Footwear Securing systems

Devices for adjusting the fit of footwear, some examples including resilient laces operatively coupled to first retaining flaps of footwear, latching members including latches and lace receives sized to slidingly receive string portions of resilient laces and to restrict passage of retaining bodies of resilient laces, and latch couplers on second retaining flaps of footwear and configured to releasingly couple with lace couplers. In some examples, coupling latches to latch couplers tensions resilient laces and pulls first retaining flaps toward second retaining flaps. Some examples include first resilient laces and second resilient laces. Some examples including first resilient laces and second resilient laces include latching members including a first lace receiver sized to receive string portions of first resilient laces and second lace receivers sized to receive string portions of second resilient laces. Some examples are configured for adjusting the fit of apparel items defining eyelets.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to copending U.S. Application, Ser. No. 61/684,249, filed on Aug. 17, 2012, which is hereby incorporated by reference for all purposes.

BACKGROUND

This disclosure relates generally to footwear adjustment systems. In particular, this disclosure relates to footwear adjustment systems that include features that obviate the need for the traditional shoe lacing and tying process.

Footwear adjustment mechanisms have long been dominated by the familiar lace and eyelet system. In these systems, users must go through the tedious process of initially routing laces through series of opposed eyelets positioned around a user's inserted foot and then repeatedly securing the laces by tying opposing ends of the lace into a bow.

While this process provides familiarity, it has many shortcomings that alternative footwear adjustment systems can improve upon. For example, securing footwear typically involves the multi-step process of tying opposing ends of a lace together to form a bow. Even when properly tied, the bows formed by tying shoelaces are often prone to loosening or disengaging through common use. This leaves users' footwear unsecure, thereby leaving wearers more prone to injury.

Further, unsecured laces may pose additional risk to users, such as by serving as trip hazards (or as instigators of injurious escalator or moving walkway incidents). Further, traditional methods' tightening process is time consuming. Replacement of damaged laces in traditional systems is an additional commonplace and time-consuming exercise.

The tedious process of tightening and tying shoes may be particularly troubling, for example, during athletic events wherein users must secure or release footwear from their feet during the event, such as triathlons. Triathlons typically require users to participate in three continuous, sequential stages including a running stage, a cycling stage, and a swimming stage. Between these stages are transitions, wherein users typically change into footwear appropriate for the upcoming stage. Times accrued during transitions are typically included in users' overall results; as a result, quick transitions are desired. Thus, equipment that allows quick changing of footwear between stages provides great benefit to triathlon participants.

The shortcomings of traditional lacing systems are not, of course, limited to these contexts. Even minor annoyances in routines as commonplace as securing footwear to your feet can accumulate to become major hassles. Therefore, improved footwear adjustment systems impact a very widespread, diverse amount of users.

This disclosure is differentiated over some specific shoelace system examples improved that are discussed below. For example, one improved shoelace system is marketed under the brand Yankz! This example system, however, fails to satisfactorily solve many of the problems of shoelace designs. As one example, the system includes a single lace routed through the entire length of associated shoes' eyelets. This restricts a user from applying a variable level of tightening along the length of the lacing section of her shoes.

Examples of other improved shoe securing products include products marketed under the Greeper® brand. Greeper® laces require users to fully lace a shoe to tighten and secure the shoe using a complex system that involves tying laces to a lower routing device, cutting off any excess lace, and then repeatedly using an unreliable biased lace crimp to tighten and secure the shoe. The complex and unreliable design of this device makes it an insufficient solution to the problems inherent in conventional lacing systems.

Thus, there exists a need for footwear adjustment systems that improve upon and advance the design of known footwear adjustment systems, such as those discussed above. Footwear adjustment systems that include features that do improve and advance the design of known footwear adjustment systems are described below.

SUMMARY

The present disclosure is directed to devices for adjusting the fit of footwear. Some examples include resilient laces operatively coupled to first retaining flaps of footwear, latching members including latches and lace receives sized to slidingly receive string portions of resilient laces and to restrict passage of retaining bodies of resilient laces, and latch couplers on second retaining flaps of footwear and configured to releasingly couple with lace couplers. In some examples, coupling latches to latch couplers tensions resilient laces and pulls first retaining flaps toward second retaining flaps. Some examples include first resilient laces and second resilient laces. Some examples including first resilient laces and second resilient laces include latching members including a first lace receiver sized to receive string portions of first resilient laces and second lace receivers sized to receive string portions of second resilient laces. Some examples are configured for adjusting the fit of apparel items defining eyelets.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a first example of a footwear adjustment system attached to an example shoe.

