IMPLICIT CERTIFICATE SCHEME

A method of generating a public key in a secure digital communication system, having at least one trusted entity CA and subscriber entities A. For each entity A, the trusted entity selects a unique identity distinguishing the entity A. The trusted entity then generates a public key reconstruction public data of the entity A by mathematically combining public values obtained from respective private values of the trusted entity and the entity A. The unique identity and public key reconstruction public data of the entity A serve as A's implicit certificate. The trusted entity combines the implicit certificate information with a mathematical function to derive an entity information ƒ and generates a value kA by binding with ƒ with private values of the trusted entity. The trusted entity transmits the value kA to the entity to permit A to generate a private key from kA, A's private value and A's implicit certificate. The entity A's public key information may be reconstructed from public information, and A's implicit certificate.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application is a continuation of U.S. patent application Ser. No. 12,137,276 filed on Jun. 11, 2008 which is a continuation of U.S. patent application Ser. No. 10/921,870 filed on Aug. 20, 2004 which is a continuation of U.S. patent application Ser. No. 09/667,819 filed on Sep. 22, 2000, which is a continuation of PCT Application No. PCT/CA99/00244 filed on Mar. 23, 1999 which claims priority from Canadian Patent Application No. 2,235,359 filed on Apr. 20, 1998 and Canadian Patent Application No. 2,232,936 filed on Mar. 23, 1998, all of which are hereby incorporated by reference.

This invention relates to key distribution schemes for transfer and authentication of encryption keys.

BACKGROUND OF THE INVENTION

Diffie-Hellman key agreement provided the first practical solution to the key distribution problem, in cryptographic systems. The key agreement protocol allowed two parties never having met in advance or shared key material to establish a shared key secret by exchanging messages over an open (unsecured) channel. The security rests on the intractability of the Diffie-Hellman problem and the related problem of computing discrete logarithms.

With the advent of the Internet and such like the requirement for large-scale distribution of public keys and public key certificates are becoming increasingly important. Public-key certificates are a vehicle by which public keys may be stored, distributed or forwarded over unsecured media without danger of undetectable manipulation. The objective is to make one parties'public key available to others such that its authenticity and validity are verifiable.

A public-key certificate is a data structure consisting of a data part and a signature part. The data part contains clear text data including as a minimum, public key and a string identifying the party to be associated therewith. The signature part consists of the digital signature of a certification authority (CA) over the data part, thereby binding the entities identity to the specified public key. The CA is a trusted third party whose signature on the certificate vouches for the authenticity of the public key bound to the subject entity.

Identity-based systems (ID-based systems) resemble ordinary public-key systems, involving a private transformation and a public transformation, but parties do not have explicit public keys as before. Instead, the public key is effectively replaced by a party's publicly available identity information (e.g. name or network address). Any publicly available information, which uniquely identifies the party and can be undeniably associated with the party, may serve as identity information.

An alternate approach to distributing public keys involves implicitly certified public keys. Here explicit user public keys exist, but they must be reconstructed rather than transported by public-key certificates as in certificate based systems. Thus implicitly certified public keys may be used as an alterative means for distributing public keys (e.g. Diffie-Hellman keys).

An example of an implicitly certified public key mechanism is known as Gunther's implicitly-certified (ID-based) public key method. In this method:

1. A trusted server T selects an appropriate fixed public prime p and generator α of Zp*. T selects a random integer t, with 1≦t≦p−2 and ged(t, p−1)=1, as its private key, and publishes its public key u=αt mod p, along with α, p.

2. T assigns to each party A a unique name or identifying string IA and a random integer kA with ged(kA, p−1)=1. T then computes PAKA mod p. PA is A's KEY reconstruction public data, allowing other parties to compute (PA)a below.

3. Using a suitable hash function h, T solves the following equation for a:


H(IA)≡t·PA+kAa(modp−1)

4. T securely transmits to A the pair (r,s)=(PA, a), which is T's ElGamal signature on IA. (a is A's private key for Diffie-Hellman key-agreement)

5. Any other party can then reconstruct A's Diffie-Hellman public key PAa entirely from publicly available information (α, IA, u, PA, p) by computing:


PAa≡αh(IA)u−PA modp

Thus for discrete logarithm problems, signing a certificate needs one exponentiation operation, but reconstructing the ID-based implicitly-verifiable public key needs two exponentiations. It is known that exponentiation in the group Zp* and its analog scalar multiplication of a point in E(Fq) is computationally intensive. For example an RSA scheme is extremely slow compared to elliptic curve systems. However despite the resounding efficiency of EC systems over RSA type systems this is still a problem particularly for computing devices having limited computing power such as “smart cards”, pagers and such like.

SUMMARY OF THE INVENTION

The present invention seeks to provide an efficient ID-based implicit certificate scheme, which provides improved computational speeds over existing schemes. For convenience, we describe the schemes over Zp, however these schemes are equally implementable in elliptic curve cryptosystems.

