing element” or “computer device” as used herein includes, but is not limited to, any programmed or programmable electronic device that can store, retrieve, and process data. “Non-transitory computer-readable media” include, but are not limited to, a CD-ROM, a removable flash memory card, a hard disk drive, a magnetic tape, and a floppy disk. “Computer memory”, as used herein, refers to a storage device configured to store digital data or information which can be retrieved by a computer or processing element. “Controller,” “unit,” and/or “module,” as used herein, can to the logic circuitry and/or processing elements and associated software or program involved in controlling an energy storage system. The terms “signal”, “data”, and “information” may be used interchangeably herein and may refer to digital or analog forms.
The route 108 can be a body, surface, or medium on which the vehicle system 100 travels. In an embodiment, the route 108 can include or represent a body that is capable of conveying a signal between vehicles in the vehicle system 100, such as a conductive body capable of conveying an electrical signal (e.g., a direct current, alternating current, radio frequency, or other signal).
The examining system 102 can be distributed between or among two or more vehicles 104, 106 of the vehicle system 100. For example, the examining system 102 may include two or more components that operate to identify potentially damaged sections of the route 108, with at least one component disposed on each of two different vehicles 104, 106 in the same vehicle system 100. In the illustrated embodiment, the examining system 102 is distributed between or among two different vehicles 104. Alternatively, the examining system 102 may be distributed among three or more vehicles 104, 106. Additionally or alternatively, the examining system 102 may be distributed between one or more vehicles 104 and one or more vehicles 106, and is not limited to being disposed onboard a single type of vehicle 104 or 106. As described below, in another embodiment, the examining system 102 may be distributed between a vehicle in the vehicle system and an off-board monitoring location, such as a wayside device.
In operation, the vehicle system 100 travels along the route 108. A first vehicle 104 electrically injects an examination signal into the route 108. For example, the first vehicle 104A may apply a direct current, alternating current, radio frequency signal, or the like, to the route 108 as an examination signal. The examination signal propagates through or along the route 108. A second vehicle 104B or 104C may monitor one or more electrical characteristics of the route 108 when the examination signal is injected into the route 108.
The examining system 102 can be distributed among two separate vehicles 104 and/or 106. In the illustrated embodiment, the examining system 102 has components disposed onboard at least two of the propulsion-generating vehicles 104A, 104B, 104C. Additionally or alternatively, the examining system 102 may include components disposed onboard at least one of the non-propulsion generating vehicles 106. For example, the examining system 102 may be located onboard two or more propulsion-generating vehicles 104, two or more non-propulsion generating vehicles 106, or at least one propulsion-generating vehicle 104 and at least one non-propulsion generating vehicle 106.
In operation, during travel of the vehicle system 100 along the route 108, the examining system 102 electrically injects an examination signal into the route 108 at a first vehicle 104 or 106 (e.g., beneath the footprint of the first vehicle 104 or 106). For example, an onboard or off-board power source may be controlled to apply a direct current, alternating current, RF signal, or the like, to a track of the route 108. The examining system 102 monitors electrical characteristics of the route 108 at a second vehicle 104 or 106 of the same vehicle system 100 (e.g., beneath the footprint of the second vehicle 104 or 106) in order to determine if the examination signal is detected in the route 108. For example, the voltage, current, resistance, impedance, or other electrical characteristic of the route 108 may be monitored at the second vehicle 104, 106 in order to determine if the examination signal is detected and/or if the examination signal has been altered. If the portion of the route 108 between the first and second vehicles conducts the examination signal to the second vehicle, then the examination signal may be detected by the examining system 102. The examining system 102 may determine that the route 108 (e.g., the portion of the route 108 through which the examination signal propagated) is intact and/or not damaged.
On the other hand, if the portion of the route 108 between the first and second vehicles does not conduct the examination signal to the second vehicle (e.g., such that the examination signal is not detected in the route 108 at the second vehicle), then the examination signal may not be detected by the examining system 102. The examining system 102 may determine that the route 108 (e.g., the portion of the route 108 disposed between the first and second vehicles during the time period that the examination signal is expected or calculated to propagate through the route 108) is not intact and/or is damaged. For example, the examining system 102 may determine that the portion of a track between the first and second vehicles is broken such that a continuous conductive pathway for propagation of the examination signal does not exist. The examining system 102 can identify this section of the route as being a potentially damaged section of the route 108. In routes 108 that are segmented (e.g., such as rail tracks that may have gaps), the examining system 102 may transmit and attempt to detect multiple examination signals in order to prevent false detection of a broken portion of the route 108.
Because the examination signal may propagate relatively quickly through the route 108 (e.g., faster than a speed at which the vehicle system 100 moves), the route 108 can be examined using the examination signal when the vehicle system 100 is moving, such as transporting cargo or otherwise operating at or above a non-zero, minimum speed limit of the route 108.
Additionally or alternatively, the examining system 102 may detect one or more changes in the examination signal at the second vehicle. The examination signal may propagate through the route 108 from the first vehicle to the second vehicle. But, due to damaged portions of the route 108 between the first and second vehicles, one or more signal characteristics of the examination signal may have changed. For example, the signal-to-noise ratio, intensity, power, or the like, of the examination signal may be known or designated when injected into the route 108 at the first vehicle. One or more of these signal characteristics may change (e.g., deteriorate or decrease) during propagation through a mechanically damaged or deteriorated portion of the route 108, even though the examination signal is received (e.g., detected) at the second vehicle. The signal characteristics can be monitored upon receipt of the examination signal at the second vehicle. Based on changes in one or more of the signal characteristics, the examining system 102 may identify the portion of the route 108 that is disposed between the first and second vehicles as being a potentially damaged portion of the route 108. For example, if the signal-to-noise ratio, intensity, power, or the like, of the examination signal decreases below a designated threshold and/or decreases by more than a designated threshold decrease, then the examining system 102 may identify the section of the route 108 as being potentially damaged.
