Communication System And Method With PAPR And Backoff Configured For Equilibrium
A communication system (20) includes a transmitter (22) having a peak controller (38) which controls PAPR to operate in accordance with a noise constraint. A backoff controller (60) operates in conjunction with an amplifier section (46) to cause the amplifier section (46) to maximize the amplification it applies while maintaining a predetermined degree of amplifier linearity. The noise constraint is provided by an equilibrium estimator (64) that provides a noise target parameter (66) to the peak controller (38). The noise target parameter (66) is configured to identify the transmitter's equilibrium point (126). The equilibrium point (126) is that signal-to-noise ratio (SNR) for the signal (26) broadcast from the transmitter (22) where a demodulator (118) in a receiver (24) will experience a reduced SNR if the transmitted signal (26) SNR either increases or decreases.
Latest CRESTCOM, INC. Patents:
- Communication system with PAPR management using noise-bearing subcarriers
- Communication system with PAPR management using noise-bearing subcarriers
- MINIMIZING IMPEDENCE MISMATCH EFFECTS IN A WIRELESS DEVICE
- Transmitter and method with RF power amplifier having predistorted bias
- Communication System with PAPR Management Using Noise-Bearing Subcarriers
The present invention relates generally to the field of radio-frequency (RF) communication systems. Moreover, the present invention relates to operating circuits and/or processes which reduce peak-to-average power ratio (PAPR) in communication signals broadcast from transmitters and which control amplifier backoff. More specifically, the present invention relates to controlling transmitter PAPR and backoff systems so that the transmitter operates at an estimated equilibrium point. The equilibrium point is that signal-to-noise ratio (SNR) for the signal broadcast from the transmitter where a demodulator in a receiver will experience a reduced SNR if the transmitted signal SNR either increases or decreases.
BACKGROUND OF THE INVENTIONSignal-to-noise ratio (SNR) is an important parameter in the design and operation of communication systems. Communication signals take many forms within a communication system. These forms include a signal that has been modulated with user-supplied information and which is processed within a transmitter into an upconverted analog RF communication signal and an amplified RF communication signal that is broadcast from the transmitter. These forms also include an analog RF communication signal applied at the front-end of a receiver, and a downconverted communication signal applied to a demodulator in the receiver. Many of these forms of the communication signal are composite signals for which one portion of the signal power is a usable and desirable part that conveys the user-supplied information and another portion of the signal power is an unusable and undesirable part that impedes the extraction of the user-supplied information by the receiver. The signal part of the SNR is considered to be the useable portion of a communication signal while the noise part is considered to be the unusable portion. SNR is the ratio formed by dividing the signal part by the noise part. One of the goals of conventional communication systems has been to maximize the signal portion and minimize the noise portion throughout the communication system to achieve as high an SNR as reasonably possible for a given set of circumstances. Conventionally, a higher SNR can be translated into a higher link capacity, lower power consumption, more efficient spectrum usage, greater range of communication, and the like.
For a communication system, an SNR is typically relevant only for the in-band portion of the communication signal. But out-of-band considerations also play a role. When considering an amplified communication signal broadcast from an RF transmitter, the transmitter's amplifier is primarily responsible for providing the signal's power. But the amplifier may be prevented from providing the maximum amount of power it is capable of providing. The governmental regulatory agencies that license RF spectrum for use by RF transmitters define spectral masks with which transmitters should comply. The spectral masks set forth how much RF energy may be transmitted from the RF transmitters at various in-band and out-of-band frequencies. As transmitter technology has advanced, and as increasing demands have been placed on the scarce resource of the RF spectrum by the public, the spectral masks have become increasingly strict. In other words, very little energy outside of an assigned frequency band is permitted to be transmitted from an RF transmitter. Many popular modern modulation techniques, such as CDMA, QAM, OFDM, and the like, require the amplifier to perform a linear amplification operation. But any deviation from perfect linearity in the amplification process causes spectral regrowth, where the amplified signal includes more out-of-band RF energy than is present in the form of the communication signal presented to the amplifier for amplification. Regulatory spectral masks require the amplifier's linearity to be at a very high level so that very little of the signal's power appears outside the spectral mask.
One of the ways to achieve the high degree of linearity imposed by a spectral mask is through the use of an input power backoff controller. The input power backoff controller causes the communication signal being amplified in a transmitter's amplifier section to receive the maximum amount of amplification that the amplifying section can deliver at all times without causing a violation of the spectral mask. Thus, the backoff controller imposes an upper limit on the signal portion of the communication signal broadcast from the transmitter. But it also controls the amplifier section so that the amplifier adds very little in-band and out-of-band noise to the communication signal. Thus, the backoff controller may cause the signal level to rise and fall as it continuously adjusts to better maximize amplification without violating a spectral mask, but the noise contributed by the amplifier remains at such a low level that it satisfies the spectral mask both before and after any such adjustments.
