CABLING CONNECTIVITY MONITORING AND VERIFICATION

Connectivity between components in a system is monitored by applying a low voltage at one end of an RF cable, interpreted as a “0” logical state, and determining whether a similar voltage appears at the other end of the cable. If the cable is connected properly, the DC voltage applied at one end will appear at the other end and a proper indication is generated. If the expected voltage level does not appear at the other side, it means that RF connection was not correctly established and an alert is generated. Test systems for testing connectivity may include a first component comprising at least one port, at least one capacitor, and at least one resistor for providing high impedance. A controller provides a first logic state to the at least one port, scans multiple input ports of the system, and records a link corresponding to the applied first logic state.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/731,826, filed on Nov. 30, 2012, the content of which is relied upon and incorporated herein by reference in its entirety.

BACKGROUND

1. Field of the Disclosure

The disclosure relates generally to wireless infrastructures for distributing radio frequency (RF) signals, and more particularly to methods, circuits, and systems for cable connectivity monitoring and verification which may be used in determining whether cables in a RF system are properly connected.

2. Technical Background

Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. Wireless infrastructures, such as distributed antenna systems (or “DAS”) communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device and to provide high-speed data communications.

One approach to deploying a distributed antenna system involves the use of RF antenna coverage areas, also referred to as “antenna coverage areas,” or simply “coverage areas.” The antenna coverage areas are provided by remote antenna units in the distributed antenna system. Remote antenna units generally provide antenna coverage areas having radii in the range from a few meters up to twenty (20) meters in indoor applications.

If the antenna coverage areas provided each cover a small area, there are typically only a few users (e.g. persons, or clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. The use of optical fiber to distribute RF communications signals to provide an optical fiber-based distributed antenna system, such as by Radio-over-Fiber (RoF) distribution for increased bandwidth.

Radio Frequency (RF) systems include in many cases multiple cables connecting between various boards, modules, or subsystems. The cables are usually connected by the use of either thread or snap based connectors. During installation, it is important to verify that the right ports are connected, and during the on-going operation it is important that reliable connections are maintained. Installations of conventional DAS systems are typically labor-intensive, and during normal operation, cables may become disconnected or require a change in connection between various components. Manual checking and verification of cable connections adds to the cost of maintaining such systems.

SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed in the detailed description include methods for cabling connectivity and verification, and related apparatuses and systems. One embodiment of the disclosure relates to a method of testing a system having a plurality of components. Each component in the plurality of components has at least one port. A plurality of cables is connected to one or more of the at least one port of one or more of the plurality of components. The method comprises applying a first logic state to a first port of a first of the components. The method further comprises scanning multiple input ports of the system. The method also comprises recording a link corresponding to the applied first logic state at the first port of the first component.

Additional embodiments of the disclosure relate to test systems for testing a communication system having a plurality of components, each component having at least one port, and a plurality of cables connected to one or more of the components ports. In one embodiment, the test system comprises a first component. The first component comprises at least one port, at least one capacitor, and at least one resistor for providing high impedance. The test system also comprises a controller. The controller is configured to provide a first logic state to the at least one port of the first component. The controller is also configured to scan multiple input ports of the system. Further, the controller is configured to record a link corresponding to the applied first logic state at the first port of the first component.

Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.

It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic diagram of an exemplary optical fiber-based wireless infrastructure.

FIG. 2 is a more detailed schematic diagram of exemplary head end equipment and a remote antenna unit (RAU) that can be deployed in the optical fiber-based wireless infrastructure of FIG. 1.

FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the optical fiber-based wireless infrastructure in FIG. 1 can be employed.

FIG. 4 is a schematic of a wireless system having three components interconnected by cables.

FIG. 5 is a schematic of a circuit used to monitor connectivity between components.

FIG. 6 is a block diagram that may represent the elements of components of the wireless system of FIG. 4 in function blocks.

FIG. 7 illustrates a test procedure for testing the connectivity of cables between components.