In accordance with this invention there is provided a method of generating an identity-based public key in a secure digital communication system, having at least one trusted CA and subscriber identities A, the method comprising the steps of:

(a) for each entity A, the CA selecting a unique identity IA distinguishing the entity A;

(b) generating a public key reconstruction public data γA of entity A by mathematically combining a generator of the trusted party CA with a private value of the entity A, such that the pair (IA, γA) serves as A's implicit certificate;

(c) combining the implicit certificate information (IA, γA) in accordance with a mathematical function F(γA, IA) to derive an entity information ƒ;

(d) generating a private key a of the entity A by signing the entity information ƒ and

transmitting the private key a to the entity A, whereby the entity A's public key may be reconstructed from the public information, the generator γA and the identity IA relatively efficiently.

In accordance with a further embodiment of the invention there is provided a public key certificate comprising a plurality of public keys having different bit strengths and wherein one of the public keys is an implicitly certified public key.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:

FIG. 1 is a schematic representation of a first system configuration according to an embodiment of the present invention; and

FIG. 2 is a schematic representation of a second system configuration according to an embodiment in the present invention.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring to FIG. 1, a system with implicitly-certified public keys is shown generally by 10. This system 10 includes a trusted third party CA and at least a pair of first and second correspondents A and B respectively. The correspondents A and B exchange information over a communication channel and each includes a cryptographic unit for performing visual finding/verification and encryption/decryption.

Referring back to FIG. 1, the trusted part CA selects an appropriate prime p with p=tq+1 where q is a large prime and a generator α of order q. The CA selects a random integer c, with 1≦c≦q−1 as its private key, then computes the public key β=αc mod p and publishes (β, α, p, q).

Scheme 1:

1. For each party A, the CA choose a unique distinguished name or identity IA (e.g., name, address, phone number), and a random integer cA with 1≦cA≦q−1. Then the CA computes γACA mod p. (γA is the party A's public key reconstruction public data. The pair (IA, γA) serves as A's implicit certificate)

2. The CA selects a function ƒ=F(IA, γA). For example, F(γA, IA)=γA+h(IA), or F(γA, IA)=h(γA+IA) where h is a secure hash function and solves the following equation for a, which is party A's private key. If a=0, then the CA chooses another cA and re-solves the equation.


1=cf+cAa(modq)

3. The CA securely sends the triple (γA, a, IA) to A, which is CA's signature on IA. Then

    • α is A's private key;
    • γA is A's generator; and
    • γAa (=αcAa) is A's public key.

A publishes (α, IA, β, γA, p, q) in the public domain.

4. Anyone can obtain party A's (ID-based) implicitly verifiable public key from the public domain by computing,


γAa=αβ−f(modp),

thus deriving the public key from the above equation, which requires only one exponentiation operation.

Although everyone can reconstruct party A's public key from public data, this does not mean that the reconstructed public key γAa has been certified. This scheme is more effective when it is combined with an application protocol that shows that party A has complete knowledge of the corresponding private key. For example, with the MQV key-agreement scheme or with any signature scheme and particularly with an KCDSA (Korean Certificate based Digital Signature Algorithm). In general, this implicit certificate scheme can be used with any scheme, which is required to verify the certificate. This may be demonstrated by referring to the Digital Signature Algorithm (DSA) signature scheme.

Suppose Alice has a private key α, generator γA and publishes (α, IA, β, γA, p, q) in public domain. Now Alice wants to sign a message M using DSA.

Alice does the following:

    • 1. Randomly chooses k, computes r=γAk (mod p);
    • 2. computes e=sha−1(M);
    • 3. computes s=k−1 (e+ar) (mod p);
    • 4. The signature on M is (r,s).

Verifier does the following:

    • 1. gets Alice's public data (α, IA, β, γA, p, q) and reconstructs the public key


δAAa=αβ−f(modp);

    • 2. computes e=sha−1(M);
    • 3. computes u1=es1 (mod q) and u2=rs−1 (mod q);
    • 4. computes r′=γAu1δAu2 mod p;
    • 5. if r=r′, the signature is verified. At the same time Alice's (ID-based) public key is implicitly verified.

The pair (IA, γA) serves as certificate of Alice. Reconstructing the public key serves as implicit verification when the application protocol results in a valid verification. Recall that obtaining the public key needs only one exponentiation operation.

In an alternate embodiment, the scheme can be generalized to most ElGamal signature schemes by modifying the signing equation appropriately. In the following section, we give some examples.

Scheme 2:

The CA uses the signing equation I=ca+cAƒ (mod q). The CA securely sends the triple (γA, a, IA) to A, then a is A's private key, β is A's generator and βa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain. Anyone can obtain A's (ID-based ) implicitly certified public key from the public domain by computing


βa=αγA−ƒ(modp)

For this scheme, each user has the same generator β which is the CA's public key.

Scheme 3:

The CA uses the signing equation a=cf+CA (mod q). The CA securely sends the triple (γA, a, IA) to A, then a is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in the public domain. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αafγA(modp)

For this scheme, each user including the CA has the same generator α.

Scheme 4:

The CA uses the signing equation of a≡CAf+c (mod q). The CA securely sends the triple (δA, a, IA) to A, then a is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in the public domain. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaAƒβ(modp)

For this scheme, each user including CA has same generator α.

In the above schemes the user or party A does not have freedom to choose its own private key. The following schemes as illustrated in FIG. 2 both the CA and the user control the user's private key but only the user knows its private key.

