Dual-Mode Pushup Exercise Device
An exercise device employed to increase the level of difficulty of the standard pushup, while increasing strength, endurance, and flexibility. The device may include a flat, circular plate formed with a dome on one side and a low-friction pad affixed to the other side. The device has two modes of employment and is typically used in a pair, one device gripped in each hand during a pushup exercise. In one mode, the dome side is placed on the floor, forcing the user to stabilize his hands, arms, and upper body over inherently unstable, dome-shaped, high-friction surface during a pushup. The second manner of employment requires the user to stabilize the hands, arms, and upper body over the flat side of the device that has negligible friction against a floor. The devices further have embedded magnets that assist in compact storage when not in use.
This application claims the benefit of priority to the U.S. Provisional Patent Application for “Dual-Mode Pushup Exercise Device,” Ser. No. 61/584,458, filed on Jan. 9, 2012, and currently co-pending.
FIELD OF THE INVENTIONThe present invention relates generally to fitness and exercise devices. The present invention is more particularly, though not exclusively, a fitness and training aid used to improve the quality of a standard pushup, by concentrating on stabilizer muscles in the upper body.
BACKGROUND OF THE INVENTIONThe pushup is a common calisthenics exercise performed in the prone position as illustrated in
Many fitness tools have been developed in effort to improve the quality of “press” exercises like the pushup. Simple machines such as the “bench press” have been created in order to significantly increase the amount of weight used during the exercise, well in excess of one's own bodyweight, so as to increase strength and endurance. A bench press machine is comprised of a flat, inclined, or declined bench and a weighted bar. The individual lies on the bench and raises and lowers the weighted bar with the same relative motion as the standard pushup, differing only in the fact that the individual lies on his back during the bench press. More complex machines have removed the weighted bar and replaced it with a series of hinges and supports to increase the individual's safety during the exercise, but the exercise remains the same “press.” Most of these exercises, bench press and pushup alike, are limiting in the fact that many of the stabilizing muscles in the forearms, shoulders, and back are ignored during the pushup, because the individual's hands are in a fixed position (either in one place on the floor, or hands gripping the bar) and the linear motion only works the major muscle groups in the exercise, not the smaller stabilizing muscles.
Other implements, such as pushup bars, as shown in
Still another machine, known as “rotating pushup grips” allow the individual to rotate his hands, in a plane parallel to the floor during the pushup exercise. The rotating pushup grips employ ostensibly the same attributes as pushup bars, except they are mounted in such a way so as to allow the bars (or grips) to rotate. Using rotating pushup grips affects the shoulders more than a standard pushup because the hands may rotate, however many of the stabilizing muscles in the arms and shoulders remain ignored, even with the added rotation.
In light of the above, it would be advantageous to provide a pushup exercise device that takes advantage of the benefits of allowing the hands to rotate and move during the exercise.
SUMMARY OF THE INVENTIONThe pushup exercise device described herein is used to increase the level of difficulty of a standard pushup and focus more of the users effort on stabilizer muscles in the upper body, specifically the arms and shoulders. The pushup devices are used in pairs and designed to be gripped, one in each hand of the individual executing a pushup exercise. The devices are two-sided, and provide two different methods for the user to increase the difficulty of the pushup exercise. One side of the device is flat and the other side is formed with a hemispherical surface, or dome, such that when the dome is on the ground and the user leans on the flat side, the user must stabilize his or her upper body over the inherently unstable round surface of the dome, using more muscles than an ordinary pushup. The dome side of the device has a high-friction coating to prevent it from supping on the floor. When flipped over, with the flat side of the device on the ground, the user grips the hemispherical, dome-shaped surface. The flat side is fitted with a pad having minimal friction when in contact with a hard surface, allowing the user to slide the devices on a hard surface during an exercise.
The invention is further fit with a magnet, embedded within the flat side of the device, concealed beneath the low-friction pad. The magnet is intended to allow two of the pushup exercise devices to be magnetically coupled for easy storage.
The objects, features, and advantages of the method according to the invention will be more clearly perceived from the following detailed description, when read in conjunction with the accompanying drawing, in which:
The present invention incorporates the mechanics of the standard pushup exercise and elevation of the hands off the floor, while allowing increased freedom of movement of the hands during the pushup exercise. The increase in freedom of movement increases the level of difficulty of the exercise and forces the individual to stabilize the upper body with more muscles than ordinarily required by a standard pushup or with other pushup or “press” exercise machines.
Referring to
In a preferred embodiment of the invention, plate diameter 106 is the diameter of the circular plate 102. Accordingly, dome diameter 112, is a measurement of the diameter of the dome 104. Plate diameter 106 may be sized to accommodate the size of the expected user's palm, or any other practical size. As shown in
An embodiment of the invention has plate diameter 106 sized such that when the palm of the user's hand is placed in the middle of the flat side of the device 100, opposite dome 104, the fingers of that hand may curl over and grip the edge of the device 100. With the hand placed on the flat side, the individual assumes a standard pushup position, as depicted in
An embodiment of the invention varies the dome diameter 112 to increase or decrease the instability of the devices, thereby affecting demand on the muscle response required to remain stable while in use.
In a preferred embodiment the hands are elevated off the floor allowing a greater range of motion in the pushup, which allows for a greater range of motion in the exercise. Additionally, because the user's fingers are curled over the edge of the fiat side of the circular plate 102, this mode of operation also decreases the amount of strain directed at the wrist of the individual using the described pushup exercise devices.
Referring to
A preferred embodiment of the invention further includes a magnet 114 embedded within the circular plate 102, concealed beneath the low-friction pad 110, as shown in
An embodiment of the invention incorporates an exterior coating with a high friction material, such as a rubber, vulcanized, or otherwise nonskid coating, that prevents the dome 104 from sliding if used on a hard or slippery surface. This nonskid characteristic of the surface of the dome 104 also provides a more effective gripping surface for the user when used with the flat side in contact with the floor.
Referring to
Claims
1. A dual-mode pushup exercise device comprising:
- a plate having a flat side disposed opposite a dome side;
- a hemispherical dome formed onto said dome side of said plate; and
- a low friction pad affixed to said flat side.
2. The dual-mode pushup exercise device of claim 1, wherein said hemispherical dome covers at least a portion of said dome side, the size of said hemispherical dome corresponding substantially to the size of the palm of a person's hand.
3. The dual-mode pushup exercise device of claim 1, wherein said low friction pad exhibits low friction characteristics when in contact with a hard, smooth surface.
4. The dual-mode pushup exercise device of claim 2, wherein the low friction pad is composed of a hard, low-friction plastic.
5. The dual-mode pushup exercise device of claim 1, where in a magnet is formed in said flat side beneath said low friction pad.
6. The dual-mode pushup exercise device of claim 5, wherein the magnet of a first of said dual-mode pushup exercise devices is magnetically coupled with the magnet of a second of said dual-mode pushup exercise devices for storage.
7. The dual-mode pushup exercise device of claim 1, wherein said dome side is coated in a high friction material, exhibiting high friction characteristics when in contact with a surface.
8. The dual-mode pushup exercise device of claim 1, wherein said plate is a circle.
9. The dual-mode pushup exercise device of claim 1, wherein said plate is an ergonomic shape adapted to the hand of a user.
Type: Application
Filed: Jan 9, 2013
Publication Date: Jul 10, 2014
Inventor: Julio R. Torres (San Diego, CA)
Application Number: 13/737,663