Conventional transmitters occasionally include a peak controller which controls a peak-to-average-power ratio (PAPR) parameter of the communication signal that will subsequently be amplified before being broadcast from the transmitter. One example of a PAPR reduction circuit is described in U.S. Pat. No. 7,747,224, issued 29 Jun. 2010, and entitled “Method and Apparatus For Adaptively Controlling Signals”, which is incorporated by reference in its entirety herein. A PAPR reduction circuit like the one described in U.S. Pat. No. 7,747,224 and elsewhere, reduces the PAPR of the communication signal prior to amplification. Peak reduction is desirable because it allows the transmitter's amplifier to operate at a lower backoff point relative to average signal power. By operating at a lower average power backoff point, average signal power may be increased, for example through the operation of the backoff controller, thereby increasing the signal portion of the communication signal's SNR. Other advantages follow, including operating the amplifier at a greater level of power added efficiency (PAE), more link capacity, an ability to use a lower cost amplifier, efficiency improvements in the use of the spectrum, and the like.
But the benefits of peak reduction come at a cost. In particular, the peak reduction process introduces noise into the communication signal, and the amount of noise introduced increases as more peak reduction is achieved. The peak controller is desirably configured so that this noise is primarily located in-band and so that no spectral mask violations occur. Usually, meaningful amounts of peak reduction occur where the peak controller has introduced such a significant amount of noise that the noise contributed by the amplifier and other downstream sections of the transmitter may be ignored in SNR characterizations of the communication signal. This presents a situation where a transmitter's PAPR and backoff systems operating together bond signal and noise parameters of the communication signal together so that a decrease in SNR is accompanied by an increase in signal, and an increase in SNR is accompanied by a decrease in signal.
Industry-standardized specifications have been proposed and/or promulgated so that radio equipment manufacturers can know how to configure their equipment to successfully communicate with the equipment of other manufacturers. Such specifications set stringent noise specifications for communication signals broadcast from transmitters. The major standards set forth these specifications in the form of an error vector magnitude (EVM) specification or, for CDMA-based systems, a waveform quality factor (p) specification. A relative constellation error (RCE) metric is also defined, where RCE is nearly interchangeable with EVM but is given a different label due to the use of a different measurement technique.
EVM is often designated as:
where NT represents a transmitter's broadcast communication signal's noise power and S represents the signal power. The constant value of one-hundred is included so that EVM will be expressed as a percentage. Thus, EVM is a specification's way of characterizing essentially the same phenomenon that is expressed using the SNR parameter, i.e., a ratio between signal and noise, although it may be accompanied by a precise definition of a measuring procedure. EVM increases as SNR decreases. As a typical example, EVM may be set at around 17% for a QPSK modulation at rate ½ encoding. This is equivalent to an SNR of 34.6, or 15.4 dB when expressed in decibels. Different EVM values are specified for different specification-compliant modulation and coding parameters. The standards specify EVM/RCE to decrease (or equivalently for SNR to increase) as the modulation and coding parameters change to accommodate increased link capacity. The waveform quality factor ρ is a similar metric that is directly related to SNR and EVM. EVM may be expressed as:
Most conventional transmitters, including those with PAPR and backoff systems and the above-discussed U.S. Pat. No. 7,747,224, teach controlling their PAPR and backoff systems to rigidly and directly comply with the dictates of industry standard EVM, RCE, or ρ specifications. But one example of a transmitter with PAPR and backoff systems that complies with the dictates of industry standard EVM specifications in a less direct manner is described in U.S. Publication No. 2011/0064162, published 17 Mar. 2011, and entitled “Transmitting Unit That Reduces PAPR and Method Therefor”, which is incorporated by reference in its entirety herein. The transmitter of U.S. Publication No. 2011/0064162 teaches that the EVM specification is entirely appropriate for the various modulation and coding parameters that are set forth in the specification, but that in certain situations other optional encoding schemes may achieve coding gain relative to corresponding non-optional coding schemes. For example, an optional iterative encoding/decoding scheme or a block encoding scheme characterized by large amounts of latency may be usable in some situations to improve coding gain for the communication link. In these situations, the coding gain should permit a corresponding relaxation in the EVM specification to an alternate EVM point that achieves an equivalent SNR at the receiver. But the major industry standard specifications do not define any such alternate EVM point. Thus, U.S. Publication No. 2011/0064162 teaches operating a transmitter at a technically noncompliant EVM point to compensate for also operating with optional alternative coding parameters to achieve the same SNR result in the receiver that the specification achieves with non-optional coding parameters. In other words, it teaches operating with adherence to the spirit of the EVM specifications if not technically within the letter of the EVM specifications.