Scheme 5′:

A first randomly chooses an integer k an computes αk, then sends it to the CA. The CA computes γAkCA mod p, and solves the following signing equation for kA


1=cf+cAkA(modq).

Then the CA computes γA1CA mod p and sends the triple (γA1, kA, IA) to A. A computes a=kAk−1 (mod q) and γA=(γA1)k(mod p). Then a is A's private key, γA is A's generator and γAa is A's public key. A publishes (α, IA, β, γA, p, q) in the public domain. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


γAa=αβ−f(modp)

Scheme 6:

1. A randomly chooses an integer k an computes βk, then sends it to the CA.

2. The CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA), solves the signing equation for kA (if kA=0, then choose another cA)


1=ckA+cAƒ(modq).

Then CA computers γA1cAc−1 (mod p) and sends the triple (γA1, kA, IA) to A.

Note: (γA1, kA, IA) can be sent by public channel.

3. A computes γA=(γA1)k−1 αk (mod p), ƒ=F(γA, IA), and a=kA−kƒ (mod q). (If α=0, 1, then goes back to step 1.) Then checks if βa=αγA−ƒ. Now α is A's private key, β is A's generator and βa is A's public key. A publishes (α, IA, β, γA, p, q) in the public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


βa=αγA−ƒ(mod p)

Scheme 7:

A first randomly chooses an integer k and computes αk, then sends it to the CA. Now CA computes γAkαCA (mod p), solves the signing equation for kA


kA≡cf+cA(modq)

Then the CA computes γA1=(αk)CA (mod p) and sends the triple (γA1, kA, IA) to A. A computes γA=(γA1)k−1 αk (mod p). Then a=kA+k (mod q) is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αafγA(modp)

Scheme 8:

1. A randomly chooses an integer k and computes αk, then sends it to the CA.

2. The CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA), computes kA (if kA=0, then choose another cA)


kA≡cAƒ+c(modq).

Then CA computers γA1=(αk)cA (mod p) and sends the triple (γA1, kA, IA) to A.

Note: (γA1, kA, IA) can be sent by public channel.

3. A computes γA=(γA1)k−1 αk (mod p), ƒ=F(γA, IA), and a=kA+kƒ (mod q). (if a=0, 1, then goes back to step 1.). Then checks if αaAƒβ. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaAƒβ(modp)

In the above schemes 5-8, anyone can get partial information of user A's private key α since kA is sent by public channel. To hide this information and to speed up computation of above schemes, we introduce DES encryption to get following scheme 9-12 by modifying scheme 5-8. The advantages in scheme 9-12 is that user can computer K easily since β is fixed.

Scheme 9:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer CA, computes γAkcA (mod p) and ƒ=F(γA, β, IA), solves the signing equation for kA (if kA=0, then choose another CA).


1=cƒ+cAkA(modq)

Next CA computes K=(ak)c(mod p) and kA=DESK(kA), then sends the triple (γA, kA, IA) to A.

γA

3. A computes K=βk (mod p), kA=DESk ( kA), and a=kAk−1 (mod q). (if a=1, then goes back to step 1). Then checks if γAa=αβ−ƒ. Now α is A's private key, γA is A's generator and γAa is A's public key. A publishes (α, IA, βA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


γAa=αβ−ƒ(modp)

Scheme 10:

1. A randomly chooses an integer k and computes βk, then sends it to CA.

2. CA randomly chooses an integer CA, computes γAkαCA (mod p) and ƒ=F(γA, β, IA), solves the signing equation for kA (if kA=0, then choose another CA.


1=ckA+cAƒ(modq)

Next CA computes K=(βk)cac−1=60 kcA (mod p) and kA=DESK(kA), then sends the triple (γA kA, IA) to A.

Note: (γA kA, IA) can be sent by public channel.

3. A computes K=(γAk)kkcA (mod p), kA=DESk( kA), ƒ=F(γA, β, IA) and computes a=kA−kƒ (mod q). (if a=o, 1, then goes back to step 1). Then checks if βa=αγA−ƒ. Now α is A's private key, β is A's generator and βa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


βa=αγA−ƒ(modp)

Scheme 11

1. A randomly chooses an integer k and computes ak, then sends it to CA.

2. CA randomly chooses an integer CA, computes γAkαCA (mod p) and ƒ=F(γA, β, IA) computes kA (if kA=0, then choose another CA)


kA=cƒ+cA(modq).

Next CA computes K=(αk)c(mod p) and kA=DESK(kA), then sends the triple (γA, kA, IA) to A.

Note: (γA, kA, IA) can be sent by public channel.

3. A computes K=βk (mod p), kA=DESK( kA), and a=kA+k(mod q) (if a=0, 1, then goes back to step 1). Then checks if αaƒγA. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing αaAƒ(mod p)

Scheme 12:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer CA, computes γAkαcA (mod p) and ƒ=F(γA, β, IA) computes kA (if kA=0, then choose another CA) kA=cAƒ+c(mod q)

Next CA computes K=(αk)c(mod p) and kA=DESk(kA), then sends the triple (γA, kA, IA) to A.