In response to identifying a section of the route 108 as being damaged or potentially damaged, the examining system 102 may initiate one or more responsive actions. For example, the examining system 102 can automatically slow down or stop movement of the vehicle system 100. The examining system 102 can automatically issue a warning signal to one or more other vehicle systems traveling nearby of the potentially damaged section of the route 108 and where the potentially damaged section of the route 108 is located. The examining system 102 may automatically communicate a warning signal to a stationary wayside device located at or near the route 108 that notifies the device of the potentially damaged section of the route 108 and the location of the potentially damaged section. The stationary wayside device can then communicate a signal to one or more other vehicle systems traveling nearby of the potentially damaged section of the route 108 and where the potentially damaged section of the route 108 is located. The examining system 102 may automatically issue an inspection signal to an off-board facility, such as a repair facility, that notifies the facility of the potentially damaged section of the route 108 and the location of the section. The facility may then send one or more inspectors to check and/or repair the route 108 at the potentially damaged section. Alternatively, the examining system 102 may notify an operator of the potentially damaged section of the route 108 and the operator may then manually initiate one or more responsive actions.
The examining system 200 includes several components described below that are disposed onboard the vehicles 202, 204. For example, the illustrated embodiment of the examining system 200 includes a control unit 208, an application device 210, an onboard power source 212 (“Battery” in
The control unit 206 controls supply of electric current to the application device 210. In an embodiment, the application device 210 includes one or more conductive bodies that engage the route 108 as the vehicle system that includes the vehicle 202 travels along the route 108. For example, the application device 210 can include a conductive shoe, brush, or other body that slides along an upper and/or side surface of a track such that a conductive pathway is created that extends through the application device 210 and the track. Additionally or alternatively, the application device 210 can include a conductive portion of a wheel of the first vehicle 202, such as the conductive outer periphery or circumference of the wheel that engages the route 108 as the first vehicle 202 travels along the route 108. In another embodiment, the application device 210 may be inductively coupled with the route 108 without engaging or touching the route 108 or any component that engages the route 108.
The application device 210 is conductively coupled with the switch 224, which can represent one or more devices that control the flow of electric current from the onboard power source 212 and/or the conditioning circuits 214. The switch 224 can be controlled by the control unit 206 so that the control unit 206 can turn on or off the flow of electric current through the application device 210 to the route 108. In an embodiment, the switch 224 also can be controlled by the control unit 206 to vary one or more waveforms and/or waveform characteristics (e.g., phase, frequency, amplitude, and the like) of the current that is applied to the route 108 by the application device 210.
The onboard power source 212 represents one or more devices capable of storing electric energy, such as one or more batteries, capacitors, flywheels, and the like. Additionally or alternatively, the power source 212 may represent one or more devices capable of generating electric current, such as an alternator, generator, photovoltaic device, gas turbine, or the like. The power source 212 is coupled with the switch 224 so that the control unit 206 can control when the electric energy stored in the power source 212 and/or the electric current generated by the power source 212 is conveyed as electric current (e.g., direct current, alternating current, an RF signal, or the like) to the route 108 via the application device 210.
The conditioning circuit 214 represents one or more circuits and electric components that change characteristics of electric current. For example, the conditioning circuit 214 may include one or more inverters, converters, transformers, batteries, capacitors, resistors, inductors, and the like. In the illustrated embodiment, the conditioning circuit 214 is coupled with a connecting assembly 226 that is configured to receive electric current from an off-board source. For example, the connecting assembly 226 may include a pantograph that engages an electrified conductive pathway 228 (e.g., a catenary) extending along the route 108 such that the electric current from the catenary 228 is conveyed via the connecting assembly 226 to the conditioning circuit 214. Additionally or alternatively, the electrified conductive pathway 228 may represent an electrified portion of the route 108 (e.g., an electrified rail) and the connecting assembly 226 may include a conductive shoe, brush, portion of a wheel, or other body that engages the electrified portion of the route 108. Electric current is conveyed from the electrified portion of the route 108 through the connecting assembly 226 and to the conditioning circuit 214.
The electric current that is conveyed to the conditioning circuit 214 from the power source 212 and/or the off-board source (e.g., via the connecting assembly 226) can be altered by the conditioning circuit 214. For example, the conditioning circuit 214 can change the voltage, current, frequency, phase, magnitude, intensity, waveform, and the like, of the current that is received from the power source 212 and/or the connecting assembly 226. The modified current can be the examination signal that is electrically injected into the route 108 by the application device 210. Additionally or alternatively, the control unit 206 can form the examination signal by controlling the switch 224. For example, the examination signal can be formed by turning the switch 224 on to allow current to flow from the conditioning circuit 214 and/or the power source 212 to the application device 210.
In an embodiment, the control unit 206 may control the conditioning circuit 214 to form the examination signal. For example, the control unit 206 may control the conditioning circuit 214 to change the voltage, current, frequency, phase, magnitude, intensity, waveform, and the like, of the current that is received from the power source 212 and/or the connecting assembly 226 to form the examination signal.
The examination signal is conducted through the application device 210 to the route 108, and is electrically injected into a conductive portion of the route 108. For example, the examination signal may be conducted into a conductive track of the route 108. In another embodiment, the application device 210 may not directly engage (e.g., touch) the route 108, but may be wirelessly coupled with the route 108 in order to electrically inject the examination signal into the route 108 (e.g., via induction).
The conductive portion of the route 108 that extends between the first and second vehicles 202, 204 during travel of the vehicle system may form a track circuit through which the examination signal may be conducted. The first vehicle 202 can be coupled (e.g., coupled physically, coupled wirelessly, among others) to the track circuit by the application device 210. The power source (e.g., the onboard power source 212 and/or the off-board electrified conductive pathway 228) can transfer power (e.g., the examination signal) through the track circuit toward the second vehicle 204.
By way of example and not limitation, the first vehicle 202 can be coupled to a track of the route 108, and the track can be the track circuit that extends and conductively couples one or more components of the examining system 200 on the first vehicle 202 with one or more components of the examining system 200 on the second vehicle 204.
In an embodiment, the control unit 206 includes or represents the manager component described in the '843 Application. For example, the control unit 206 may represent the manager component 210 in the '843 Application. Such a manager component can be configured to activate a transmission of electric current into the route 108 via the application device 210. In another instance, the manager component can activate or deactivate a transfer of the portion of power from the onboard and/or off-board power source to the application device 210, such as by controlling the switch and/or conditioning circuit. Moreover, the manager component can adjust parameter(s) associated with the portion of power that is transferred to the route 108. For instance, the manager component can adjust an amount of power transferred, a frequency at which the power is transferred (e.g., a pulsed power delivery, AC power, among others), a duration of time the portion of power is transferred, among others. Such parameter(s) can be adjusted by the manager component based on at least one of a geographic location of the vehicle or the device or an identification of the device (e.g., type, location, make, model, among others).