FIG. 2 is a top view of the footwear adjustment system shown in FIG. 1 depicting latching members of the system coupled with latch couplers.

FIG. 3 is a close up view showing one of the latching members shown in FIG. 2 depicting the latching member coupled with a latch coupler.

FIG. 4A is a top view of an example of a lace configured for use with disclosed footwear adjustment systems.

FIG. 4B is a top view of an additional or alternative example of a lace configured for use with disclosed footwear adjustment systems.

FIG. 5 is a perspective view of a second example of a footwear adjustment system.

FIG. 6 is a perspective view of the footwear adjustment system shown in FIG. 5 with a latching member of the footwear adjustment system in coupled with a latch coupler.

FIG. 7 is a close up view showing a latching member of the footwear adjustment system shown in FIG. 5.

FIG. 8 is a close up view showing a latch coupler of the footwear adjustment system shown in FIG. 5.

DETAILED DESCRIPTION

The disclosed devices will become better understood through review of the following detailed description in conjunction with the figures. The detailed description and figures provide merely examples of the various inventions described herein. Those skilled in the art will understand that the disclosed examples may be varied, modified, and altered without departing from the scope of the inventions described herein. Many variations are contemplated for different applications and design considerations; however, for the sake of brevity, each and every contemplated variation is not individually described in the following detailed description.

Throughout the following detailed description, examples of various devices are provided. Related features in the examples may be identical, similar, or dissimilar in different examples. For the sake of brevity, related features will not be redundantly explained in each example. Instead, the use of related feature names will cue the reader that the feature with a related feature name may be similar to the related feature in an example explained previously. Features specific to a given example will be described in that particular example. The reader should understand that a given feature need not be the same or similar to the specific portrayal of a related feature in any given figure or example.

With reference to FIGS. 1-4, a first example of a device for adjusting the fit of footwear, device 100, will now be described. As FIG. 1 illustrates, device 100 includes a first lace 110, a second lace 130, a first latching member 140, a second latching member 155, a first latch coupler 160, and a second latch coupler 170. Device 100 may allow users to adjust the fit of footwear more quickly and easily than many other competing systems. For example, device 100 allows users to secure footwear by simply coupling first latching member 140 and second latching member 155 with first latch coupler 160 and second latch coupler 170, respectively.

Because the securing method of device 100 includes fewer steps than the traditional lace and eyelet method, users may find that device 100 allows footwear to be secured with superior speed and simplicity compared to traditional lacing and eyelet systems. Further, the securing method of device 100 allows users to quickly adjust the shoe to an appropriate tightness without requiring a wearer to tediously adjusting laces at each eyelet.

Further, device 100 is adapted for use with existing footwear designed for the traditional lacing and eyelet system. Unlike some alternative footwear securing means, device 100 is configured for use with most existing, standard footwear designs.

Further, device 100 includes two laces that are routed at two different regions along footwear's instep. Unlike many alternative footwear securing means, this multiple lace system allows a wearer to apply a variable level of tightening at these differing regions on a user's shoe. Further, device 100 does not require a user to route laces through supplemental routing devices, as do some other alternative lacing systems. Additionally or alternatively, the latching mechanism of device 100 may remain secured more dependably than the unreliable lace crimps used in some other alternative footwear securing means.

Accordingly, device 100 addresses many of the shortcomings described above, including those associated with traditional lace and eyelet systems and those associated with other alternative lacing systems.

As FIG. 1 shows, device 100 is configured for use with footwear designed to be secured with a traditional lace and eyelet mechanism. An example of such footwear, shoe 80, is illustrated in FIG. 1. As FIG. 1 shows, shoe 80 includes a first retaining flap 82 and a second retaining flap 90. As FIG. 1 illustrates, first retaining flap 82 and second retaining flap 90 are spaced from one another across a wearer's instep when shoe 80 is worn. As first retaining flap 82 and second retaining flap 90 are pulled toward one another, shoe 80 is adjusted to be secured more tightly on a user's foot. Conversely, as first retaining flap 82 and second retaining flap 90 are spaced further from one another, shoe 80 is adjusted to be secured on a user's foot more loosely.