FIG. 8 is a schematic of an exemplary DAS with exemplary components that may correspond to components shown in FIG. 4.

FIG. 9 is a block diagram of an exemplary DAS with exemplary components that may correspond to components shown in FIG. 4.

FIG. 10 is a block diagram of an exemplary DAS with optical links and having exemplary components that may correspond to components shown in FIG. 4.

DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Whenever possible, like reference numbers will be used to refer to like components or parts. Embodiments disclosed in the detailed description include methods for cabling connectivity and verification, and related apparatuses and systems. One embodiment of the disclosure relates to a method of testing a system having a plurality of components. Each component in the plurality of components has at least one port. A plurality of cables is connected to one or more of the at least one port of one or more of the plurality of components. The method comprises applying a first logic state to a first port of a first of the components. The method further comprises scanning multiple input ports of the system. The method also comprises recording a link corresponding to the applied first logic state at the first port of the first component.

Additional embodiments of the disclosure relates to test systems for testing a communication system having a plurality of components, each component having at least one port, and a plurality of cables connected to one or more of the components ports. In one embodiment, the test system comprises a first component. The first component comprises at least one port, at least one capacitor, and at least one resistor for providing high impedance. The test system also comprises a controller. The controller is configured to provide a first logic state to the at least one port of the first component. The controller is also configured to scan multiple input ports of the system. Further, the controller is configured to record a link corresponding to the applied first logic state at the first port of the first component.

Before discussing systems and methods for monitoring connectivity starting at FIG. 4, wireless infrastructures and related components and methods that support such applications in DAS are discussed with reference to FIGS. 1-3.

FIG. 1 is a schematic diagram of an embodiment of an optical fiber-based distributed antenna system, or “DAS”. In this embodiment, the system is an optical fiber-based DAS 10 that is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the RF range of the antenna coverage areas. The DAS 10 provides RF communications services (e.g., cellular services). In this embodiment, the DAS 10 includes head-end equipment in the form of a head-end unit (HEU) 12, one or more remote antenna units (RAUs) 14, and one or more optical fibers 16 that optically couples the HEU 12 to the RAU 14. The HEU 12 is configured to receive communications over downlink electrical RF communications signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14. The HEU 12 is also configured to return communications received from the RAU 14, via uplink electrical RF communications signals 18U, back to the source or sources. In this regard in this embodiment, the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12.

The antenna coverage area 20 of the RAU 14 forms an RF coverage area 21 substantially centered about the RAU 14. The HEU 12 is adapted to perform or to facilitate any one of a number of wireless applications, including but not limited to Radio-over-Fiber (RoF), radio frequency identification (RFID), wireless local-area network (WLAN) communication, public safety, cellular, telemetry, and other mobile or fixed services. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communications signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF communications signals.

With continuing reference to FIG. 1, to communicate the electrical RF communications signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20, the HEU 12 includes an electrical-to-optical (E/O) converter 28. The E/O converter 28 converts the downlink electrical RF communications signals 18D to downlink optical RF communications signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF communications signals 22D back to electrical RF communications signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 in the coverage area 20. Similarly, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF communications signals representing the wireless RF communications to an E/O converter 34 in the RAU 14. The E/O converter 34 converts the electrical RF communications signals into uplink optical RF communications signals 22U to be communicated over the uplink optical fiber 16U. An O/E converter 36 provided in the HEU 12 converts the uplink optical RF communications signals 22U into uplink electrical RF communications signals, which can then be communicated as uplink electrical RF communications signals 18U back to a network or other source. The E/O converter 28 and the O/E converter 36 constitute a “converter pair” 35.

FIG. 2 is a more detailed schematic diagram of the DAS 10 of FIG. 1. In this embodiment, the HEU 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39. In another exemplary embodiment, the service unit 37 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20. The service unit 37 is electrically coupled to the E/O converter 28 that receives the downlink electrical RF communications signals 18D from the service unit 37 and converts them to corresponding downlink optical RF communications signals 22D.