Note: (γA, kA, IA) can be sent by public channel.

3. A computes K=βk (mod p), kA=DESk( ka), ƒ=F(γA, β, IA), and a=kA+kƒ (mod q). (if a=0, 1then goes back to step 1). Then checks if αaAƒβ. Now a is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q). Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaAƒβ(modp)

The advantages for schemes 9-12 are that user A can compute K easily since β is fixed and that kA is encrypted such that no other people can know it.

Note that for schemes 5-12, adding an option parameter OP to the function F(γA, β, IA (i.e., ƒ=F(γA, β, IA, OP) will make the schemes more useful. For example, OP=αnE, where aE is user A's private encryption key and αaE is user A's public encryption key. Following scheme 15 is a modification of scheme 7. Schemes 5-12 can be modified in the same way. The schemes 1-4 can also be modified in the same way.

Scheme 13:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer CA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), computes kA (if kA=0, then choose another cA)


kA≡cƒ+cA(modq).

Next, CA computers K=H((αk)c) and kA=DESK(kA), then sends the triple (ƒ, kA, IA) to A.

3. A computes K=H(βk), kA=DESK( kA), and a=kA+k (mod q) (if a=0, 1, then goes back to step 1.) Then computes γAaβ−ƒ (mod p) and checks if ƒ=F(γA, IA, OP). Now α is A's private key, α is A's generator key and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaƒγA(modp)

Furthermore we can reduce the bandwidth by following scheme 14.

Scheme 14:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and set {circumflex over (γ)}A as the first 80 least significant bits of γA. Then computes ƒ=F({circumflex over (γ)}A, IA, OP) and kA (if kA=0, then choose another cA)


kA≡cƒ+cA(modq).

Next CA computers K=(αk)c (mod p) and kA=DESK(kA), then sends the triple ({circumflex over (γ)}A, kA, IA) to A.

Note: ({circumflex over (γ)}A, kA, IA) can be sent by public channel.

3. A computes K=βk (mod p), kA=DESK( kA), and a=kA+k (mod q) (if a=0, 1, then goes back to step 1.) Then computes ƒ=F({circumflex over (γ)}A, β, IA), γAa β−71 (mod p) and checks if the first 80 least significant bits of γA is {circumflex over (γ)}A. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaƒγA(modp)

The security level of scheme 5.c is not as other schemes we discuss before. Scheme 5.c only has 80 bit security. But it is OK for practical application Now. We can extend the first 80 least significant bits to the half least significant bits of γA.

The implicit certificate can be used to certify some other useful information by including the information in the option parameter OP. For example OP=αaE∥OP2, where aE is user A's another private key and αaE is the corresponding public key. Following scheme 15 is a modification of scheme 7. Other schemes can be modified in the same way.

Scheme 15:

1. A randomly chooses an integer aE and computes αaE.

2. A randomly chooses an integer k and computes αk, then sends αk and αaE to CA.

3. CA randomly chooses an integer cA, computes γAkαcA(mod p) and ƒ=F(γA, β, IA, αaE), (for example, ƒ=F(γA, β, IA, αaE)=h(γA∥β∥IA∥αaE)) computes kA (if kA=0, then chooses another CA)


kA=cƒ+cA(modq)

Then CA computes γA1=(αk)cA(mod p) and sends the triple (γA1, kA, IA) to A.

Note: (γA1, kA, IA) can be sent by public channel.

4. A computes a=kA+k (mod q). (if a=0, 1, then goes back to step 1) and computes γAA1)kαk (mod p). Then checks if αaƒγA. Now a is A's private signing key, α is A's generator and αa is A's public signing key, aE is A's private encryption key and αaE is A's public encryption key. A publishes ((α, αaE, IA, β, γA, p, q) in public domain.

5. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaƒγA(modp)

Notes: (for Scheme 13-15)

1. The identity IA may be chosen either by CA or by entity A

2. CA should authenticate the entity A. It can be done by the method described in the note 2 of scheme 11.

3. (ƒ, kA, IA) or ({circumflex over (γ)}A, kA, IA) or (γA1, kA, IA) can be sent by public channel.

In our schemes, (α, γA) is CA's signature on A's ID IA, it was supposed to be known by public. But now, only user A knows the a. So when we use these schemes, we should make sure that in application protocol, user A knows his/her own private key. In other words, the application protocol must guarantee that A uses his/her private key in the computation.

The security of the new scheme depends on the signing equations. For example, in scheme 1, the signing equation is


1=cƒ+cAα(mod q).  (1)

We are going to show that for some choice of the one way function F(γA, IA), the new scheme 1 is equivalent to DSA.

Let's consider CA using DSA signing equation to sign A's identity IA. First CA randomly choose a cA and compute γAcA mod p, then CA uses a secure hash function h to computer h(IA), finally CA solves the following equation for s.


h(IA)≡A+cAs(modq).  (2)

Now (γA, s) is CA's signature on IA.

Multiple equation (2) by h(IA)−1 we got


1≡Ah(IA)−1+cAsh(IA)−1(modq)

Let F(γA, IA)=γA h(IA)−1 and replace sh(IA)−1 by α in above equation we got the equation (1). Obviously, equation (2) is equivalent to equation (1) if F(γA, IA)=γA h(IA)−1. That means, if anyone can break the scheme using the signing equation (1), then he/she can break the scheme using the signing equation (2) which is DSA scheme.