As FIG. 1 illustrates, first retaining flap 82 defines four eyelets routed between its exterior and interior, including a first eyelet 84, a second eyelet 86, a third eyelet 88, and a fourth eyelet 89. As FIG. 1 also illustrates, second retaining flap 90 defines a fifth eyelet 92 substantially aligned with first eyelet 84, a sixth eyelet 94 substantially aligned with second eyelet 86, a seventh eyelet 96 substantially aligned with third eyelet 88, and a eighth eyelet 98 substantially aligned with fourth eyelet 89. Each of the eyelets are configured to receive one or more laces routed therethrough to operatively pair the lace with the corresponding retaining flap. A lace may be used to pull first retaining flap 82 and second retaining flap 90 when routed through eyelets on both retaining flaps.

As FIG. 1 shows, first lace 110 is configured to be routed through first eyelet 84, second eyelet 86, fifth eyelet 92, and sixth eyelet 94 when device 100 is coupled with shoe 80. As FIGS. 2 and 4A show, first lace 110 defines a string portion 112 and includes a first endcap 114, a second endcap 118, a first supplemental retaining body 116, and a second supplemental retaining body 120.

As FIGS. 2 and 4A show, string portion 112 extends from a first terminal end 111 to a second terminal end 113. As FIG. 1 illustrates, first terminal end 111 is routed through first eyelet 84 of first retaining flap 82 when first lace 110 is coupled with shoe 80. Likewise, second terminal end 113 is routed through second eyelet 86 of first retaining flap 82 when first lace 110 is coupled with shoe 80. When first lace 110 is so coupled, string portion 112 is routed through fifth eyelet 92 and sixth eyelet 94 of second retaining flap 90, thereby defining a loop portion 115 on the portion of first lace 110 between fifth eyelet 92 and sixth eyelet 94.

String portion 112 is made of a resilient polymer material configured to return to its original shape and size after being stretched. String portion 112 defines a coefficient of elasticity selected to tension first lace 110 when first latching member 140 is coupled with first latch coupler 160.

Laces may, in some examples, include a rubber, elastomer, or stretched fabric over substantially all of its length to achieve selected elastic, resilient, and flexible characteristics. This is not required, however; this disclosure specifically contemplates looped ends that comprise a different material than the rest of the lace to adjust elasticity, flexibility, and resiliency compared to the rest of the lace. Indeed, some or all of laces may include a variety of materials selected to adjust the tension of the lace when the first latching member 140 is secured to first latch coupler 160.

As FIGS. 2 and 4A show, string portion 112 defines a thickness paired with first latching member 140. As FIG. 2 more precisely illustrates, loop portion 115 defines a thickness sized to be received by first latching member 140, thereby allowing first latching member 140 to releasingly couple with loop portion 115.

As FIG. 4A shows, first endcap 114 is disposed proximate first terminal end 111 of first lace 110. As FIG. 4A illustrates, first endcap 114 defines a thickness greater than string portion 112. As FIG. 4A illustrates, second endcap 118 is substantially similar to first endcap 114. Because first endcap 114 and second endcap 118 define thicknesses greater than string portion 112, first latching member 140 may be configured to slidingly receive string portion 112 while restricting passage of first endcap 114 and second endcap 118. By receiving string portion 112 while restricting passage of the endcaps, first latching member 140 may be coupled with first lace 110 in the manner illustrated in FIG. 2. Indeed, FIG. 2 illustrates first latching member 140 coupled with first lace 110 at an outer latching position.

As FIG. 4A shows, first supplemental retaining body 116 is disposed on the string portion 112 of first lace 110. As FIG. 4A illustrates, first supplemental retaining body 116 is spaced from first endcap 114, being disposed more proximate the center of first lace 110 than first endcap 114. Second supplemental retaining body 120 is similarly disposed on string portion 112 and spaced from second endcap 118.