With continuing reference to FIG. 2, the HEU 12 also includes the O/E converter 36, which is electrically coupled to the service unit 37. The O/E converter 36 receives the uplink optical RF communications signals 22U and converts them to corresponding uplink electrical RF communications signals 18U. The service unit 37 in the HEU 12 includes an RF communications signal conditioner unit 40 for conditioning the downlink electrical RF communications signals 18D and the uplink electrical RF communications signals 18U, respectively. The service unit 37 can include a digital signal processing unit (“digital signal processor” or “DSP”) 42 for providing to the RF communications signal conditioner unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF communications signal 18D, and to process a demodulation signal provided by the demodulation of the uplink electrical RF communications signal 18U by the RF communications signal conditioner unit 40. The service unit 37 in the HEU 12 can also include a central processing unit (CPU) 44 for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data. The RAU 14 also includes a converter pair 48 of the O/E converter 30 and the E/O converter 34. The O/E converter 30 converts the received downlink optical RF communications signals 22D from the HEU 12 back into downlink electrical RF communications signals 50D. The E/O converter 34 converts uplink electrical RF communications signals 50U received from the client device 24 into the uplink optical RF communications signals 22U to be communicated to the HEU 12. The O/E converter 30 and the E/O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52, such as a circulator.

With continuing reference to FIG. 2, the optical fiber-based DAS 10 also includes a power supply 54 that generates an electrical power signal 56. The power supply 54 is electrically coupled to the HEU 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O/E converter 30 and the E/O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided. The electrical power line 58 can include two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14. The DC power converter 64 is electrically coupled to the O/E converter 30 and the E/O converter 34 in the converter pair 48, and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the RAU 14.

FIG. 3 is a partially cut-away schematic diagram of a building infrastructure 70 employing an optical fiber-based DAS 10 incorporating the HEU 12 to provide various types of communication services within the building infrastructure 70. The DAS 10 in this embodiment is configured to receive wireless RF communications signals and convert the RF communications signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14 to provide wireless services such as cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), and WLAN inside the building infrastructure 70. The building infrastructure 70 in this embodiment includes a first (ground) floor 72, a second floor 74, and a third floor 76. The floors 72, 74, 76 are serviced by the HEU 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70. In the example embodiment, a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70. Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80. The main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16D, 16U to and from the HEU 12. The riser cable 84 may be routed through an interconnect unit (ICU) 85 at each floor. The ICU 85 may be provided as part of or separate from the power supply 54 in FIG. 2. The ICU 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58, as illustrated in FIG. 2, provided inside an array cable 87.

A base transceiver station (BTS) 88, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile station enters the cell, the BTS communicates with the mobile station. The DAS 10 in FIGS. 1-3 provides point-to-point communications between the HEU 12 and the RAU 14. Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications. Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable.

RF systems, such as the DAS 10 in one non-limiting embodiment, may include in many cases multiple cables connecting between various boards, modules or subsystems. The RF cables are usually connected by the use of either thread or snap based connectors. During installation, it is important to verify that the right ports are connected, and during the on-going operation it is important that reliable connections are maintained. Installations of conventional DAS systems are typically labor-intensive, and during normal operation, cables may become disconnected or require a change in connection between various components. Manual checking and verification of cable connections adds to the cost of maintaining such systems.

Embodiments are now disclosed that include a method for cabling connectivity and verification, and related apparatuses and systems, in which the checking and verification of cable connections in RF systems can be automated such that the checking and verification of cable connections in RF systems can be done quickly and cheaply without having to add expensive and space-consuming equipment.

FIG. 4 is a schematic of a system 100 having three components, or subsystems 102, 104, 106 interconnected by cables. In the illustrated embodiment, the components 102, 104, 106 are connected by RF signal-carrying cables, such as, for example, coaxial cables, and the system 100 can be described as an RF system. In one embodiment, component 102 may be a master controller, and components 104 and 106 may be slave controllers.