Heuristic arguments suggest our new schemes are secure for suitable choice of F(γA, IA), where F(γA, IA)=γA h(IA) or F(γA, IA)=h(γA, IA). Note F(γA, IA) can be some other format, for example when IA is small, say 20 bits, but q is more than 180 bits, then we can use F(γA, IA)=γA+IA. A disadvantage of the new schemes is all users and CA use the same field size. However this is the way that all ID-based implicitly certified public key schemes work, for example, Girault's RSA based Diffie-Hellman public key agreement scheme.

A further set of schemes may also be described as follows:

System setup: A trusted party CA selects an appropriate prime p with p=tq+1 where q is a large prime and a generator α of order q. CA selects a random integer c, with 1<c<q as its private key, computes the public key β=αc mod p and publishes (β, α, p, q). Then CA chooses a special cryptographic function ƒ=F(γA, IA, OP) (ƒ: {0, 1}*→{1, 2, . . . (q−1)}) such that with this function, the signature scheme which used to produce implicit certificate is secure, where OP represents some option parameters that user may concern (such as date, or β the CA's public key). For example, let h be a secure hash function, f can be one of following format


1. FA,IA,OP)=γA+β+h(IA)


2. FA,IA,OP)=hA∥β∥IA)


3. FA,IA,OP)=γA+β+IA

where IA has some pattern (or when IA is small, say 20 bits, and q is more than 180 bits)


4. FA,IA,OP)=γA+h(IA)


5. FA,IA,OP)=hA∥IA)


6. FA,IA,OP)=γA+IA

where IA has some pattern (or when IA is small, say 20 bits, and q is more than 180 bits)

7. It is very easy to change the parameters a little bit to get a secure signature scheme from a given secure signature scheme. So F(γA, IA, OP) can be any other format that guarantee the signature scheme which used to produce implicit certificate is secure. Note that by suitable choosing F(γA, IA, OP), Any Elgamal-like signature scheme we know so far is equivalent to one of the 4 families schemes we proposed in this paper if it is used to implicit certificate scheme after modification. But our proposed schemes have the most efficiency.

Scheme 1.a:

1. For each entity A, CA chooses a unique distinguishes name or identity IA (e.g., name, address, phone number), and a random integer cA within 1<cA<q. Then CA computes γAcA mod p. (γA is A's public key reconstruction public data. (IA, γA) serves as A's implicit certificate.

2. CA computes ƒ=F(γA, IA, OP) and solves the following equation for a (if a=0, 1, c, cA−1c, then chooses another cA and re-solve the equation).


1=cƒ+cAa(mod q).

3. CA securely sends the triple (γA, a, IA) to A, which is CA's signature on IA. Then α is A's private key, γA is A's generator and γAa(=αcAa) is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly verified public key from the public domain by computing


γAa=αβ−ƒ(modp)

Note:

1. In step 1, the identity IA may be chosen by entity A.

2. In step 2, we exclude a=0, 1, since in this case any one can easily knowing A's private key. Especially when a=0, cA−1c, any one can compute CA's private key c from 1=fƒ (mod q).

3. For this scheme, each user has different system generator γA.

Scheme 1.b:

1. For each entity A, CA chooses a unique distinguishes name or identity IA (e.g., name, address, phone number), and a random integer cA with 1<cA<q. Then CA computes γAcA mod p. (γA is A'public key construction public data. (IA, γA ) serves as A's implicit certificate)

2. CA computes ƒ=F(γA, IA, OP) and solves the following equation for α (if α=0, 1, c, then chooses another cA and re-solve the equation).


1≡ca′cAƒ(modq).

3. CA securely sends the triple (γA, a, IA) to A, which is CA's signature on IA. Then α is A's private key, β is A's generator and βa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly verified public key from the public domain by computing


βa=αγA−ƒ(modp)

Note:

1. In step 1, The identity IA may be chosen by entity A.

2. In step 2, we exclude a=0, 1, since in this case any one can easily knowing A's private key, when a=0, the certificate does not involve to CA.

3. For this scheme, each user has same system generator β.

Scheme 1.c:

1. For each entity A, CA chooses an unique distinguished name or identity IA (e.g., name, address, phone number), and a random integer cA with 1<cA<q. Then CA computes γAcA mod p. (γA is A's public reconstruction public data. (IA, γA) serves as A's implicit certificate.

2. CA computes ƒ=F(γA, IA, OP) and solves the equation for α (if α=0, 1, or c, then chooses another cA and re-solve the equation).


a≡cƒ+cA(modq).