The manager component can leverage a geographic location of the vehicle or the device in order to adjust a parameter for the portion of power that can be transferred to the device from the power source. For instance, the amount of power transferred can be adjusted by the manager component based on the device power input. By way of example and not limitation, the portion of power transferred can meet or be below the device power input in order to reduce risk of damage to the device. In another example, the geographic location of the vehicle and/or the device can be utilized to identify a particular device and, in turn, a power input for such device. The geographic location of the vehicle and/or the device can be ascertained by a location on a track circuit, identification of the track circuit, Global Positioning Service (GPS), among others.
The detection unit 218 disposed onboard the second vehicle 204 as shown in
The detection unit 218 monitors one or more electrical characteristics of the route 108 using the detection device 230. For example, the voltage of a direct current conducted by the route 108 may be detected by monitoring the voltage conducted by from the route 108 to the detection device 230 and/or the current (e.g., frequency, amps, phases, or the like) of an alternating current or RF signal being conducted by the route 108 may be detected by monitoring the current conducted by the route 108 to the detection device 230. As another example, the signal-to-noise ratio of a signal being conducted by the detection device 230 from the route 108 may be detected by the detection unit 218 examining the signal conducted by the detection device 230 (e.g., a received signal) and comparing the received signal to a designated signal. For example, the examination signal that is injected into the route 108 using the application device 210 may include a designated signal or portion of a designated signal. The detection unit 218 may compare the received signal that is conducted from the route 108 into the detection device 230 with this designated signal in order to measure a signal-to-noise ratio of the received signal.
The detection unit 218 determines one or more electrical characteristics of the signal (e.g., voltage, frequency, phase, waveform, intensity, or the like) that is received (e.g., picked up) by the detection device 230 from the route 108 and reports the characteristics of the received signal to the identification unit 220. If no signal is received by the detection device 230, then the detection unit 218 may report the absence of such a signal to the identification unit 220. For example, if the detection unit 218 does not detect at least a designated voltage, designated current, or the like, as being received by the detection device 230, then the detection unit 218 may not detect any received signal. Alternatively or additionally, the detection unit 218 may communicate the detection of a signal that is received by the detection device 230 only upon detection of the signal by the detection device 230.
In an embodiment, the detection unit 218 may determine the characteristics of the signals received by the detection device 230 in response to a notification received from the control unit 206 in the first vehicle 202. For example, when the control unit 206 is to cause the application device 210 to inject the examination signal into the route 108, the control unit 206 may direct the communication unit 216 to transmit a notification signal to the detection device 230 via the communication unit 222 of the second vehicle 204. The communication units 216, 222 may include respective antennas 232, 234 and associated circuitry for wirelessly communicating signals between the vehicles 202, 204, and/or with off-board locations. The communication unit 216 may wirelessly transmit a notification to the detection unit 218 that instructs the detection unit 218 as to when the examination signal is to be input into the route 108. Additionally or alternatively, the communication units 216, 222 may be connected via one or more wires, cables, and the like, such as a multiple unit (MU) cable, trainline, or other conductive pathway(s), to allow communication between the communication units 216, 222.
The detection unit 218 may begin monitoring signals received by the detection device 230. For example, the detection unit 218 may not begin or resume monitoring the received signals of the detection device 230 unless or until the detection unit 218 is instructed that the control unit 206 is causing the injection of the examination signal into the route 108. Alternatively or additionally, the detection unit 218 may periodically monitor the detection device 230 for received signals and/or may monitor the detection device 230 for received signals upon being manually prompted by an operator of the examining system 200.
The identification unit 220 receives the characteristics of the received signal from the detection unit 218 and determines if the characteristics indicate receipt of all or a portion of the examination signal injected into the route 108 by the first vehicle 202. Although the detection unit 218 and the identification unit 220 are shown as separate units, the detection unit 218 and the identification unit 220 may refer to the same unit. For example, the detection unit 218 and the identification unit 220 may be a single hardware component disposed onboard the second vehicle 204.
The identification unit 220 examines the characteristics and determines if the characteristics indicate that the section of the route 108 disposed between the first vehicle 202 and the second vehicle 204 is damaged or at least partially damaged. For example, if the application device 210 injected the examination signal into a track of the route 108 and one or more characteristics (e.g., voltage, current, frequency, intensity, signal-to-noise ratio, and the like) of the examination signal are not detected by the detection unit 218, then, the identification unit 220 may determine that the section of the track that was disposed between the vehicles 202, 204 is broken or otherwise damaged such that the track cannot conduct the examination signal. Additionally or alternatively, the identification unit 220 can examine the signal-to-noise ratio of the signal detected by the detection unit 218 and determine if the section of the route 108 between the vehicles 202, 204 is potentially broken or damaged. For example, the identification unit 220 may identify this section of the route 108 as being broken or damaged if the signal-to-noise ratio of one or more (or at least a designated amount) of the received signals is less than a designated ratio.
The identification unit 220 may include or be communicatively coupled (e.g., by one or more wired and/or wireless connections that allow communication) with a location determining unit that can determine the location of the vehicle 204 and/or vehicle system. For example, the location determining unit may include a GPS unit or other device that can determine where the first vehicle and/or second vehicle are located along the route 108. The distance between the first vehicle 202 and the second vehicle 204 along the length of the vehicle system may be known to the identification unit 220, such as by inputting the distance into the identification unit 220 using one or more input devices and/or via the communication unit 222.
The identification unit 220 can identify which section of the route 108 is potentially damaged based on the location of the first vehicle 202 and/or the second vehicle 204 during transmission of the examination signal through the route 108. For example, the identification unit 220 can identify the section of the route 108 that is within a designated distance of the vehicle system, the first vehicle 202, and/or the second vehicle 204 as the potentially damaged section when the identification unit 220 determines that the examination signal is not received or has a decreased signal-to-noise ratio.