FIG. 5 is a schematic of a circuit 200 used to monitor connectivity between the components 102 and 104. The circuit 200 can constitute, or be part of, a test system for testing the connectivity of components in a communications system. FIG. 6 is a block diagram that may represent the elements of the components 102, 104, or 106 in function blocks. According to one aspect of the present embodiment, the circuit 200 can be used to determine whether the interconnect cabling is properly connected during installation of the components 102, 104, 106, and also used to monitor connectivity during operation of the components 102, 104, 106 within a system. The components 102, 104, 106 can be incorporated into systems such as DAS, including the optical-fiber based DAS 10 discussed with reference to FIGS. 1-3. The circuit 200 can generate an alarm in response to a fault condition during installation of and operation of the DAS.

Referring to FIG. 4, an exemplary system 100 includes three units: a first unit (or component) 102, a second unit (or component) 104, and a third unit (or component) 106. In the embodiment shown in FIG. 4, four cables 108, 110, 112, 114 connect between various RF ports of the system 100, though the system 100 may have any number of cables connecting various RF ports of the system 100. In one embodiment, the cables 108, 110, 112, and 114 may be RF cables. Cable 108 connects between RF port 116 (Port 1-1) and RF port 120 (Port 2-2). Cable 110 connects between RF port 118 (Port 1-2) and RF port 122 (Port 2-N). Cable 112 connects between RF port 130 (Port 1-N) and RF port 124 (Port 3-1). Cable 114 connects between RF port 126 (Port 3-2) and RF port 128 (Port 3-N). A management signal 132, which travels on a path indicated by the dashed lines between the components 102, 104, 106, is used for bidirectional transfer of commands and indications between the control segments of the components 102, 104, 106.

Referring to FIGS. 5 and 6, the electronic circuit 200 is adapted to monitor connectivity between RF port 116 and RF port 120. RF port 116 and RF port 120 are on components 102 and 104, respectively. Each of the components 102 and 104 may be similar in one embodiment. For example, component 102 has a resistor 202, a capacitor 204, and a resistor 206. In a similar fashion, component 104 has a resistor 212, a capacitor 214, and a resistor 216. In a “no test” state, the output signal general purpose input/output (GPIO) signal 222 and 224, respectively, of the digital buffers 208 and 218 exhibits high impedance, using the “three-state” feature. The digital buffers 208 and 218 in components 102 and 104, respectively, are connected to a digital controller 226 (see FIG. 6), and receive signals from the digital controller 226. Digital buffers 210 and 220 in components 102 and 104, respectively, are connected to a digital controller 226 (see FIG. 6), and can send signals to the digital controller 226. In one embodiment, the digital buffers 208 and 210 may be provided by an I/O expander 209, and then digital buffers 218 and 220 may be provided by an I/O expander 219.

In the high impedance state, the DC voltages on RF port 116 and RF port 120 are pulled through resistors 202 and 212 in components 102 and 104, respectively, to about +5 volts. For purposes of this application, “high impedance” is generally any impedance higher than that of the RF signal, which in various embodiments, may be about fifty kiloOhms (50 KOhm) or about seventy-five kiloohms (75 KOhms), or other values. In one embodiment, the GPIO signals 222 and 224 may have an impedance of about one kiloOhm (1 Kohm). The DC voltages on RF port 116 and RF port 120 being pulled through resistors 202 and 212 in components 102 and 104, respectively, to about +5 volts does not have any impact on the RF signal and its related circuits due to the high resistance of resistors 202 and 212 and the DC blocking capacitors 204 and 214, in components 102 and 104, respectively. In one embodiment, the DC impedance is blocked by one or more of the DC blocking capacitors 204 and 214 in components 102 and 104, respectively. In one embodiment, the DC blocking capacitors 204 and 214 may have a value of about fifty picoFarads (50 PF).