Conventional communication systems and transmitters have failed to appreciate that, in some situations honoring EVM, RCE, or p specifications, whether directly as taught in U.S. Pat. No. 7,747,224 or indirectly as taught in U.S. Publication No. 2011/0064162, actually harms communication link integrity even when other communication link parameters are compliant with the specifications. Harm results in two different ways. In some situations, receiver SNR may experience an undesirable decrease when operating a transmitter below EVM specifications (ie., at even less transmitter noise than is specified relative to signal) and a desirable increase when nevertheless operating above EVM specifications (ie., at more transmitter noise than is permitted relative to signal). This type of operation leads to lower link capacities than are readily achievable at the same power levels and costs and to a reduced efficiency in spectrum usage. Moreover, when operating in an SNR region that extends up to an equilibrium point, receiver SNR may decrease more the further below the EVM specifications a transmitter operates, and receiver SNR may increase more the further above the EVM specifications a transmitter operates. In other words, the major industry standards and the conventional equipment which are provided and/or proposed to comply with the major industry standards fail to appreciate the existence of any equilibrium point, where the equilibrium point is that signal-to-noise ratio (SNR) for the signal broadcast from the transmitter where a demodulator in a receiver will experience a reduced SNR if the transmitted signal SNR either increases or decreases.
And, in these situations, communication link robustness suffers, further harming communication link integrity. Communication links desirably remain operational near their link capacity at all times. Otherwise, the spectrum is not being used efficiently. But communication links operate in a dynamic environment that includes interference, fades, and switching between different coding and modulation formats. Link interference effects, fading effects, and coding/modulation switching discontinuity effects may all be worse when operating within mandated EVM specifications but could all be improved by operating outside mandated EVM specifications.
These situations occur where transmitters employ both PAPR controllers and backoff controllers. In these transmitters, since signal and noise are operationally bonded together, more operational transmitter noise yields a greater signal level, albeit at a lower SNR or higher EVM level. Unfortunately, industry standard specifications mandate operation in this region where communication link harm results from adhering to EVM or corresponding specifications.
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, and:
Raw user information to be communicated through communication system 20 is presented to transmitter 22 in the form of one or more data streams 28. A data stream 28 may characterize real-time signals such as voice or video, or data stream 28 may represent non-real-time information, such as data files, packets, and the like. A single data stream 28 may be provided to a transmitter 22 located in an individual's subscriber unit of communication system 20, or multiple data streams 28 may be provided to a transmitter 22 located in a base station of communication system 20. Data stream 28 is provided to an input of a forward error correction encoder 30.
Encoder 30 alters data stream 28 to encode the data by introducing forward error correction redundancy which will aid a complementary decoder located in receiver 24 in detecting whether one or more errors are present at any given time and in correcting those errors.
Desirably, encoder 30 implements a concatenated coding scheme in which an outer code is used with an inner code. The outer code may be configured as a Reed-Solomon block code, and the inner code may be a trellis convolutional code. But other encoding schemes may alternatively be used. The encoding scheme is desirably configured in accordance with coding parameters supplied by a controller 32 to achieve a target bit error rate (BER) that is appropriate for the current signal-to-noise ratio (SNR) conditions of the communication link between transmitter 22 and receiver 24 and that maximizes link capacity. For example, the coding parameters may include a code rate parameter which controls the robustness of the inner convolutional code. And, the coding parameters may include other parameters that control the operation of the outer Reed-Solomon block code, or may specify the use of another type of coding, such as iterative encoding.
An encoded data stream generated in encoder 30 passes to a modulator 34. In modulator 34 the encoded data stream is digitally modulated using a suitable form of digital modulation, such as QPSK, CDMA, OFDM, or the like. The precise form of modulation implemented in modulator 34 is desirably selected in accordance with modulation parameters supplied by controller 32. For example, such modulation parameters may specify whether to use a BPSK, QPSK, 16-QAM, or 64-QAM modulation scheme to achieve a target bit error rate (BER) that is appropriate for the current signal-to-noise ratio (SNR) conditions of the communication link between transmitter 22 and receiver 24 and that maximizes link capacity. Together, the coding and modulation parameters supplied to encoder 30 and modulator 34 are configured with the intent of supporting communication at the maximum rate for data stream 28 that the communication link will support at the time.
When multiple data streams 28 are provided to transmitter 22, the multiple streams may be combined into a single data stream in modulator 34. Modulator 34 produces a modulated communication signal 36. A communication signal, such as modulated communication signal 36 and others discussed below, is an electronic signal that may undergo a variety of different processing steps and be represented in a variety of different ways throughout communication system 20, including as one or more digital streams of data or as one or more analog signals. A communication signal conveys modulated information and/or data provided by data stream(s) 28. The transmission of this information and/or data is the primary purpose of communication system 20, transmitter 22, and receiver 24. Any communication signal within communication system 20 can be demodulated or otherwise processed to recover the information and/or data. While a communication signal may have received a wide variety of processing steps, such steps do not destroy the information and/or data conveyed in amplitude and/or phase of a communication signal.
Modulated communication signal 36 may have undesirably high peaks, causing a peak-to-average power ratio (PAPR) parameter to be undesirably high as well. Accordingly, an output of modulator 34 couples to an input of a peak controller 38. Peak controller 38 processes modulated communication signal 36 to reduce or otherwise control its PAPR. Due to the processing applied to the communication signal by peak controller 38, a peak-reduced form 40 of the communication signal generated by peak controller 38 exhibits a lower PAPR than modulated signal 36. Peak controller 38 is desirably implemented so that peak-reduced signal 40 remains compatible with a spectral mask with which transmitter 22 is required to comply by governmental or other regulations.