3. CA securely sends the triple (γA, a, IA) to A, which is CA's signature on IA. Then α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly verified public key from the public domain by computing


αaƒγA(modp)

Note:

1. In step 1, The Identity IA may be chosen by entity A.

2. In step 2, we exclude a=0, 1, since in this case any one can easily knowing A's private key.

3. For this scheme, each user has same system generator α.

Scheme 1.d:

1. For each identity A, CA chooses a unique distinguished name or identity IA (e.g., name, address, phone number), an a random integer cA with 1<cA<q. Then CA computes γAcA mod p. (γA is A's public key reconstruction public data. (IA, γA) serves as A's implicit certificate)

2. CA computes ƒ=F(γA, IA, OP) and solves the following equation for α (if α=0, 1, or c, then chooses another cA and re-solve the equation).


a≡cAƒ+c(modq).

3. CA securely sends the triple (γA, a, IA) to A, which is CA's signature on IA. Then α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly verified public key from the public domain by computing


αaAƒβ(modp)

Note:

1. In step 1, The identity IA may be chosen by entity A.

2. In step 2, we exclude a=0, 1, since in this case any one can easily knowing A's private key.

3. For this scheme, each user has same system generator α.

Although everyone can reconstruct user A's public key from public data, this does not mean that the reconstructed public key has been certified. To explicitly verify the certificate, we need to know the a. Once we know the a, the verification process become to verify CA's signature on IA. For example, In scheme 1.a, if verifier computes αβ−ƒ and user A computes γAa using a, then they can verify the certificate together. But verifier must make sure that user A indeed knows a. So reconstructing public key serves as an implicit verification only if it combines with an application protocol that shows user A has a complete knowledge of the corresponding private key. In general, the implicit certificate scheme can be used with any public key scheme which needs to authenticate the subject entity and the public key.

Let's demonstrate it by using DSA signature scheme as implicit certified public key system and scheme 1.a as implicit certificate scheme.

Suppose Alice has private key a, generator γA and publishes (α, IA, β, γA, p, q) in public domain. Now Alice wants to sign a message M using DSA.

Alice does the following:

1. randomly chooses k, computes r=γAa (mod p).

2. computes e=sha−1(M).

3. computes s=x−1(e+ar) (mod q)

4. The signature on M is (r,s).

Verifier does following

1. gets Alice's public data (α, IA, β, γA, p, q) and computes ƒ and reconstructs the public key


βAAa=αβ−ƒ(modp)

2. computes e=sha−1(M).

3. computes u1=es−1 (mod q) and u2=rs−1 (mod q)

4. computes r′=γAu1δAu2 (mod p)

5. if r=r′, the signature is verified. At same time Alice's (ID-bases) public key is implicitly verified.

The pair (IA, γA) serves as certificate of Alice. For DSA, we know that it is very hard to forge Alice's signature without knowing a. Then reconstructing the public key serves as implicitly verification when the application protocol ends up with valid. Recall that obtaining the public key needs only one exponentiation operation. For this reason, we say that verifying the implicit certificate needs one exponentiation operation.

The following implicit certificate schemes may be derived by modifying the schemes above such that CA and entity both control the entity's private key but only the subject entity knows his/her private key.

In this section we need another system parameter H(*), where H(*) is an cryptographic function which may be a secure hash function or one way function or identity map.

Scheme 2.a:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkcA (mod p) and ƒ=F(γA, IA, OP), solves the signing equation for kA (if kA=0 or c, then chooses another cA)


1=cƒ+cAkA(modq).

Then CA computes γA1cA (mod p) and sends the triple (γA1, kA, IA) to A.

3. A computes a=kAk−1 (mod q). (if a=1, then goes back to step 1.) and computes γA=(γA1)k (mod p). Then checks if γAa=αβ−ƒ. Now α is A's private key, γA is A's generator and γAa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing:


γAa=αβ−ƒ(modp)

Scheme 2.b:

5. A randomly chooses an integer k and computes βk, then sends it to CA.

6. CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), solves the signing equation for kA (if kA=0, c, then chooses another cA)


1=ckA+cAƒ(modq).

Then CA computers γA1=(βk)cAe−1 (mod p) and sends the triple (γA1, kA, IA) to A.

7. A computes γA=(γA1)k−1 βk (mod p), ƒ=(F(γA, IA, OP), and a=kA−kƒ (mod q). (if α=0, 1, then goes back to step 1.) Then checks if βa=αγA−ƒ. Now α is A's private key, β is A's generator and βa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

8. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


βa=αγA−ƒ(modp)

Scheme 2.c:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), computes kA (if kA=c, then chooses another cA)


kA≡cƒ+cA(mod q).

Then CA computes γA1=(αk)cA (mod p) and sends the triple (γA1, kA, IA) to A.

3. A computes a=kA+k (mod q). (if a=0, 1, then goes back to step 1). and computes γA=(γA1)k−1 αk (mod p). Then checks if αaƒγA. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaƒγA(modp)

Scheme 2.d:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), computes kA (if kA=cA, then chooses another cA)


kA≡cAƒ+c(modq).

Then CA computers γA1=(αk)cA (mod p) and sends the triple (γA1, kA, IA) to A.