As FIG. 4A shows, first supplemental retaining body 116 and second supplemental retaining body 120 define a greater thickness than string portion 112. This increased thickness allows first latching member 140 to connect to first lace 110 by slidingly receiving string portion 112 while restricting passage of first supplemental retaining body 116 and/or second supplemental retaining body 120. By receiving string portion 112 while restricting passage of the supplemental retaining bodies, first latching member 140 may be coupled with first lace 110 in the manner illustrated in FIG. 2.

Accordingly, first supplemental retaining body 116 and second supplemental retaining body 120 cooperatively provide first latching member 140 with a second point of attachment to first lace 110. Because first supplemental retaining body 116 and second supplemental retaining body 120 are positioned closer to the center of first lace 110 than the endcaps, first lace 110 defines a greater tension when first latching member 140 is connected to the attachment point provided by the retaining bodies compared to that provided by the endcaps. This greater tension causes first lace 110 to secure footwear in a relatively tighter configuration compared to those with endcap-connected latching members.

While device 100 includes only a single pair of supplemental retaining bodies, some examples include additional supplemental retaining bodies to provide first latching member 140 with additional attachment points on first lace 110. In some examples, the additional attachment points may allow users to more precisely adjust the tightness of associated footwear. In some examples, the additional attachment points may allow users to adjust the tightness of associated footwear over a greater range of fits.

As FIG. 2 illustrates, second lace 130 is substantially similar to first lace 110, similarly defining a string portion 132, a first endcap 134, a second endcap 138, a first supplemental retaining body 136, and a second supplemental retaining body 140. Like string portion 112, string portion 132 defines a loop portion 135 routed between seventh eyelet 96 and eighth eyelet 98. As FIG. 1 shows, second lace 130 is configured to adjust the fit of shoe 80 over a different region than first lace 110. Indeed, second lace 130 cooperates with first lace 110 to secure shoe 80 over the entire length of first retaining flap 82 and second retaining flap 90. Various examples include any number of laces and paired attachment members, allowing disclosed devices to adapt the disclosed apparel fitting devices to a wide variety of applications.

As FIG. 1 shows, first latching member 140 is configured to removably connect to first lace 110. As FIG. 2 illustrates, first latching member 140 defines a first lace receiver 142, a second lace receiver 144, and a latch 146. As FIGS. 2 and 3 illustrate, first latching member 140 may be manipulated to removably attach at a variety of attachment points, such as the attachment point defined by the endcaps of first lace 110 illustrated in FIG. 2 and the attachment point defined by the retaining bodies of first lace 110 illustrated in FIG. 3. When connected at the attachment point defined by the endcaps, first latching member 140 is connected at a relatively tighter attachment point; when connected at the attachment point defined by the supplemental retaining bodies, first latching member 140 is connected at a relatively looser attachment point.

Further, as FIGS. 2 and 3 show, first latching member 140 is additionally configured to releasingly couple with first latch coupler 160. When so coupled, first lace 110 is tensioned and pulls first retaining flap 82 toward second retaining flap 90.

As FIG. 4A illustrates, first lace receiver 142 defines a rigid projection disposed on first latching member 140. As FIG. 4A shows, first lace receiver 142 includes a partially closed substantially cylindrical opening sized to slidingly receive string portion 112 of first lace 110. As FIG. 4A shows, the opening of first lace receiver 142 is additionally configured to restrict passage of first endcap 114 and first supplemental retaining body 116. As FIG. 4A shows, second lace receiver 144 is substantially similar to first lace receiver 142 and is similarly sized to slidingly receive string portion 112 of first lace 110 and to restrict passage of second endcap 118 and second supplemental retaining body 120.

To connect first latching member 140 in a relatively looser configuration, as mentioned above, a user may insert into the opening of first lace receiver 142 the section of string portion 112 between first endcap 114 and first supplemental retaining body 116. First latching member 140 may then be pulled to engage first endcap 114 with the rigid portion of first lace receiver 142. The section of string portion 112 between second supplemental retaining body 120 and second endcap 118 is similarly received by second lace receiver 144 in this looser configuration.

Upon coupling first latching member 140 with first latch coupler 160, the tension in string portion 112 pulls first endcap 114 to engage it with first lace receiver 142. Likewise, the tension similarly pulls second endcap 118 to engage it with second lace receiver 144, thereby securing first lace 110 to shoe 80 in a secured configuration.