Referring back to
Amplifier section 46 is configured through variable gain stage 48 to apply amplification to peak-reduced signal 40 at a controllable input power backoff level and at a degree of linearity that corresponds to the backoff level. In addition to supplying amplified signal 26 to an antenna 52 so that signal 26 is broadcast away from transmitter 22, a small portion of signal 26 is routed through an RF coupler 54 to a downconversion and digitization section 56. Section 56 generates a digital baseband version of the communication signal, referred to as feedback signal 58 herein. Feedback signal 58 is an extra wideband signal which accommodates both the in-band portion 44 (
Transmitter 22 includes an equilibrium estimator 64 that receives the modulation and coding parameters that controller 32 also supplies to modulator 34 and encoder 30. Equilibrium estimator 64 provides a noise target parameter 66 to peak controller 38. Noise target parameter 66 is specifically configured to account for the PAPR characteristics and amplifier section 46 characteristics of transmitter 22, and it changes in value to track changes in modulation and coding parameters.
In cancellation section 68, modulated signal 36 is suitably delayed in a delay element 72. The delayed version of modulated signal 36 is provided from delay element 72 to a combiner 74, where a peak-cancelling signal is combined with the delayed version of modulated signal 36 to form peak-reduced communication signal 40. The peak-cancelling signal is essentially noise from the perspective of communication system 20. In other words, it hinders the extraction of user data from amplified RF communication signal 26 (
Excursion processing section 70 specifically crafts this peak-cancelling signal, referred to below as peak-reduction noise 76, from modulated signal 36 so that it will be effective in reducing the peaks of modulated signal 36 by a precisely controlled amount without increasing the bandwidth of modulated signal 36. An excursion generator 78 processes modulated signal 36 to form an excursion signal 80 that represents only the peaks of modulated signal 36 that are to be reduced. For example, excursion signal 80 may exhibit a signal level of zero at all instants in time where modulated signal 36 is below a threshold, and a signal level equal to the amount by which modulated signal 36 is above the threshold at all other instants in time. If peak controller 38 were to subtract excursion signal 80 from an appropriately delayed version of modulated signal 36, the result would be equivalent to hard-limiting modulation signal 36 at the threshold level. But such an operation would undesirably increase the bandwidth of the resulting hard-limited signal leading to a violation of spectral mask 42 (
Peak controller 38 is capable of exerting a fairly precise control over the amount of peak reduction achieved, and to exert this control over a fairly wide range of peak reduction. Accordingly, the identification of an appropriate amount of peak reduction to achieve is a metric of interest. For the purposes of efficiently operating power stage 50 of amplifier section 46 and of maximizing the average power exhibited in amplified communication signal 26 without harming linearity, greater amounts of peak reduction are beneficial. Unfortunately, greater amounts of peak reduction (i.e., further decreased peaks in peak-reduced signal 40 compared to modulated signal 36) are achieved by increasing the amount of peak-reduction noise 76 added into the communication signal by peak controller 38. And, the maximum amount of peak reduction achievable plateaus at some level where adding larger and larger amounts peak-reduction noise 76 yields smaller and smaller improvements in peak reduction. Accordingly, an appropriate amount of peak reduction to achieve in peak controller 38 is an amount that meets some form of a noise constraint.
Conventional peak controllers, including the peak controllers discussed in the above-mentioned US patent and US Patent Publication incorporated by reference herein, use an error vector magnitude (EVM) specification imposed by an industry standard, or a similar externally-imposed specification such as a waveform quality factor (p) or a relative constellation error (RCE), to define this noise constraint. But the use of an externally imposed error constraint dictates characteristics for a transmitter to follow and does not recognize that transmitter characteristics can be taken into account to improve communication link integrity. Communication system 20 and transmitter 22 implement a different noise constraint. The noise constraint used in transmitter 22 is provided through equilibrium estimator 64, which generates noise target parameter 66. Noise target parameter 66 is based in part upon the PAPR performance characteristics, transmitter amplifier section 46 linearity characteristics, and amplifier section 46 dynamic range of the very transmitter 22 for which noise target parameter 66 supplied. Noise target parameter 66 provides a noise constraint geared toward operating transmitter 22 at an equilibrium point. The equilibrium point is that signal-to-noise ratio (SNR) for amplified signal 26 broadcast from transmitter 22 where a demodulator in receiver 24 will experience a reduced SNR if the transmitted signal's SNR either increases or decreases. The value of the equilibrium point is different for different modulation types and coding parameters, such as code rate and threshold BER, and it is different for different transmitters 22 operating in communication system 20.