3. A computes γA=(γA1)k−1 αk (mod p), ƒ=F(γA, IA, OP), and a=kA+kƒ (mod q). (if a=0, 1, then goes back to step 1.). Then checks if αaAƒβ. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaAƒβ(modp)

Notes: (for Scheme 2.a, 2.b, 2.c, 2.d)

1. The identity IA may be chosen either by CA or by entity A

2. CA should authenticate by entity A. It can be done either by presence in front of CA or by secure channel or by voice (for example, on the phone) or by following method: In step 2, instead of sending the triple (γA1, kA, IA) to A, CA first sends γA1 to A. A computes γA, set K=H(γA), encrypts the authentication information AA1 of A (such as VISA information) by DES (or other symmetric key system) and sends DESK(AA1) to CA. CA decrypts the DESK(AA1) to get AA1. After checks the validity of AA1, CA then sends (kA, IA) to A.

3. (γA1, kA, IA) can be sent by public channel.

In above scheme 2.a-2.d, The implicit certificate schemes are finished by the subject entity and the CA. Each scheme is essentially divided into two part: key-exchange part and signature part. One function of the key exchange part is to transmit implicit certificate information from CA to A by public channel (more discuss will be given in section 6). To speed up computation of above schemes, we can modify the key exchange part. Following scheme 3.a-3.d by modifying scheme 2.a-2.d. The advantages in scheme 3.a-3.d is that user A can compute K before he get respond from the CA since β is fixed. This property is good especially for the online case.

Scheme 3.a:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkcA (mod p) and ƒ=F(γA, IA, OP), solves the signing equation for kA (if kA=0, then choose another cA)


1=cƒ=cAkA(modq).

Next CA computers K=H((αk)c) and kA=DESK(kA), then sends the triple (γA, kA, IA) to A.

3. A computes K=H(βk), kA=DESK( kA), and a=kAk−1 (mod q). (if a=1, then goes back to step 1.). Then checks is γAa=αβ−ƒ. Now α is A's private key, γA is A's generator and γAa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


γAa=αβ−ƒ(modp)

Scheme 3.b:

1. A randomly chooses an integer k and computes βk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), solves the signing equation for kA (if kA=0, then choose another cA)


1=ckA+cAƒ(modq).

Next CA computers K=H((βk)cAc−1)=H(αkcA) and kA=DESK(kA), then sends the triple (γA, kA, IA) to A.

3. A computes K=H((γAk)k)=H(αkcA), kA=DESK( kA), ƒ=F(γA, IA, OP) and computes a=kA−kƒ (mod q). (if a=0, 1, then goes back to step 1. ). Then checks if βa=αγA−ƒ. Now α is A's private key, β is A's generator and βa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


βa=αγA−ƒ(modp)

Note: (for Scheme 3.b)

1. The identity IA may be chosen either by CA or by entity A

2. CA should authenticate the entity A. It can be done either by presence in front of CA or by secure channel or by voice (for example, on the phone) or by following method:

In step 2, instead of sending the triple (γA, kA, IA) to A, CA first sends γA to A. A computes K=H((γAk)k)=H(αkcA), encrypts the authentication information AA1 of A (such as VISA information) by DES (or other symmetric key system) and sends DESK(AA1) to CA. CA encrypts the DESK(AA1) to get AA1. After checks of validity of AA1, CA then sends ( kA, IA) to A.

3. (γA, kA, IA) can be sent by public channel.

Scheme 3.c:

1. A randomly chooses an integer k an computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), computes kA (if kA=0, then choose another cA)


kA≡cƒ+cA(modq).

Next CA computers K=H((αk)c) and kA=DESK(kA), then sends the triple (γA, kA, IA) to A.

3. A computes K=H(βk), kA=DESK( kA), and a=kA+k (mod q) (if a=0, 1, then goes back to step 1). Then checks if αaƒγA. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaƒγA(mod p)

Scheme 3.d:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), computes kA (if kA=0, then choose another cA)


kA≡cAƒ+c(mod q).

Next CA computers K=H((αk)c) and kA=DESK(kA), then sends the triple (γA, kA, IA) to A.

3. A computes K=H(βk), kA=DESK( kA), ƒ=F(γA, IA, OP), and a=kA+kƒ (mod q). (if a=0, 1, then goes back to step 1. ). Then checks if αaAƒβ. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaAƒβ(mod p)

Notes: (for Scheme 3a., 3.c, 2.d)

1. The identity IA may be chosen either by CA or by entity A

2. CA should authenticate the entity A. It can be done either by presence in front of CA or by secure channel or by voice (for example, on the phone) or by following method: In step 1, A compute αk and K=H(βk), then sends αk and DESK(AA1) to CA. CA computes K=H((αk)c) and decrypts the DESK(AA1) to get AA1. After check the validity of AA1, continues to step 2.

3. (γA, kA, IA) can be sent by public channel.

The advantages for scheme 3.a, 3.c and 3.d are that user A can compute K easily since β is fixed and that kA is encrypted such that no other people can know it. In fact the publicity of kA does not decrease the security of the certification scheme. The purpose of encrypting kA is to make sure that the entity knows k. So for scheme 3.a-3.d, the DES encryption part can be removed and kA can be replaced by kA provided the certificate scheme uses the method described in Note 2.

To save transmission bandwidth in above schemes, we can modify above schemes by sending ƒ=F(γA, IA, OP) in stead of γA (Note that in general, the size of γA is large than 160 bits and ƒ is just 160 bits.) Following scheme 4.c is a modification of scheme 3.c.