The embodiments shown in FIGS. 5 and 6 allow a low cost implementation because the GPIO ports, which are present in the components of most RF systems, can be used to check the connectivity of the cables between the components. In addition, in order not to affect the AC/RF/IF signal performance in the system, the resistors 202 and 212 can be high impedance resistors in order to inject the GPIO logic states into the copper. As one non-limiting example, the resistors 202 and 212 can be ten kiloOhms (10 KOhm) and the resistors 206 and 216 can be one kiloOhm (1 KOhm). Further, in one embodiment, a pull up resistor can be used at each port to ensure that the series resistors will not change the logic states at each port. In the system shown in FIGS. 5 and 6, no diode(s), comparator(s), or threshold settings are needed to check the connectivity of the cables between the components. Moreover, because the GPIO ports exist on both sides of the cable, there is a higher level of flexibility in checking the cable connections. A signal can be transmitted from both sides of the line, so almost any management software methods can implement the test in both directions, with steps taken to ensure there is no conflict or contention during the test, such as by timing the application of the logic states on the various ports, in one embodiment.

When it is desired to test the connectivity between the two ports, such as during installation of a DAS (such as DAS 10) including the components 102, 104, 106, the buffer 208 is instructed to provide low voltage (e.g., close to ground potential) at its output signal GPIO 222. If the RF cable 108 is connected properly, the DC voltage at RF port 116 in the embodiment of FIG. 5 will then be approximately 0.833 Volt (a result of the division of the +5 Volt by the voltage divider comprised of resistors 202 in parallel with resistor 212 and resistor 206 in series) and the same voltage (+0.833 Volt) will appear at port 120 and will be sensed by the input of buffer 220. The input buffer 220 may then provide an indication of a specified logic state, such as “logic level=0” to the digital controller. The electronic circuit 200 that performs the monitoring has little or no impact on the RF communications signals passing through the systems because of high resistance 222, 224, and 202, 212.

Referring to FIG. 6, a management signal 132 is received at a digital controller 226 in one of the components, such as component 102 or component 104 (see, e.g., FIG. 5). In one embodiment, the management signal 132 may come from a master controller 102 (see, e.g., master controller 102, FIG. 4). In one embodiment, the digital controller 226 may be a computer processing unit (CPU), a logic circuit, or a field programmable gate array (FPGA), as non-limiting examples. The digital controller 226 provides the management signal 132 via a control bus 228 toward a port (such as RF port 116 or 120 of FIG. 5). There may be an optional I/O expander 209 or 219, comprising the digital buffers 208, 210 and 218, 220, respectively. The I/O expanders 209, 219 may be used to provide additional ports. Referring again to FIG. 6, a DC signal 230 is provided to an AC or RF plus DC coupling functionality 231 (resistors 202 and 212, together with capacitors 204 and 214), which ensure that the AC or RF signal 232 is not adversely affected. The logic signal is then applied to the port (RF port 116 or RF port 120 of FIG. 5).

FIG. 7 illustrates an exemplary test procedure for testing the connectivity of cables between components. The test procedure can be performed during installation of a system, during operation, and/or during planned downtime. Referring also to FIGS. 4 and 5, the procedure is managed by the master controller 102, while the slave controllers 104, 106 work in conjunction with the master controller 102. The management signal 132 (FIG. 4) is used to coordinate between all controller actions.

Test Process

In step 310, all ports are reset, and all GPIO signals (e, g. GPIO signals 222, 224 of FIG. 5) in the system 10 are set to high impedance.

In step 320, a logic signal is applied on the GPIO connection to a first port of a first component (i.e., Port#j of Unit#i). The logic “0” signal may be applied, for example, as a low voltage at Port#j of Unit#i. In one non-limiting example, the logic signal is a logic “0” signal.

In step 330, the digital controller (such as digital controller 226 in FIG. 6), which can have management software designed to carry out monitoring processes, scans all ports, which can be input or output ports, to detect where the logic signal (e.g., logic “0” signal) is detected. If the cables in the system are connected in a point-to-point topology, as in the illustrated embodiment, only one GPIO port should detect the low voltage logic “0” signal. The ports that are scanned can be ports on components different from the component to which the logic signal was applied, or can be other ports on the same component to which the logic signal was applied.