Referring again to
In the embodiment depicted in
Each of
In each of
In the
Average backoff (BOA) 106 represents the difference between average magnitude point 102 and bias level 96. In this
By using the normal estimate of the equilibrium point for noise target parameter 66, peak controller 38 will increase peak-reduction noise 76 from the amount provided in the
Turning now to
Accordingly, in one embodiment backoff controller 60 performs band-pass filtering, followed by a magnitude conversion and a low-pass filtering operation (not shown) to monitor sensitive out-of-band points 108 in feedback signal 58 (
Referring back to
After processing in front-end section 114, a digitized baseband form 116 of the communication signal passes to a demodulator 118 in a digital section of receiver 24. Baseband signal 116 includes a signal component (αS, where α denotes the propagation loss), a noise component (αNT) contributed by transmitter 22, and another noise component (NR0) contributed by front-end section 114. Demodulator 118 performs a complementary process to the process performed by modulator 34 in transmitter 22. In other words, demodulator 118 extracts encoded data 120 from baseband signal 116. Encoded data 120 then passes to a decoder 122, which performs a complementary process to the process performed by encoder 30 in transmitter 22. For example, decoder 122 may implement a Viterbi decoding process for the inner convolutional code and a Berlekamp-Massey decoding process for the outer block code. An estimate 28′ of data stream(s) 28 is provided from decoder 122. So long as demodulation is substantially successful, and any demodulation errors can be corrected in decoder 122, estimate data 28′ precisely matches data stream(s) 28.
But for demodulation to be considered substantially successful it must deliver less than a threshold BER in encoded data 120, and that threshold BER can only be achieved if the SNR of baseband signal 116 is sufficiently high to do so.
In hypothetical scenario 0, transmitter 22 performs no substantial peak reduction but nevertheless transmits signal at a power level S that, after propagation losses, causes the signal level αS in baseband signal 116 to be 2 dB greater than total noise (NR0) in baseband signal 116. This hypothetical scenario 0 corresponds to the hypothetical scenario of
Moving to hypothetical scenario 1, transmitter 22 is now controlled to operate at an EVM point, but to freeze its backoff controller and forego adjusting the gain of variable gain stage 48 (
Referring back to
The data depicted in
Referring back to
From equilibrium point 126, a reduced SNR in baseband signal 116 presented to demodulator 118 in receiver 24 results from increasing SNR in amplified signal 26 broadcast from transmitter 22. And from equilibrium point 126, a reduced SNR in baseband signal 116 presented to demodulator 118 in receiver 24 also results from decreasing SNR in amplified signal 26 broadcast from transmitter 22. Equilibrium point 126 represents the maximum SNR point possible for receiver 24 given the characteristics of transmitter 22 expressed in the data of
The data graphically presented in
where α is the propagation loss factor. Now, consider scenario 2, where a certain amount of transmitter-contributed noise NT is present. For scenario 2, the SNR in baseband signal 116 presented to demodulator 118 at a given BER threshold can be expressed as:
where α is the propagation loss factor and β is the power gain caused by backoff reduction through the operation of backoff controller 60. The change in SNR between a scenario where no peak-reduction noise is added and one where peak-reduction noise has been added may then be expressed in decibels as:
Link SNR will be enhanced whenever ΔSNR(dB) is positive, and degraded whenever it is negative. The first term is simply the amount that average transmitted signal power can be increased by peak reduction processing, which produces an in-band transmit noise of NT. The second term is the increase in total link noise. The variable 0 is characterized by the transmitter-specific data presented in
The receiver thermal noise NR0 is not known. But communication systems seek to operate their communication links near the BER threshold for the highest capacity set of modulation and coding parameters that can be accommodated by any given SNR. Thus, one can fairly assume at any instant that:
where SNR(M,R,B0) is the threshold SNR for a given modulation type, coding rate, and BER. By substitution, the increase in SNR for baseband signal 116 may then be expressed as:
Equation 5 and
Referring back to
Desirably, transmitter 22 operates at equilibrium point 126. Looking now to actual scenario 4, backoff controller 60 is unfrozen to allow amplifier section 46 to achieve its maximum amplification while maintaining linearity. This bonds noise and signal levels in transmitted signal 26 together again. The transmitter-specific data from
By operating transmitter 22 at the scenario 4 equilibrium point 126 compared to the EVM point of scenario 2, a highly significant 1.25 dB increase in SNR for baseband signal 116 is obtained. This increase results even though SNR at transmitter 22 decreases from 15.4 dB to 11.4 dB by operating at equilibrium point 126 compared to the EVM point of scenario 2. This increase in link SNR can lead to an increase in channel data capacity of around 0.4 bps/Hz in accordance with the well-known Shannon-Hartley capacity-versus-SNR relationship.
Moreover, communication robustness improves while operating at equilibrium point 126 compared to the EVM point. Operation at equilibrium point 126 provides greater immunity to interference. Interference represents another form of noise to receiver 24. When a given amount of interference is present and has a given amount of influence while operating at the hypothetical EVM point of scenario 2, that same amount of interference will have 1.05 dB less influence when operating at equilibrium point 126 of scenario 4. The 1.05 dB improvement results because total receiver noise NR1 is 1.05 dB greater when operating at equilibrium point 126.