Additionally or alternatively, the identification unit 220 can identify which section of the route 108 is potentially damaged based on the locations of the first vehicle 202 and the second vehicle 204 during transmission of the examination signal through the route 108, the direction of travel of the vehicle system that includes the vehicles 202, 204, the speed of the vehicle system, and/or a speed of propagation of the examination signal through the route 108. The speed of propagation of the examination signal may be a designated speed that is based on one or more of the material(s) from which the route 108 is formed, the type of examination signal that is injected into the route 108, and the like. In an embodiment, the identification unit 220 may be notified when the examination signal is injected into the route 108 via the notification provided by the control unit 206. The identification unit 220 can then determine which portion of the route 108 is disposed between the first vehicle 202 and the second vehicle 204 as the vehicle system moves along the route 108 during the time period that corresponds to when the examination signal is expected to be propagating through the route 108 between the vehicles 202, 204 as the vehicles 202, 204 move. This portion of the route 108 may be the section of potentially damaged route that is identified.
One or more responsive actions may be initiated when the potentially damaged section of the route 108 is identified. For example, in response to identifying the potentially damaged portion of the route 108, the identification unit 220 may notify the control unit 206 via the communication units 222, 216. The control unit 206 and/or the identification unit 220 can automatically slow down or stop movement of the vehicle system. For example, the control unit 206 and/or identification unit 220 can be communicatively coupled with one or more propulsion systems (e.g., engines, alternators/generators, motors, and the like) of one or more of the propulsion-generating vehicles in the vehicle system. The control unit 206 and/or identification unit 220 may automatically direct the propulsion systems to slow down and/or stop.
With continued reference to
In addition or as an alternate to the responsive actions that may be taken when a potentially damaged section of the route 108 is identified, the examining system 200 onboard the first vehicle system 300 may automatically notify the second vehicle system 302. The control unit 206 and/or the identification unit 220 may wirelessly communicate (e.g., transmit or broadcast) a warning signal to the second vehicle system 302. The warning signal may notify the second vehicle system 302 of the location of the potentially damaged section of the route 108 before the second vehicle system 302 arrives at the potentially damaged section. The second vehicle system 302 may be able to slow down, stop, or move to another route to avoid traveling over the potentially damaged section.
Additionally or alternatively, the control unit 206 and/or identification unit 220 may communicate a warning signal to a stationary wayside device 304 in response to identifying a section of the route 108 as being potentially damaged. The device 304 can be, for instance, wayside equipment, an electrical device, a client asset, a defect detection device, a device utilized with Positive Train Control (PTC), a signal system component(s), a device utilized with Automated Equipment Identification (AEI), among others. In one example, the device 304 can be a device utilized with AEI. AEI is an automated equipment identification mechanism that can aggregate data related to equipment for the vehicle. By way of example and not limitation, AEI can utilize passive radio frequency technology in which a tag (e.g., passive tag) is associated with the vehicle and a reader/receiver receives data from the tag when in geographic proximity thereto. The AEI device can be a reader or receiver that collects or stores data from a passive tag, a data store that stores data related to passive tag information received from a vehicle, an antenna that facilitates communication between the vehicle and a passive tag, among others. Such an AEI device may store an indication of where the potentially damaged section of the route 108 is located so that the second vehicle system 302 may obtain this indication when the second vehicle system 302 reads information from the AEI device.
In another example, the device 304 can be a signaling device for the vehicle. For instance, the device 304 can provide visual and/or audible warnings to provide warning to other entities such as other vehicle systems (e.g., the vehicle system 302) of the potentially damaged section of the route 108. The signaling devices can be, but not limited to, a light, a motorized gate arm (e.g., motorized motion in a vertical plane), an audible warning device, among others.
In another example, the device 304 can be utilized with PTC. PTC can refer to communication-based/processor-based vehicle control technology that provides a system capable of reliably and functionally preventing collisions between vehicle systems, over speed derailments, incursions into established work zone limits, and the movement of a vehicle system through a route switch in the improper position. PTC systems can perform other additional specified functions. Such a PTC device 304 can provide warnings to the second vehicle system 204 that cause the second vehicle system 204 to automatically slow and/or stop, among other responsive actions, when the second vehicle system 204 approaches the location of the potentially damaged section of the route 108.
In another example, the wayside device 304 can act as a beacon or other transmitting or broadcasting device other than a PTC device that communicates warnings to other vehicles or vehicle systems traveling on the route 108 of the identified section of the route 108 that is potentially damaged.
The control unit 206 and/or identification unit 220 may communicate a repair signal to an off-board facility 306 in response to identifying a section of the route 108 as being potentially damaged. The facility 306 can represent a location, such as a dispatch or repair center, that is located off-board of the vehicle systems 202, 204. The repair signal may include or represent a request for further inspection and/or repair of the route 108 at the potentially damaged section. Upon receipt of the repair signal, the facility 306 may dispatch one or more persons and/or equipment to the location of the potentially damaged section of the route 108 in order to inspect and/or repair the route 108 at the location.
Additionally or alternatively, the control unit 206 and/or identification unit 220 may notify an operator of the vehicle system of the potentially damaged section of the route 108 and suggest the operator initiate one or more of the responsive actions described herein.
In another embodiment, the examining system 200 may identify the potentially damaged section of the route 108 using the wayside device 304. For example, the detection device 230, the detection unit 218, and the communication unit 222 may be located at or included in the wayside device 304. The control unit 206 on the vehicle system may determine when the vehicle system is within a designated distance of the wayside device 304 based on an input or known location of the wayside device 304 and the monitored location of the vehicle system (e.g., from data obtained from a location determination unit). Upon traveling within a designated distance of the wayside device 304, the control unit 206 may cause the examination signal to be injected into the route 108. The wayside device 304 can monitor one or more electrical characteristics of the route 108 similar to the second vehicle 204 described above. If the electrical characteristics indicate that the section of the route 108 between the vehicle system and the wayside device 304 is damaged or broken, the wayside device 304 can initiate one or more responsive actions, such as by directing the vehicle system to automatically slow down and/or stop, warning other vehicle systems traveling on the route 108, requesting inspection and/or repair of the potentially damaged section of the route 108, and the like.