In step 340, the newly detected link is recorded. The logic state is changing at the receiving end, in response to the applied voltage. In one embodiment, the detected link is recorded only if the same logic signal applied at the first port is present and sensed at a second port of the components during the scanning step. In various embodiments, the second port where the logic signal is present and sensed may be at a port of a second component, or it could be a second port of the component to which the logic signal was applied. Steps 310-330 may then be repeated for all components and system GPIOs.

False positive connectivity (where a logic signal is detected, but the ports are not supposed to be connected) can be checked by removing the logic signal from the first port (Port#j of Unit#i). If a logic signal is still detected at the other port, then a false positive exists and an alarm may be generated (i.e., the port may be defective).

The above-described method describes a monitoring process in which all ports are scanned. Depending upon the application, a single port, or selected ports may be selectively scanned and monitored. Scanning can occur over selected time cycles to ensure continuous proper connection of a monitored system. For example, scanning can be repeated several times per hour to ensure system connectivity.

According to the present embodiments, connectivity is quickly and accurately monitored and verified by applying a low DC voltage at one end of an RF cable, interpreted as a preselected logical state, and checking whether a similar voltage appears at the other end of the cable. If the cable is connected properly, the DC voltage, applied at one end will appear at the other end and a proper indication is generated. If the expected voltage level does not appear at the other side, it means that an RF connection was not made and an alert is generated. Alerts can include alerts on a graphical display, a light, a sound, text, or a text message transmitted in response to a change. For offsite management systems, alerts can be transmitted remotely, such as over the Internet, to remote sites. The electronic circuit that performs the monitoring has little or no impact on the RF signals passing through the system.

Notably, the above method is performed using a common and standard digital interface with a logic signal that has only two (2) states. Thus, the solution is simple and very low cost. In addition, this solution can be used as part of any copper based cable connection continuity check. The method can be used to test any cable connected between ports on a single unit or cables connected between different units. As such, it is feasible for both small and very large deployments of any electronic systems where AC, RF, or IF signal connectivity check is needed.

FIG. 8 is a schematic of an exemplary DAS 600 with exemplary components that may correspond to the components shown in FIG. 4. The architecture of the DAS 600 may coincide with the MobileAccessVE system available from Corning MobileAccess Inc., of Vienna, Va., with the added functionalities of component monitoring and verification according to the present embodiments. The illustrated DAS 600 is a multi-tier architecture, utilizing metallic twisted pair cabling, which may coincide with existing building WLAN cabling. The DAS 600 has a master controller 102 connected to slave controller 104 by one or more cables 108, 110, and also connected to a slave controller 106 by a cable 112, and to a slave controller 107 by a cable 113. The master controller 102 may also be connected to one or more BTS's 88. The master controller 102 may also be connected to additional slave controllers. The slave controllers 104, 106, and 107 may be associated with Ethernet Switches 234, 236, and 238, respectively. Each of the controllers is also connected to one or more antennas, in this case ‘access pods’ 240(1) through 240(13), capable of transmitting and receiving RF communications signals to and from its own coverage area. In one embodiment, as shown in FIG. 8, the cables between the components are Cat-5 cables. In this embodiment, the signals may be IF signals. The connectivity between any of the controllers and/or any of the other components in FIG. 8 can be checked using the methods and systems disclosed herein.

FIG. 9 is a block diagram of an exemplary DAS 700 with exemplary components that may correspond to the components shown in FIG. 4. FIG. 9 may include a master unit 242 connected to a slave unit 244. The slave unit 244 may be connected to an Ethernet switch 246. The master unit 242 may be communicatively coupled to the slave unit 244 via coaxial cable 248. The master unit 242 may also be communicatively coupled to access point 252(1) via coaxial cable 250. The slave unit 244 may be communicatively coupled to access points 252(2) and 252(3) via coaxial cables 254. The slave unit 244 may be communicatively coupled to the Ethernet switch 246 via Ethernet cables 256. In addition, the master unit 242 may be communicatively coupled to a services unit 258 via optical fiber 260. The connectivity between any of the components in FIG. 9 can be checked using the methods and systems disclosed herein, despite the fact that they may be connected via various types of connections.