Similarly, operating transmitter 22 at equilibrium point 126 provides greater immunity to fades. During a fade, both signal αS and transmitter noise αNT become attenuated by about the same amount. When operating at the EVM point of scenario 2, transmitter noise αNT is far less than receiver thermal noise NR0 and makes little contribution to the total noise NR1 in baseband signal 116. When a fade occurs while operating at the EVM point of scenario 2, total noise NR1 decreases very little, while signal αS experiences the full fade. In contrast, at the equilibrium point 126 of scenario 4, transmitter noise αNT makes considerably more of a contribution to the total noise NR1 in baseband signal 116. Thus, when a fade occurs total noise NR1 decreases much more than occurs while operating at the EVM point of scenario 2. During a fade, the SNR of baseband signal 116 will decrease less while operating at equilibrium point 126 than when operating at other points to the left of equilibrium point 126 in
Improved and more robust link performance also results when operating with a transmitter 22 that has unusually noisy or worst-case-noisy analog components. For many transmitters 22 in communication system 20, any in-band noise NT present with peak-reduction noise at zero is at a low level and may be ignored for purposes of the present invention. But, values of analog components vary, analog components age, and analog components experience temperature dependencies that may make this form of transmitter-contributed noise occasionally much higher in a worst-case situation. When operating with a noisy transmitter, peak controller 38 will detect the excessive noise and limit peak-reduction noise 76 to that additional amount that meets noise target parameter 66. Less peak-reduction noise 76 will be added to the communication signal than occurs in a less noisy transmitter 22. With less added peak-reduction noise 76, backoff controller 60 will be less effective in increasing amplification, and the net link SNR increase will be reduced from the values suggested in
This noisy-transmitter effect would be severe if operating at or around the EVM point due to the steepness of the left sides of the curves shown in
And, operation of transmitter 22 at the EVM point of scenario 2 or other points to the left of equilibrium point 126 in
When a base station or other controlling entity detects that a communication link is delivering a greater SNR than required to meet the currently specified threshold BER, then that controlling entity will instruct that transmitter 22 to subsequently operate at a higher threshold BER in order to efficiently use the available spectrum. For example, transmitter 22 may be instructed to switch from a 2 dB curve in
In contrast, when transmitter 22 operates at equilibrium point 126 of scenario 4, then after making the switch, the value of equilibrium point 126 would again change. But after this change transmitter 22 would be operating to the right of the equilibrium point 126 in
Scenarios 0-3 and 5 are hypothetical scenarios only and are presented herein for comparison purposes with actual scenario 4. Transmitter 22 desirably avoids operating at any of scenarios 0-3 and 5 by causing equilibrium estimator 64 to operate at the estimate of equilibrium point 126 for any given set of modulation and coding parameters. Moreover, backoff controller 60 remains unfrozen during normal operation, makes continuous adjustments to the amplification provided by amplifier section 46, and tracks changes in the PAPR of peak-reduced signal 40.
In summary, at least one embodiment of the present invention provides a transmitter that operates at an estimate of its equilibrium point. The equilibrium point is that signal-to-noise ratio (SNR) for the signal broadcast from the transmitter where a demodulator in the receiver will experience a reduced SNR if the transmitted signal SNR either increases or decreases. In at least one embodiment of the present invention, the estimated equilibrium point is determined in response to the actual PAPR reduction achievable through a peak reduction process in the transmitter. In at least one embodiment of the present invention, the SNR of the signal demodulated in a receiver exhibits increasing SNR as the SNR of the transmitted signal decreases up to the equilibrium point. In at least one embodiment of the present invention, improvements in link robustness result from operating the transmitter at its equilibrium point rather than an externally imposed noise specification.
Although the preferred embodiments of the invention have been illustrated and described in detail, it will be readily apparent to those skilled in the art that various modifications and adaptations may be made without departing from the spirit of the invention or from the scope of the appended claims. For example, those skilled in the art will appreciate that the specific functions depicted herein through the use of block diagrams and circuit diagrams may be partitioned in equivalent but different ways than shown and discussed herein. Such equivalent but different ways and the modifications and adaptations which may be implemented to achieve them are to be included within the scope of the present invention. Likewise, while certain operational conditions have been mentioned herein for the purposes of teaching the invention, the invention may be applied in connection with other operational conditions. These and other equivalent modifications and adaptations are included within the scope of the present invention.
Claims
1. A transmitter configured to broadcast an amplified signal capable of being demodulated at a receiver having a front-end section and a demodulator section, said transmitter comprising:
- a peak controller which controls a peak-to-average-power ratio (PAPR) parameter of a peak-reduced signal by adjusting an amount of peak-reduction noise combined with a modulated signal in said peak controller to form said peak-reduced signal;
- an amplifier section coupled to said peak controller and configured to apply amplification to said peak-reduced signal at a controllable input power backoff level and corresponding degree of linearity and to generate said amplified signal;
- a backoff controller coupled to said amplifier section, said backoff controller being configured to continuously adjust said input power backoff level of said amplifier section to maximize said amplification while maintaining a predetermined degree of linearity;
- an equilibrium estimator coupled to said peak controller, said equilibrium estimator being configured to provide an estimate of an equilibrium point at which: a reduced signal-to-noise ratio at said demodulator section of said receiver results from increasing a signal-to-noise ratio in said amplified signal broadcast from said transmitter; and a reduced signal-to-noise ratio at said demodulator section of said receiver also results from decreasing said signal-to-noise ratio in said amplified signal broadcast from said transmitter;
- wherein said peak controller is configured to combine an amount of said peak-reduction noise with said modulated signal that causes said transmitter to operate at said estimate of said equilibrium point.