The examining system 500 includes several components described below that are disposed onboard the vehicle 502. For example, the illustrated embodiment of the examining system 500 includes a control unit 508 (which may be similar to or represent the control unit 208 shown in
As described above, the control unit 506 controls supply of electric current to the application device 510 that engages or is inductively coupled with the route 108 as the vehicle 502 travels along the route 108. The application device 510 is conductively coupled with the switch 524 that is controlled by the control unit 506 so that the control unit 506 can turn on or off the flow of electric current through the application device 510 to the route 108. The power source 512 is coupled with the switch 524 so that the control unit 506 can control when the electric energy stored in the power source 512 and/or the electric current generated by the power source 512 is conveyed as electric current to the route 108 via the application device 510.
The conditioning circuit 514 may be coupled with a connecting assembly 526 that is similar to or represents the connecting assembly 226 shown in
The electric current that is conveyed to the conditioning circuit 514 from the power source 512 and/or the off-board source can be altered by the conditioning circuit 514. The modified current can be the examination signal that is electrically injected into the route 108 by the application device 510. Optionally, the control unit 506 can form the examination signal by controlling the switch 524, as described above. Optionally, the control unit 506 may control the conditioning circuit 514 to form the examination signal, also as described above.
The examination signal is conducted through the application device 510 to the route 108, and is electrically injected into a conductive portion of the route 108. The conductive portion of the route 108 that extends between the application device 510 and the detection device 530 of the vehicle 502 during travel may form a track circuit through which the examination signal may be conducted.
The control unit 506 may include or represent the manager component described in the '843 Application. For example, the control unit 506 may represent the manager component 210 in the '843 Application. Such a manager component can be configured to activate a transmission of electric current into the route 108 via the application device 510. In another instance, the manager component can activate or deactivate a transfer of the portion of power from the onboard and/or off-board power source to the application device 510, such as by controlling the switch and/or conditioning circuit. Moreover, the manager component can adjust parameter(s) associated with the portion of power that is transferred to the route 108.
The detection unit 518 monitors the route 108 to attempt to detect the examination signal that is injected into the route 108 by the application device 510. In one aspect, the detection unit 518 may follow behind the application device 510 along a direction of travel of the vehicle 502. The detection unit 518 is coupled with the detection device 530 that engages or is inductively coupled with the route 108, as described above.
The detection unit 518 monitors one or more electrical characteristics of the route 108 using the detection device 530. The detection unit 518 may compare the received signal that is conducted from the route 108 into the detection device 530 with this designated signal in order to measure a signal-to-noise ratio of the received signal. The detection unit 518 determines one or more electrical characteristics of the signal by the detection device 530 from the route 108 and reports the characteristics of the received signal to the identification unit 520. If no signal is received by the detection device 530, then the detection unit 518 may report the absence of such a signal to the identification unit 520. In an embodiment, the detection unit 518 may determine the characteristics of the signals received by the detection device 530 in response to a notification received from the control unit 506, as described above.
The detection unit 518 may begin monitoring signals received by the detection device 530. For example, the detection unit 518 may not begin or resume monitoring the received signals of the detection device 530 unless or until the detection unit 518 is instructed that the control unit 506 is causing the injection of the examination signal into the route 108. Alternatively or additionally, the detection unit 518 may periodically monitor the detection device 530 for received signals and/or may monitor the detection device 530 for received signals upon being manually prompted by an operator of the examining system 500.
In one aspect, the application device 510 includes a first axle 528 and/or a first wheel 530 that is connected to the axle 528 of the vehicle 502. The axle 528 and wheel 530 may be connected to a first truck 532 of the vehicle 502. The application device 510 may be conductively coupled with the route 108 (e.g., by directly engaging the route 108) to inject the examination signal into the route 108 via the axle 528 and the wheel 530, or via the wheel 530 alone. The detection device 530 may include a second axle 534 and/or a second wheel 536 that is connected to the axle 534 of the vehicle 502. The axle 534 and wheel 536 may be connected to a second truck 538 of the vehicle 502. The detection device 530 may monitor the electrical characteristics of the route 108 via the axle 534 and the wheel 536, or via the wheel 536 alone. Optionally, the axle 534 and/or wheel 536 may inject the signal while the other axle 528 and/or wheel 530 monitors the electrical characteristics.
The identification unit 520 receives the characteristics of the received signal from the detection unit 518 and determines if the characteristics indicate receipt of all or a portion of the examination signal injected into the route 108 by the application device 510. The identification unit 520 examines the characteristics and determines if the characteristics indicate that the section of the route 108 disposed between the application device 510 and the detection device 530 is damaged or at least partially damaged, as described above.
The identification unit 520 may include or be communicatively coupled with a location determining unit that can determine the location of the vehicle 502. The distance between the application device 510 and the detection device 530 along the length of the vehicle 502 may be known to the identification unit 520, such as by inputting the distance into the identification unit 520 using one or more input devices and/or via the communication unit 516.
The identification unit 520 can identify which section of the route 108 is potentially damaged based on the location of the vehicle 502 during transmission of the examination signal through the route 108, the direction of travel of the vehicle 502, the speed of the vehicle 502, and/or a speed of propagation of the examination signal through the route 108, as described above.
One or more responsive actions may be initiated when the potentially damaged section of the route 108 is identified. For example, in response to identifying the potentially damaged portion of the route 108, the identification unit 520 may notify the control unit 506. The control unit 506 and/or the identification unit 520 can automatically slow down or stop movement of the vehicle 502 and/or the vehicle system that includes the vehicle 502. For example, the control unit 506 and/or identification unit 520 can be communicatively coupled with one or more propulsion systems (e.g., engines, alternators/generators, motors, and the like) of one or more of the propulsion-generating vehicles in the vehicle system. The control unit 506 and/or identification unit 520 may automatically direct the propulsion systems to slow down and/or stop.
At 402, an examination signal is injected into the route being traveled by the vehicle system at a first vehicle. For example, a direct current, alternating current, RF signal, or another signal may be conductively and/or inductively injected into a conductive portion of the route 108, such as a track of the route 108.
At 404, one or more electrical characteristics of the route are monitored at another, second vehicle in the same vehicle system. For example, the route 108 may be monitored to determine if any voltage or current is being conducted by the route 108.