To connect first latching member 140 in a relatively tighter configuration, a user may insert in the opening of first lace receiver 142 the central portion of string portion 112 between first supplemental retaining body 116 and second supplemental retaining body 120. First latching member 140 may then be pulled to engage first supplemental retaining body 116 with the rigid portion of first lace receiver 142. The central portion of string portion 112 is similarly slidingly received by second lace receiver 144 to engage second supplemental retaining body 120 with second lace receiver 144 in this tighter configuration.

Upon coupling first latching member 140 with first latch coupler 160, the tension in string portion 112 pulls first supplemental retaining body 116 to engage it with first lace receiver 142. Likewise, the tension similarly pulls second endcap 118 to engage it with second lace receiver 144, thereby securing first lace 110 to shoe 80 in a secured configuration.

By attaching first latching member 140 to first lace 110 proximate the supplemental retaining bodies, first latching member 140 effectively shortens first lace 110. Because the distance between the eyelets of first retaining flap 82 and the eyelets of second retaining flap 90 remains constant, this results in an increase in the amount of tension presented by first lace 110 when first latching member 140 is coupled with first latch coupler 160. This increased tension tightens shoe 80 on a wearer's foot compared to a configuration wherein first latching member 140 is attached to first lace 110 proximate its endcaps.

As FIG. 1 illustrates, second latching member 155 is configured to attach to second lace 130 substantially similarly to the manner in which first latching member 140 is attached to first lace 110. As FIG. 3 illustrates, second latching member 155 is configured to releasingly receive loop portion 135 in a latch 157 while second latching member 155 is coupled with and pulling second lace 130. As FIG. 3 illustrates, latch 157 is substantially similar to latch 146.

Additionally or alternatively, lace lengths may be adjusted to add greater variability in apparel fit. For example, FIG. 4B illustrates an example alternative lace, shortened lace 139, that is relatively shorter than first lace 110 and second lace 130. Because shortened lace 139 is relatively shorter than first lace 110 and second lace 130, shortened lace 139 will present a relatively heightened tension when attached. Accordingly, examples including shortened lace 139 may provide a tighter fit than examples with longer laces. Capitalizing on this lace length-fit correlation, this disclosure contemplates using laces longer and shorter than those illustrated to accommodate a wide variety of fits.

As FIGS. 2 and 4A illustrate, latch 146 is coupled with first lace receiver 142 and second lace receiver 144, being disposed on an opposite side of first latching member 140 as the lace receivers. As FIGS. 2 and 3 illustrate, latch 146 is configured to couple with first latch coupler 160. In particular, latch 146 defines a hook that is configured to removably receive loop portion 115 of first lace 110. When first latching member 140 is connected to first lace 110, such as in the relatively tighter or the relatively looser configuration described above, first latching member 140 is pulled to loop portion 115 to tension first lace 110.

When tensioned, latch 146 may be manipulated to receive loop portion 115. When first latching member 140 is released, the tension pulls loop portion 115 toward the closed side of latch 146. Because the tension in first lace 110 pulls it toward latch 146, first latching member 140 is configured to remain secured after a user stops manipulating it. When secured in this manner, first lace 110 remains in a tensioned state.

As previously discussed, first lace 110 is operatively coupled to first retaining flap 82 by being routed through first eyelet 84 and second endcap 118. Similarly, first lace 110 is operatively coupled to second retaining flap 90 by being routed through fifth eyelet 92 and sixth eyelet 94. Because first lace 110 is operatively coupled with the retaining flaps in this manner, first lace 110 is configured to pull first retaining flap 82 toward second retaining flap 90 when first latching member 140 is secured with loop portion 115.

The distance in which first retaining flap 82 is pulled toward second retaining flap 90 directs the tightness of the fit of shoe 80. Likewise, the distance with which first retaining flap 82 is pulled toward second retaining flap 90 is directed by the amount of tension in first lace 110 (or other paired and secured laces). Accordingly, the tightness of the fit of device 100 is directed by the amount of tension in first lace 110 when attached. Additionally or alternatively, adjusting the tension of laces, such as by adjustments discussed herein, may adjust the fit of paired apparel items.