2. A transmitter as claimed in claim 1 wherein said peak controller is configured so that said peak-reduction noise exhibits substantially the same bandwidth as said modulated signal.
3. A transmitter as claimed in claim 1 wherein:
- said signal-to-noise ratio for said amplified signal broadcast from said transmitter is increased by decreasing said peak-reduction noise combined with said modulated signal in said peak controller to cause increased peaks in said peak-reduced signal; and
- said backoff controller is configured to respond to said increased peaks in said peak-reduced signal by increasing said input power backoff level.
4. A transmitter as claimed in claim 1 wherein:
- said signal-to-noise ratio for said amplified signal broadcast from said transmitter is decreased by increasing said peak-reduction noise combined with said modulated signal in said peak controller to cause decreased peaks in said peak-reduced signal; and
- said backoff controller is configured to respond to said decreased peaks in said peak-reduced signal by decreasing said input power backoff level.
5. A transmitter as claimed in claim 1 wherein said equilibrium estimator is configured so that said equilibrium point is responsive to thermal noise generated in said front end of said receiver.
6. A transmitter as claimed in claim 1 wherein said equilibrium estimator is responsive to modulation parameters which describe said modulated signal.
7. A transmitter as claimed in claim 1 wherein:
- said modulated signal is error-correction encoded at a code rate; and
- said equilibrium estimator is configured so that said estimate of said equilibrium point is responsive to said code rate.
8. A transmitter as claimed in claim 1 wherein:
- said modulated signal is error-correction encoded to accommodate a predetermined bit error rate; and
- said equilibrium estimator is configured so that said estimate of said equilibrium point is responsive to said bit error rate.
9. A transmitter as claimed in claim 1 wherein:
- said equilibrium estimator is provided by a memory which stores said estimated equilibrium point as a constant value representing an amount of peak-reduction noise divided by a modulated signal level at said equilibrium point; and
- said peak controller comprises a multiplier which multiplies said estimated equilibrium point by a modulated signal magnitude parameter to obtain an amount of peak-reduction noise to be added to said modulated signal in order to deliver peak reduction and controllable input power backoff at said estimated equilibrium point.
10. A transmitter as claimed in claim 1 wherein said equilibrium estimator is configured to establish said estimate of said equilibrium point in response to empirical measurements of peak-to-average power ratio decrease in said peak-reduced signal relative to said modulated signal in response to differing values for a ratio between peak-reduction noise and modulated signal level.
11. A transmitter as claimed in claim 1 wherein said equilibrium estimator is configured to establish said estimate of said equilibrium point in response to calculated noise increases at said demodulation section of said receiver at a threshold bit error rate of a predetermined modulation type and a predetermined coding parameter set for differing values of a ratio between peak-reduction noise and modulated signal level.
12. A transmitter as claimed in claim 1 wherein said equilibrium estimator is configured to establish said estimate of said equilibrium point in response to an equation that has:
- a first component which characterizes power increases in said amplified signal achievable by reducing backoff in response to increasing said peak-reduction noise being combined with said modulated signal; and
- a second component which characterizes how noise increases relative to said amplified signal at said demodulator section of said receiver at a threshold bit error rate in response to increasing said peak-reduction noise being combined with said modulated signal.
13. A transmitter as claimed in claim 1 wherein said equilibrium estimator is configured so that said equilibrium point is matched with specific characteristics of said amplifier section.
14. A communication system exhibiting robust communication links, said system comprising:
- a receiver having a front-end section and a demodulator section; and
- a transmitter configured to broadcast an amplified signal capable of being demodulated at said receiver, said transmitter comprising: a peak controller which controls a peak-to-average-power ratio (PAPR) parameter of a peak-reduced signal by adjusting an amount of peak-reduction noise combined with a modulated signal in said peak controller to form said peak-reduced signal; an amplifier section coupled to said peak controller and configured to apply amplification to said peak-reduced signal at a selectable input power backoff level and corresponding degree of linearity and to generate said amplified signal; a backoff controller coupled to said amplifier section, said backoff controller being configured to continuously adjust said input power backoff level of said amplifier section to maximize said amplification while maintaining a predetermined degree of amplifier linearity; an equilibrium estimator coupled to said peak controller, said equilibrium estimator being configured to provide an estimate of an equilibrium point at which a reduced a signal-to-noise ratio at said demodulator section of said receiver results from increasing a signal-to-noise ratio in said amplified signal broadcast from said transmitter, and a reduced signal-to-noise ratio at said demodulator section of said receiver also results from decreasing said signal-to-noise ratio in said amplified signal broadcast from said transmitter; and wherein said peak controller is configured to combine an amount of said peak-reduction noise with said modulated signal that causes said transmitter to operate at said estimated equilibrium point.