At 406, a determination is made as to whether the one or more monitored electrical characteristics indicate receipt of the examination signal. For example, if a direct current, alternating current, or RF signal is detected in the route 108, then the detected current or signal may indicate that the examination signal is conducted through the route 108 from the first vehicle to the second vehicle in the same vehicle system. As a result, the route 108 may be substantially intact between the first and second vehicles. Optionally, the examination signal may be conducted through the route 108 between components joined to the same vehicle. As a result, the route 108 may be substantially intact between the components of the same vehicle. Flow of the method 400 may proceed to 408. On the other hand, if no direct current, alternating current, or RF signal is detected in the route 108, then the absence of the current or signal may indicate that the examination signal is not conducted through the route 108 from the first vehicle to the second vehicle in the same vehicle system or between components of the same vehicle. As a result, the route 108 may be broken between the first and second vehicles, or between the components of the same vehicle. Flow of the method 400 may then proceed to 412.
At 408, a determination is made as to whether a change in the one or more monitored electrical characteristics indicates damage to the route. For example, a change in the examination signal between when the signal was injected into the route 108 and when the examination signal is detected may be determined This change may reflect a decrease in voltage, a decrease in amps, a change in frequency and/or phase, a decrease in a signal-to-noise ratio, or the like. The change can indicate that the examination signal was conducted through the route 108, but that damage to the route 108 may have altered the signal. For example, if the change in voltage, amps, frequency, phase, signal-to-noise ratio, or the like, of the injected examination signal to the detected examination signal exceeds a designated threshold amount (or if the monitored characteristic decreased below a designated threshold), then the change may indicate damage to the route 108, but not a complete break in the route 108. As a result, flow of the method 400 can proceed to 412.
On the other hand, if the change in voltage, amps, frequency, phase, signal-to-noise ratio, or the like, of the injected examination signal to the detected examination signal does not exceed the designated threshold amount (and/or if the monitored characteristic does not decrease below a designated threshold), then the change may not indicate damage to the route 108. As a result, flow of the method 400 can proceed to 410.
At 410, the section of the route that is between the first and second vehicles in the vehicle system or between the components of the same vehicle is not identified as potentially damaged, and the vehicle system may continue to travel along the route. Additionally examination signals may be injected into the route at other locations as the vehicle system moves along the route.
At 412, the section of the route that is or was disposed between the first and second vehicles, or between the components of the same vehicle, is identified as a potentially damaged section of the route. For example, due to the failure of the examination signal to be detected and/or the change in the examination signal that is detected, the route may be broken and/or damaged between the first vehicle and the second vehicle, or between the components of the same vehicle.
At 414, one or more responsive actions may be initiated in response to identifying the potentially damaged section of the route. As described above, these actions can include, but are not limited to, automatically and/or manually slowing or stopping movement of the vehicle system, warning other vehicle systems about the potentially damaged section of the route, notifying wayside devices of the potentially damaged section of the route, requesting inspection and/or repair of the potentially damaged section of the route, and the like.
In an embodiment, a system (e.g., a route examining system) includes an application device, a control unit, a detection unit, and an identification unit. The application device is configured to be disposed onboard a first vehicle of a first vehicle system traveling along a route and to be at least one of conductively or inductively coupled with the route during travel along the route. The control unit is configured to control supply of electric current from a power source to the application device in order to electrically inject an examination signal into the route via the application device. The detection unit is configured to be disposed off-board of the first vehicle, the detection unit configured to monitor one or more electrical characteristics of the route in response to the examination signal being injected into the route. The identification unit is configured to be disposed off-board of the first vehicle. The identification unit is configured to examine the one or more electrical characteristics of the route in order to determine whether a section of the route extending between the first vehicle and the detection unit is potentially damaged based on the one or more electrical characteristics.
In another aspect, at least one of the detection unit or the identification unit is disposed onboard a second vehicle of the vehicle system, and the first and second vehicles are interconnected with each other in the vehicle system.
In another aspect, the first vehicle is a first locomotive and the second vehicle is a second locomotive.
In another aspect, at least one of the detection unit or the identification unit is disposed at a stationary wayside device located along the route.
In another aspect, the control unit is configured to control application of at least one of a designated direct current, a designated alternating current, or a designated radio frequency signal of the examination signal from the power source to a conductive portion of the route.
In another aspect, the power source is an onboard energy storage device and the control unit is configured to inject the examination signal into the route by controlling when electric current is conducted from the onboard energy storage device to the application device.
In another aspect, the power source is an off-board energy storage device and the control unit is configured to inject the examination signal into the route by controlling when electric current is conducted from the off-board energy storage device to the application device.
In an embodiment, a method (e.g., for examining a route being traveled by a vehicle system) includes electrically injecting an examination signal into a route being traveled by a first vehicle system having at least a first vehicle. The examination signal is injected into the route using the first vehicle in the first vehicle system. The method also includes monitoring one or more electrical characteristics of the route at a monitoring location that is off-board of the first vehicle and identifying a potentially damaged section of the route disposed between the first vehicle and the monitoring location based on the one or more electrical characteristics.
In another aspect, the one or more electrical characteristics are monitored from a second vehicle of the vehicle system that is interconnected with the first vehicle.
In another aspect, the one or more electrical characteristics are monitored from a stationary wayside device disposed alongside the route.
In another aspect, electrically injecting the examination signal into the route includes applying at least one of a designated direct current, a designated alternating current, or a designated radio frequency (RF) signal to a conductive portion of the route.
In another aspect, electrically injecting the examination signal into the route includes applying electric current obtained from an onboard power source of the first vehicle system.
In another aspect, the method also includes communicating a notification to the monitoring location when the examination signal is injected into the route. Monitoring the one or more electrical characteristics of the route can be performed responsive to receiving the notification.
In another aspect, identifying the potentially damaged section of the route includes determining if a track of the route is broken when the examination signal is not received at the monitoring location.
In another aspect, identifying the potentially damaged section of the route includes determining if a track of the route is potentially damaged when a signal-to-noise ratio of the examination signal that is received at the monitoring location is at least one of less than a designated threshold or has decreased by at least a designated amount.