As FIG. 1 shows, first latch coupler 160 is defined by loop portion 115. Accordingly, first latching member 140 is configured to releasingly couple with first latch coupler 160 by receiving loop portion 115 within latch 146 as described above. Some examples, however, may include latch couplers that are distinct from first lace 110. For example, latch couplers may define strands, loops, or other elements attached to an apparel item proximate or on a retaining flap. As FIGS. 1 and 2 illustrate, second latch coupler 170 is similarly defined by loop portion 135.

Turning attention to FIGS. 5-8, a second example of a device for adjusting the fit of footwear, device 200, will now be described. Device 200 shares many similar or identical features with previously disclosed examples that are combined in unique and distinct ways. Thus, for the sake of brevity, each feature of device 200 will not be redundantly explained. Rather, key distinctions between device 200 and other previously disclosed examples will be described in detail and the reader should reference the discussion above for features substantially similar between the devices.

FIG. 5 illustrates that device 200 provides an additional or alternative means for adjusting the fit of shoe 80 and displays how device 200 is paired with first retaining flap 82 and second retaining flap 90. As FIG. 5 shows, device 200 includes a first lace 210, a second lace 230, a latching member 240, and a latch coupler 260. Like device 100, device 200 is configured to tension two laces to secure shoe 80 on a wearer. Unlike device 100, however, device 200 includes only a single latching member that is configured pair with both laces simultaneously.

First lace 210 is substantially similar to first lace 110 and is configured to be operatively paired with shoe 80 in a substantially similar fashion. Likewise, second lace 230 is substantially similar to second lace 130 and is configured to be operatively paired with shoe 80 in a substantially similar fashion.

As FIG. 7 illustrates, however, latching member 240 is configured to receive both ends of both first lace 210 and second lace 230. Namely, latching member 240 includes four lace receivers, each lace receiver configured to receive a corresponding end of one of first lace 210 or second lace 230. Each lace receiver of latching member 240 is configured to receive each end of first lace 210 and second lace 230 in a substantially similar manner to first lace receiver 142 or second lace receiver 144.

As FIG. 7 shows, latching member 240 additionally includes a latch 246, which is substantially similar to latch 146. As FIG. 6 shows, latch 246 is configured to pair with latch coupler 260 in a substantially similar method to latch 146.

As FIG. 7 illustrates, latch 246 is misaligned with the looped portions of first lace 210 and second lace 230 when latching member 240 is attached. As a result, latching member 240 is not as suited to coupling with first lace 210 and second lace 230 as first latching member 140 and second latching member 155 are suited to couple with loop portion 115 and loop portion 135, respectively. Accordingly, device 200 includes latch coupler 260, which defines a distinct element from first lace 210 and second lace 230.

As FIG. 8 illustrates, latch coupler 260 is releasingly connected to the looped portions of first lace 210 and second lace 230. As FIG. 8 shows, latch coupler 260 defines a first lace retainer 262, a central portion 264, and a second lace retainer 266. As FIG. 8 shows, latch coupler 260 provides latching member 240 with a better aligned coupling point compared to the loop portions of first lace 210 second lace 230.

As FIG. 8 shows, first lace retainer 262 is configured to releasingly retain first lace 210. First lace retainer 262 defines a pair of resistively flexible, resilient retaining members 263. As FIG. 8 illustrates, retaining members 263 define a space between them that is smaller than the thickness of first lace 210. As a result, retaining members 263 may be manipulated to insert or remove first lace 210. Accordingly, retaining members 263 are able to retain second lace 230 in first lace retainer 262 absent user manipulation. As FIG. 8 illustrates, second lace retainer 266 is substantially similar to first lace retainer 262, and is configured to similarly receive and retain second lace 230.

As FIG. 8 illustrates, central portion 264 defines a rigid body extending between first lace retainer 262 and second lace retainer 266. Central portion 264 is complimentarily shaped and sized with latch 246, allowing latch 246 to releasingly couple with central portion 264. By coupling with central portion 264, latch 246 is able to, in effect, couple with the looped portions of both first lace 210 and second lace 230 simultaneously.

Similar to first latching member 140, first lace 210 and second lace 230 are configured to tension when latching member 240 is coupled, thereby biasing latch 246 toward central portion 264. As a result, latch 246 is configured to remain securely coupled with latch coupler 260 during use, absent additional user manipulation.