FIG. 10 is a block diagram of an exemplary DAS 800 with optical links and having exemplary components that may correspond to the components shown in FIG. 4. FIG. 10 may include a central unit 262 communicatively coupled to remote units 264 and 266 by means of optical medium 268, including an uplink 270 and a downlink 272. The remote units 264 and 266 may be communicatively coupled to respective VCUs 274 and 276 via a variety of connection types. The VCUs 274 and 276 may be communicatively coupled to access points 278(1) through 278(12) and 280(1) through 280(12) respectively, via Cat5 cable. The central unit 262 may also be connected to base stations 88 and to a personal computer (PC) or console 282 via a variety of means. The connectivity between any of the components in FIG. 10 can be checked using the methods and systems disclosed herein, despite the fact that they may be connected via various types of connections.

The embodiments discussed herein provide a mechanism that reduces time and cost of installation through reliable verification of connection status. The embodiments are also effective for ongoing monitoring of connection status.

In the present disclosure, including the appended claims, references may be made to a first, second, third, etc. component, port, cable, or other element. These reference are not intended to imply a particular order or orientation of any element, or to imply that references to a particular numbered element requires the presence or a preceding or succeeding element, unless specifically enumerated in the description or claims.

The wireless infrastructures disclosed in this specification can include radio interface modules (RIM) in the HEU, each of which may support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the head end equipment. For example, one radio interface module may be configured to support the Personal Communication Services (PCS) radio band. Another RIM may be configured to support the Long Term Evolution (LTE) 700 radio band. Radio interface modules may be provided in the head end equipment that support any other radio bands desired, including but not limited to PCS, LTE, CELL, GSM, CDMA, CDMA2000, TDMA, AWS, iDEN, Enhanced Data GSM Environment, (EDGE), Evolution-Data Optimized (EV-DO), 1xRTT (i.e., CDMA2000 1X (IS-2000)), High Speed Packet Access (HSPA), 3GGP1, 3GGP2, and Cellular Digital Packet Data (CDPD).

Optical interface modules (OIM) may be provided in a common housing provided for the head end equipment to provide one or more optical interface components (OICs) that contain O/E and E/O converters, as will be described in more detail below. The OIMs support the radio bands that can be provided by the RIMs, including the examples previously described above. The OIMs each include E/O converters to convert downlink electrical RF communications signals to downlink optical signals. The downlink optical signals are communicated over downlink optical fiber(s) to the remote units. E/O converters are also provided in the remote units to convert uplink electrical RF communications signals received from client devices through the antennas into uplink optical signals to be communicated over uplink optical fibers to the OIMs. The OIMs include O/E converters that convert the uplink optical signals into uplink electrical RF communications signals that are processed by the RIMs and provided as uplink electrical RF communications signals.

Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The components of the wireless infrastructures described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends upon the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.

The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of computer readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.

It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. It is to be understood that the operational steps illustrated in the flow chart diagrams may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

Further, as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like.

Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.

Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims

1. A method of testing a system having plurality of components, each component having at least one port, and a plurality of cables connected to one or more ports of the plurality of components, the method comprising:

applying a first logic state to a first port of a first component of the plurality components;
scanning multiple input ports of the plurality components; and
recording a link corresponding to the applied first logic state at the first port of the first component.

2. The method of claim 1, wherein the first logic state is a logic “0” state.

3. The method of claim 1, further comprising:

applying a second logic state to a second port of a second component of the plurality of components;
scanning multiple ports of the system; and
recording a link corresponding to the applied second logic state at the second port of the second component.

4. The method of claim 1, wherein the steps of applying, scanning, and recording are performed for each port of each component of the system.

5. The method of claim 1, wherein the plurality of components comprises at least a first, a second, and a third component.