In another aspect, the method also includes automatically initiating one or more responsive actions when the potentially damaged section of the route is identified.
In another aspect, the one or more responsive actions include automatically slowing movement of the first vehicle system.
In another aspect, the one or more responsive actions include automatically stopping movement of the first vehicle system within a designated time period.
In another aspect, the one or more responsive actions include communicating a warning signal to a second vehicle system that is separate from the first vehicle system and that is following the first vehicle system along the route. The warning signal is configured to notify the second vehicle system of the potentially damaged section of the route.
In another aspect, the one or more responsive actions include communicating a repair signal to an off-board location to request repair of the potentially damaged section of the route.
In an embodiment, a system (e.g., a route examining system) includes an application device, a control unit, a detection unit, and an identification unit. The application device is configured to be disposed onboard a first vehicle system having at least first and second vehicles interconnected with each other along a route. The application device is configured to be disposed onboard the first vehicle of the first vehicle system and to engage the route during travel of the first vehicle system along the route. The control unit is configured to control supply of electric energy to the application device in order to electrically inject an examination signal into the route via the application device. The detection unit is configured to be disposed onboard the second vehicle of the vehicle system and to monitor one or more electrical characteristics of the route at the second vehicle in the first vehicle system. The identification unit is configured to identify a potentially damaged section of the route disposed between the first vehicle and the second vehicle based on the one or more electrical characteristics.
In another aspect, the control unit is configured to control application of at least one of a designated direct current, a designated alternating current, or a designated radio frequency signal of the examination signal to a conductive portion of the route.
In another aspect, the control unit is configured to control when electric current obtained from an onboard power source of the first vehicle system is applied to the route via the application device in order to electrically inject the examination signal into the route.
In another aspect, at least one of the control unit or the identification unit is configured to at least one of automatically slow movement of the first vehicle system in response to identifying the potentially damaged section of the route, automatically notify one or more other vehicle systems of the potentially damaged section of the route, or automatically request at least one of inspection or repair of the potentially damaged section of the route.
In another embodiment of a system, the application device, control unit, detection unit, and identification unit are on the same vehicle. In such an embodiment, examination signals are injected into the route from a first point on the vehicle, and received at a second point (spaced apart from the first point) on the vehicle. For example, in the case of a rail vehicle that travels on a rail of a track, the examination signal: may be injected into the rail from a first wheel and/or axle of the vehicle; travels through the rail (in instances where the rail is of a condition that permits transmission of the examination signal); travels through a second wheel and/or axle of the vehicle; and is received by detection circuit.
For example, in an embodiment, a system comprises an application device configured to be disposed onboard a first vehicle of a first vehicle system traveling along a route and to be conductively coupled with the route during travel along the route. The system further comprises a control unit configured to control supply of electric current from a power source to the application device in order to electrically inject an examination signal into the route via the application device. The system further comprises a detection unit configured to be disposed onboard the first vehicle, the detection unit configured to monitor one or more electrical characteristics of the route in response to the examination signal being injected into the route. The system further comprises an identification unit configured to be disposed onboard the first vehicle. The identification unit is configured to examine the one or more electrical characteristics of the route in order to determine whether a section of the route traversed by the first vehicle and electrically disposed between the application device and the detection unit is potentially damaged based on the one or more electrical characteristics.
In another embodiment, the application device comprises at least one of a first axle or a first wheel of the first vehicle, the first wheel attached to the first axle, and the detection unit is operably coupled with at least one of a second axle or a second wheel of the first vehicle, the second wheel attached to the second axle. Thus, it may be the case that the examination signal travels from the at least one of the first axle or the first wheel of the application device, through the section of the route, and through the at least one of the second wheel or the second axle for reception at the detection unit. According to another aspect, the first wheel and the first axle are on a first truck of the first vehicle, and the second wheel and the second axle are on a second truck of the first vehicle.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the inventive subject matter without departing from its scope. While the dimensions and types of materials described herein are intended to define the parameters of the inventive subject matter, they are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to one of ordinary skill in the art upon reviewing the above description. The scope of the inventive subject matter should, therefore, be determined with reference to the appended clauses, along with the full scope of equivalents to which such clauses are entitled. In the appended clauses, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following clauses, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following clauses are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such clause limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose several embodiments of the inventive subject matter and also to enable a person of ordinary skill in the art to practice the embodiments of the inventive subject matter, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the inventive subject matter may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the clauses if they have structural elements that do not differ from the literal language of the clauses, or if they include equivalent structural elements with insubstantial differences from the literal languages of the clauses.
The foregoing description of certain embodiments of the inventive subject matter will be better understood when read in conjunction with the appended drawings. To the extent that the figures illustrate diagrams of the functional blocks of various embodiments, the functional blocks are not necessarily indicative of the division between hardware circuitry. Thus, for example, one or more of the functional blocks (for example, processors or memories) may be implemented in a single piece of hardware (for example, a general purpose signal processor, microcontroller, random access memory, hard disk, and the like). Similarly, the programs may be standalone programs, may be incorporated as subroutines in an operating system, may be functions in an installed software package, and the like. The various embodiments are not limited to the arrangements and instrumentality shown in the drawings.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “an embodiment” or “one embodiment” of the inventive subject matter are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
Since certain changes may be made in the above-described systems and methods without departing from the spirit and scope of the inventive subject matter herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the inventive subject matter.
Claims
1. A system comprising:
- an application device configured to be disposed onboard a first vehicle of a first vehicle system traveling along a route and to be at least one of conductively or inductively coupled with the route during travel along the route;
- a control unit configured to control supply of electric current from a power source to the application device in order to electrically inject an examination signal into the route via the application device;
- a detection unit configured to be disposed off-board of the first vehicle, the detection unit configured to monitor one or more electrical characteristics of the route in response to the examination signal being injected into the route; and
- an identification unit configured to be disposed off-board of the first vehicle, wherein the identification unit is configured to examine the one or more electrical characteristics of the route in order to determine whether a section of the route extending between the first vehicle and the detection unit is potentially damaged based on the one or more electrical characteristics.
2. The system of claim 1, wherein at least one of the detection unit or the identification unit is disposed onboard a second vehicle of the vehicle system, the first and second vehicles being interconnected with each other in the vehicle system.