Because latching member 240 is configured to receive both first lace 210 and second lace 230 and couples with a single latch coupler, latch coupler 260, device 200 may provide particularly quick and effective fit adjustment. Namely, if latching member 240 is presently attached to first lace 210 and second lace 230, device 200 could secure shoe 80 to a wearer's foot in a single quick step. In particular, this may allow users to secure shoe 80 to their feet at a precise fit with considerably less time and effort than would be required with conventional lace-and-eyelet systems and other conventional apparel adjustment systems.

The disclosure above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in a particular form, the specific embodiments disclosed and illustrated above are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed above and inherent to those skilled in the art pertaining to such inventions. Where the disclosure or subsequently filed claims recite “a” element, “a first” element, or any such equivalent term, the disclosure or claims should be understood to incorporate one or more such elements, neither requiring nor excluding two or more such elements.

Applicant(s) reserves the right to submit claims directed to combinations and subcombinations of the disclosed inventions that are believed to be novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of those claims or presentation of new claims in the present application or in a related application. Such amended or new claims, whether they are directed to the same invention or a different invention and whether they are different, broader, narrower or equal in scope to the original claims, are to be considered within the subject matter of the inventions described herein.

Claims

1. A device for adjusting the fit of footwear, the footwear including a first retaining flap and a second retaining flap spaced from the first retaining flap across a wearer's instep, comprising:

a resilient lace operatively coupled to the first retaining flap and defining: a string portion; and a retaining body disposed on the string portion and being thicker than the string portion;
a latching member defining: a lace receiver sized to slidingly receive the string portion of the resilient lace and to restrict passage of the retaining body through the lace receiver; and a latch coupled to the lace receiver; and
a latch coupler secured to the second retaining flap, the latch being configured to releasingly couple with the latch coupler;
wherein coupling the latch to the latch coupler tensions the resilient lace and pulls the first retaining flap toward the second retaining flap.

2. The device of claim 1, wherein the string portion is routed through an eyelet disposed through the first retaining flap.

3. The device of claim 2, wherein:

the eyelet defines a first eyelet; and
the string portion is routed through a second eyelet disposed through the second retaining flap.

4. The device of claim 3, wherein:

the string portion is routed through a third eyelet disposed through the second retaining flap;
the string portion is routed through a fourth eyelet disposed through the first retaining flap;
the string portion defines a loop portion routed between the second eyelet and the third eyelet; and
the latch coupler is defined by the loop portion of the resilient lace.

5. The device of claim 4, wherein:

the resilient lace defines a first resilient lace; and
the latching member defines a first latching member;
further comprising:
a second resilient lace, the second resilient lace defining: a string portion defining: a first terminal end routed through a fifth eyelet disposed on the first retaining flap; a loop portion routed between a sixth eyelet disposed on the second retaining flap and a seventh eyelet disposed on the second retaining flap; and a second terminal end routed through an eighth eyelet disposed on the first retaining flap; and a retaining body being thicker than the string portion of the second resilient lace;
a second latching member defining: a lace receiver sized to slidingly receive the string portion of the second resilient lace and restrict passage of the retaining body of the second resilient lace through the lace receiver of the second latching member; and a latch configured to releasingly couple with the loop portion of the second resilient lace;
wherein coupling the latch of the second latching member to the loop portion of the second resilient lace tensions the second resilient lace and pulls the first retaining flap toward the second retaining flap.

6. The device of claim 5, further comprising a loop pairing device attached to the loop portion of the first resilient lace and attached to the loop portion of the second resilient lace;

wherein: the latch of the first latching member is configured to releasingly couple with the loop portion of the first resilient lace by releasingly coupling with the loop pairing device; and the latch of the second latching member is configured to releasingly couple with the loop portion of the second resilient lace by releasingly coupling with the loop pairing device.

7. The device of claim 6, wherein the loop pairing device is a rigid member defining:

a first pairing device opening configured to releasingly receive the first resilient lace; and
a second pairing device opening configured to receive the second resilient lace.

8. The device of claim 4, wherein the resilient lace defines:

a first terminal end disposed on a portion of the string portion routed through the first eyelet; and
a second terminal end disposed on a portion of the string portion routed through the fourth eyelet.

9. The device of claim 8, wherein the retaining body defines a first retaining body and is disposed proximate the first terminal end;

further comprising a second retaining body disposed proximate the second terminal end.