15. A communication system as claimed in claim 14 wherein:
- said signal-to-noise ratio for said amplified signal broadcast from said transmitter is increased by decreasing said peak-reduction noise combined with said modulated signal in said peak controller to cause increased peaks in said peak-reduced signal; and
- said backoff controller is configured to respond to said increased peaks in said peak-reduced signal by increasing said input power backoff level.
16. A communication system as claimed in claim 14 wherein:
- said signal-to-noise ratio for said amplified signal broadcast from said transmitter is decreased by increasing said peak-reduction noise combined with said modulated signal in said peak controller to cause decreased peaks in said peak-reduced signal; and
- said backoff controller is configured to respond to said decreased peaks in said peak-reduced signal by decreasing said input power backoff level.
17. A communication system as claimed in claim 14 wherein said equilibrium estimator is configured so that said equilibrium point is responsive to thermal noise generated in said front end of said receiver.
18. A communication system as claimed in claim 14 wherein said equilibrium estimator is configured to establish said estimate of said equilibrium point in response to calculated noise increases at said demodulation section of said receiver at a threshold bit error rate of a predetermined modulation type and a predetermined coding parameter set for differing values of a ratio between peak-reduction noise and modulated signal level.
19. A communication system as claimed in claim 14 wherein said equilibrium estimator is configured so that said equilibrium point is matched with specific characteristics of said amplifier section.
20. A method of operating a transmitter configured to broadcast a peak-reduced amplified signal capable of being demodulated at a receiver having a front-end section and a demodulator section, said method comprising:
- generating peak-reduction noise from a modulated signal;
- combining said peak-reduction noise with a delayed version of said modulated signal in a peak controller to form a peak-reduced signal which exhibits a lower peak-to-average-power ratio (PAPR) parameter than is exhibited by said modulated signal;
- applying amplification to said peak-reduced signal in an amplifier section which operates at a selectable input power backoff level and at a corresponding degree of amplifier linearity and which generates said amplified signal;
- continuously adjusting said input power backoff level of said amplifier section to maximize said amplification while maintaining a predetermined degree of amplifier linearity; and
- estimating an equilibrium point at which a reduced a signal-to-noise ratio at said demodulator section of said receiver results from increasing a signal-to-noise ratio in said amplified signal broadcast from said transmitter, and a reduced signal-to-noise ratio at said demodulator section of said receiver also results from decreasing said signal-to-noise ratio in said amplified signal broadcast from said transmitter;
- wherein said peak-reduction noise is combined with said modulated signal in an amount that causes said transmitter to operate at said estimated equilibrium point.
21. A method as claimed in claim 20 wherein said peak-reduction noise is generated to exhibit substantially the same bandwidth as is exhibited by said modulated signal.
22. A method as claimed in claim 20 wherein
- said signal-to-noise ratio for said amplified signal broadcast from said transmitter is increased by decreasing said peak-reduction noise combined with said modulated signal in said peak controller to cause increased peaks in said peak-reduced signal; and
- said continuously adjusting step responds to said increased peaks in said peak-reduced signal by increasing said input power backoff level.
23. A method as claimed in claim 20 wherein:
- said signal-to-noise ratio for said amplified signal broadcast from said transmitter is decreased by increasing said peak-reduction noise combined with said modulated signal in said peak controller to cause decreased peaks in said peak-reduced signal; and
- said continuously adjusting step responds to said decreased peaks in said peak-reduced signal by decreasing said input power backoff level.
24. A method as claimed in claim 20 wherein said equilibrium point is responsive to thermal noise generated in said front end of said receiver.
25. A method as claimed in claim 20 wherein said estimating step is configured so that said estimated equilibrium point is responsive to modulation parameters which describe said modulated signal.
26. A method as claimed in claim 20 wherein:
- said modulated signal is error-correction encoded at a code rate; and
- said estimating step is configured so that said estimated equilibrium point is responsive to said code rate.
27. A method as claimed in claim 20 wherein:
- said modulated signal is error-correction encoded to accommodate a predetermined bit error rate; and
- said estimating step is configured so that said estimate of said equilibrium point is responsive to said bit error rate.
28. A method as claimed in claim 20 wherein said estimating step is configured to establish said estimate of said equilibrium point in response to an equation that has:
- a first component which characterizes power increases in said amplified signal achievable by reducing backoff in response to increasing said peak-reduction noise being combined with said modulated signal; and
- a second component which characterizes how noise increases relative to said amplified signal at said demodulator section of said receiver at a threshold bit error rate in response to increasing said peak-reduction noise being combined with said modulated signal.
29. A method as claimed in claim 20 wherein said estimating step is configured so that said equilibrium point is matched with specific characteristics of said amplifier section.
Type: Application
Filed: Feb 13, 2013
Publication Date: Aug 14, 2014
Applicant: CRESTCOM, INC. (Scottsdale, AZ)
Inventor: Ronald Duane McCallister (Scottsdale, AZ)
Application Number: 13/766,501
International Classification: H04L 1/00 (20060101);