3. The system of claim 1, wherein the first vehicle is a first locomotive and the second vehicle is a second locomotive.
4. The system of claim 1, wherein at least one of the detection unit or the identification unit is disposed at a stationary wayside device located along the route.
5. The system of claim 1, wherein the control unit is configured to control application of at least one of a designated direct current, a designated alternating current, or a designated radio frequency signal of the examination signal from the power source to a conductive portion of the route.
6. The system of claim 1, wherein the power source is an onboard energy storage device and the control unit is configured to inject the examination signal into the route by controlling when electric current is conducted from the onboard energy storage device to the application device.
7. The system of claim 1, wherein the power source is an off-board energy storage device and the control unit is configured to inject the examination signal into the route by controlling when electric current is conducted from the off-board energy storage device to the application device.
8. A method comprising:
- electrically injecting an examination signal into a route being traveled by a first vehicle system having at least a first vehicle, the examination signal being injected into the route using the first vehicle in the first vehicle system;
- monitoring one or more electrical characteristics of the route at a monitoring location that is off-board of the first vehicle; and
- identifying a potentially damaged section of the route disposed between the first vehicle and the monitoring location based on the one or more electrical characteristics.
9. The method of claim 8, wherein the one or more electrical characteristics are monitored from a second vehicle of the vehicle system that is interconnected with the first vehicle.
10. The method of claim 8, wherein the one or more electrical characteristics are monitored from a stationary wayside device disposed alongside the route.
11. The method of claim 8, wherein electrically injecting the examination signal into the route includes applying at least one of a designated direct current, a designated alternating current, or a designated radio frequency signal to a conductive portion of the route.
12. The method of claim 8, wherein electrically injecting the examination signal into the route includes applying electric current obtained from an onboard power source of the first vehicle system.
13. The method of claim 8, further comprising communicating a notification to the monitoring location when the examination signal is injected into the route, wherein monitoring the one or more electrical characteristics of the route is performed responsive to receiving the notification.
14. The method of claim 8, wherein identifying the potentially damaged section of the route includes determining if a track of the route is broken when the examination signal is not received at the monitoring location.
15. The method of claim 8, wherein identifying the potentially damaged section of the route includes determining if a track of the route is potentially damaged when a signal-to-noise ratio of the examination signal that is received at the monitoring location is at least one of less than a designated threshold or has decreased by at least a designated amount.
16. The method of claim 8, further comprising automatically initiating one or more responsive actions when the potentially damaged section of the route is identified.
17. The method of claim 16, wherein the one or more responsive actions include automatically slowing movement of the first vehicle system.
18. The method of claim 17, wherein the one or more responsive actions include automatically stopping movement of the first vehicle system within a designated time period.
19. The method of claim 16, wherein the one or more responsive actions include communicating a warning signal to a second vehicle system that is separate from the first vehicle system and that is following the first vehicle system along the route, the warning signal configured to notify the second vehicle system of the potentially damaged section of the route.
20. The method of claim 16, wherein the one or more responsive actions include communicating a repair signal to an off-board location to request repair of the potentially damaged section of the route.
21. A system comprising:
- an application device configured to be disposed onboard a first vehicle system having at least first and second vehicles interconnected with each other along a route, the application device configured to be disposed onboard the first vehicle of the first vehicle system and to engage the route during travel of the first vehicle system along the route;
- a control unit configured to control supply of electric energy to the application device in order to electrically inject an examination signal into the route via the application device;
- a detection unit configured to be disposed onboard the second vehicle of the vehicle system and to monitor one or more electrical characteristics of the route at the second vehicle in the first vehicle system; and
- an identification unit configured to identify a potentially damaged section of the route disposed between the first vehicle and the second vehicle based on the one or more electrical characteristics.
22. The system of claim 21, wherein the control unit is configured to control application of at least one of a designated direct current, a designated alternating current, or a designated radio frequency signal of the examination signal to a conductive portion of the route.
23. The system of claim 21, wherein the control unit is configured to control when electric current obtained from an onboard power source of the first vehicle system is applied to the route via the application device in order to electrically inject the examination signal into the route.
24. The system of claim 21, wherein at least one of the control unit or the identification unit is configured to at least one of automatically slow movement of the first vehicle system in response to identifying the potentially damaged section of the route, automatically notify one or more other vehicle systems of the potentially damaged section of the route, or automatically request at least one of inspection or repair of the potentially damaged section of the route.
25. A system comprising:
- an application device configured to be disposed onboard a first vehicle of a first vehicle system traveling along a route and to be conductively coupled with the route during travel along the route;
- a control unit configured to control supply of electric current from a power source to the application device in order to electrically inject an examination signal into the route via the application device;
- a detection unit configured to be disposed onboard the first vehicle, the detection unit configured to monitor one or more electrical characteristics of the route in response to the examination signal being injected into the route; and
- an identification unit configured to be disposed onboard the first vehicle, wherein the identification unit is configured to examine the one or more electrical characteristics of the route in order to determine whether a section of the route traversed by the first vehicle and electrically disposed between the application device and the detection unit is potentially damaged based on the one or more electrical characteristics.
26. The system of claim 25, wherein:
- the application device comprises at least one of a first axle or a first wheel of the first vehicle, the first wheel attached to the first axle; and
- the detection unit is operably coupled with at least one of a second axle or a second wheel of the first vehicle, the second wheel attached to the second axle, whereby the examination signal travels from the at least one of the first axle or the first wheel of the application device, through the section of the route, and through the at least one of the second wheel or the second axle for reception at the detection unit.
27. The system of claim 26, wherein the first wheel and the first axle are on a first truck of the first vehicle, and the second wheel and the second axle are on a second truck of the first vehicle.
Type: Application
Filed: Jul 30, 2013
Publication Date: Feb 13, 2014
Applicant: General Electric Company (Schenectady, NY)
Inventors: Jared Klineman COOPER (Melbourne, FL), Ajith Kuttannair KUMAR (Erie, PA), Joseph Forrest NOFFSINGER (Grain Valley, MO), Nicolas David NAGRODSKY (Melbourne, FL)
Application Number: 13/954,096
International Classification: B61L 23/04 (20060101);