10. The device of claim 9, wherein:

the lace receiver defines a first lace receiver; and
the latching member defines a second lace receiver sized to slidingly receive the string portion of the lace and restrict passage of the second retaining body through the lace receiver.

11. The device of claim 10, wherein:

the first retaining body defines a first terminal cap disposed on the first terminal end of the resilient lace; and
the second retaining body defines a second terminal cap disposed on the second terminal end of the resilient lace.

12. The device of claim 11, further comprising:

a third retaining body proximate the first terminal end; and
a fourth retaining body proximate the second terminal end.

13. The device of claim 1, wherein the retaining body defines a terminal cap disposed on a terminal end of the resilient lace.

14. The device of claim 13, wherein:

the retaining body defines a first retaining body;
the resilient lace defines a second retaining body, the second retaining body being: thicker than the string portion; and spaced from the terminal end of the resilient lace.

15. The device of claim 13, the resilient lace defines one or more supplemental retaining bodies, each supplemental retaining body being:

thicker than the string portion; and
spaced from the terminal end of the resilient lace.

16. A device for adjusting the fit of footwear, the footwear including a first retaining flap and a second retaining flap spaced from the first retaining flap across a wearer's instep, comprising:

a first resilient lace operatively coupled to the first retaining flap and defining: a first string portion; and a first retaining body disposed on the first string portion and being thicker than the string portion;
a second resilient lace operatively coupled to the first retaining flap and defining: a second string portion; and a second retaining body disposed on the string portion being thicker than the string portion;
a latching member defining: a first lace receiver sized to slidingly receive the first string portion and to restrict passage of the first retaining body through the lace receiver; a second lace receiver sized to slidingly receive the second string portion and restrict passage of the second retaining body through the lace receiver; and a latch coupled to the first lace receiver and to the second lace receiver; and
a latch coupler secured to the second retaining flap, the latch being configured to releasingly couple with the latch coupler;
wherein coupling the latch to the latch coupler: tensions the first resilient lace and the second resilient lace; and pulls the first retaining flap toward the second retaining flap.

17. The device of claim 16, wherein:

the first resilient lace defines a loop portion secured to the second retaining flap;
the second resilient lace defines a loop portion secured to the second retaining flap; and
the latch coupler defines a loop pairing device attached to the loop portion of the first resilient lace and attached to the loop portion of the second resilient lace.

18. A device for adjusting the fit of an apparel item, the apparel item defining an eyelet, comprising:

a resilient lace defining: a string portion routed through the eyelet; and a retaining body disposed on the string portion and being thicker than the string portion;
a latching member defining: a lace receiver sized to slidingly receive the string portion of the resilient lace and to restrict passage of the retaining body through the lace receiver; and a latch coupled to the lace receiver; and
a latch coupler secured to the apparel item spaced from the eyelet, the latch being configured to releasingly couple with the latch coupler;
wherein coupling the latch to the latch coupler tensions the resilient lace and pulls the eyelet toward the latch coupler.

19. The device of claim 18, wherein:

the eyelet defines a first eyelet;
the retaining body defines a first retaining body;
the lace receiver defines a first lace receiver;
the apparel item defines: a second eyelet spaced from the first eyelet; a third eyelet aligned with the second eyelet; and a fourth eyelet aligned with the first eyelet;
the string portion defines a first terminal end routed through the first eyelet, the first retaining body being disposed proximate the first terminal end;
the string portion defines a second terminal end routed through the fourth eyelet;
the resilient lace defines a second retaining body disposed proximate the second terminal end;
the string portion defines a looped portion routed through the second eyelet and the third eyelet; and
the latching member defines a second lace receiver configured to slidingly receive the string portion of the resilient lace and restrict passage of the second retaining body through the lace receiver.

20. The device of claim 19, wherein the latch is configured to releasingly couple with the loop portion of the resilient lace.

Patent History
Publication number: 20140047739
Type: Application
Filed: Aug 19, 2013
Publication Date: Feb 20, 2014
Inventor: Reginald Senegal (Portland, OR)
Application Number: 13/970,426
Classifications
Current U.S. Class: With Adjustment Of Shoe Size (36/97)
International Classification: A43C 11/00 (20060101);