6. The method of claim 1, wherein the plurality of components comprises radio frequency (RF) components capable of processing RF signals.

7. The method of claim 1, further comprising:

providing a plurality of remote units capable of transmitting wireless signals into respective coverage areas of the remote units, and for receiving wireless signals from their respective coverage areas, the remote units being optically connected to at least one of the components.

8. The method of claim 7, wherein the remote units are optically connected to at least one of the components by a cable including at least one optical fiber.

9. The method of claim 1, further comprising:

providing a plurality of remote units capable of transmitting wireless signals into respective coverage areas of the remote units, and for receiving wireless signals from their respective coverage areas, the remote units being electrically connected to at least one of the components, wherein the remote units are electrically connected to at least one of the components by a cable.

10. The method of claim 1, further comprising operating the system to provide wireless services.

11. The method of claim 1, wherein at least one of the ports is an input port.

12. The method of claim 1, wherein at least one of the ports is an output port.

13. The method of claim 1, further comprising resetting the first port prior to the applying of the first logic state to the first port.

14. The method of claim 1, wherein the link is recorded only if the first logic present state is at a second port of the plurality of components during the scanning step.

15. A test system for testing a communication system having plurality of components, each component having at least one port, and a plurality of cables connected to one or more ports of the plurality of components, the test system comprising:

a first component comprising: at least one port; at least one capacitor; at least one resistor for providing high impedance;
a controller configured to: provide a first logic state to the at least one port of the first component; scan multiple input ports of the plurality of components; and record a link corresponding to the applied first logic state at the first port of the first component.

16. The test system of claim 15, wherein the controller applies a logic “0” state.

17. The test system of claim 15, wherein the controller is further configured to:

apply a second logic state to a second port of a second component of the plurality of components;
scan multiple ports of the plurality components; and
record a link corresponding to the applied second logic state at the second port of the second component.

18. The test system of claim 15, wherein the controller is further configured to perform the steps of applying, scanning, and recording for each port of each component of the plurality components.

19. The test system of claim 15, wherein the plurality of components comprises at least a first, a second, and a third component.

20. The test system of claim 15, wherein the plurality of components comprises radio frequency (RF) components capable of processing RF signals.

21. The test system of claim 15, wherein the communication system further comprises:

a plurality of remote units configured to transmit wireless signals into respective coverage areas of the remote units, and configured to receive wireless signals from their respective coverage areas, the remote units being optically connected to at least one of the components.

22. The test system of claim 15, wherein the remote units are optically connected to at least one of the components by a cable including at least one optical fiber.

23. The test system of claim 15, wherein the communication system further comprises:

a plurality of remote units configured to transmit wireless signals into respective coverage areas of the remote units, and configured to receive wireless signals from their respective coverage areas, the remote units being electrically connected to at least one of the components, and wherein the remote units are electrically connected to at least one of the components by a cable.

24. The test system of claim 15, wherein the at least one port is an input port.

25. The test system of claim 15, wherein the at least one port is an output port.

26. The test system of claim 15, wherein at least one of the at least one capacitor and the at least one high impedance resistor ensure that there is little or no impact on RF signals passing through the communication system.

27. The test system of claim 15, wherein the at least one capacitor has a value of about fifty (50) picoFarads (pF).

28. The test system of claim 15, wherein the at least resistor for providing high impedance has a value of ten kiloOhms (10 KOhm).

29. The test system of claim 15, wherein the at least resistor for providing high impedance has a value of one kiloOhm (1 KOhm).

Patent History
Publication number: 20140153918
Type: Application
Filed: Nov 21, 2013
Publication Date: Jun 5, 2014
Patent Grant number: 9647758
Applicant: Coming MobileAccess Ltd. (Airport City)
Inventor: Ami Hazani (Ra'anana)
Application Number: 14/086,491
Classifications
Current U.S. Class: Diagnostic Testing (398/9)
International Classification: H04B 10/2575 (20060101); H04B 10/07 (20060101);