Scheme 4.c:

1. A randomly chooses an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and ƒ=F(γA, IA, OP), computes kA (if kA=0, then choose another cA)


kA≡cƒ+cA(modp).

Next CA computers K=H((αk)c) and kA=DESK(kA), then sends the triple (ƒ, kA, IA) to A.

3. A computes K=H(βk), kA=DESK( kA), and a=kA+k (mod q) (if a=0, 1, then goes back to step 1.) Then computes γAaβ−ƒ (mod p) an checks if ƒ=F(γA, IA, OP). Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaƒγA(modp)

Furthermore we can reduce the bandwidth by following scheme 5.c.

Scheme 5.c

1. A randomly choose an integer k and computes αk, then sends it to CA.

2. CA randomly chooses an integer cA, computes γAkαcA (mod p) and set {circumflex over (γ)}A as the first 80 least significant bits of γA. Then computes ƒ=F({circumflex over (γ)}A, IA, OP) and kA (if kA=0, then choose another cA)


k≡cƒ+cA(modq).

Next CA computers K=(αk)c (mod p) and kA=DESK(kA), then sends the triple ({circumflex over (γ)}A, kA, IA) to A.

Note: ({circumflex over (γ)}A, kA, IA) can be sent by public channel.

3. A computes K=βk (mod p), kA=DESK( kA), and a=kA+k (mod q) (if a=0, 1, then goes back to step 1. ) Then computes ƒ=F({circumflex over (γ)}A, β, IA), γAaβ−ƒ (mod p) and checks if the first 80 least significant bits of γA is {circumflex over (γ)}A. Now α is A's private key, α is A's generator and αa is A's public key. A publishes (α, IA, β, γA, p, q) in public domain.

4. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


α=aƒγA(modp)

The security level of scheme 5.c is not as other schemes we discuss before. Scheme 5.c only has 80 bit security. But it is OK for practical application Now, We can extend the first 80 least significant bits to the half least significant bits of γA.

The implicit certificate can be used to certify some other useful information by including the information in the option parameter OP. For example OP=αaE∥OP2, where aE is user A's another private key and αaE is the corresponding public key. Following scheme 6.c is a modification of scheme 2.c. Other schemes can be modified in the same way.

Scheme 6c.:

1. A randomly chooses an integer aE and computes αaE.

2. A randomly chooses an integer k and computes αk, then sends αk and αaE to CA.

3. CA randomly chooses an integer cA, computes γAkαcA (mod p ) and ƒ=F(γA, IA, αaE, OP2) (for example, F(γA,IA, αaE, OP2)=h(γA∥IA∥αaE)), computes kA (if kA=0, then chooses another cA)


kA≡cƒ+cA(modq).

Then CA computers γA1=(αk)cA (mod p) and sends the triple (γA1, kA, IA) to A.

4. A computes a=kA+k (mod q). (if a=0, 1, then goes back to step 1.) and computes γA=(γA1)k−1 αk (mod p). Then checks if αaƒγA. Now α is A's private signing key, α is A's generator and αa is A's public signing key. aE is A's private encryption key and αaE is A's public encryption key. A publishes (α, αaE, IA, β, γA, p, q) in public domain.

5. Anyone can obtain A's (ID-based) implicitly certified public key from the public domain by computing


αaƒγA(modp)

Notes: (for Scheme 4.c, 5.c, 6.c)

1. The identity IA may be chosen either by CA or by entity A

2. CA should authenticate the entity A. It can be done by the method described in the note 2 of scheme 3.c.

(ƒ, kA, IA) or ({circumflex over (γ)}A, kA, IA) or (γA1, kA, IA) can be sent by public channel.

CA Chaining Scheme

In order to implement a CA chaining structure. That is CA1 authenticates CA2, CA2 authenticates CA3 and CA3 authenticates user A. In this section, we are going to present the example with 3 CA's in the CA chain. We use basic scheme 3′ to demonstrate this example.

System Setup:

The highest trusted party CA1 selects an appropriate prime p with p=tq+1 where q is a large prime and a generator α of order q. CA1 selects a random integer c1, with 1≦c1≦q−1 as its private key, then computes the public key β1c1 mod p and publishes (β1, α, p, q).

Phase 1. CA2 Applies for Implicit Certified Public Key from CA1.

1. CA2 randomly chooses an integer k2 and computes αk2, then sends it to CA1.

2. CA1 choose a unique distinguished name or identity ICA2 and a random integer cCA2 with 1≦cCA2≦q−1. Then CA1 computes γCA2k2αcCA2 (mod p). (γCA2 is CA2's public key reconstruction public data.)

3. CA1 chooses a function ƒ1=F(γCA2, ICA2) and computes kCA2 (if kCA2=0, then chooses another cCA2 in step 2 and re-computes for kCA2).


kCA2≡c1ƒ1+cCA2(modq)

4. CA1 computes γCA21=(αk2)cCA2 (mod p) and sends the triple (γCA21, kCA2, ICA2) to CA2.

5. CA2 computes γCA2=(γCA21)k2−1 αk2 (mod p). Then c2=kCA2+k2 (mod q) is CA2's private key, α is CA2's generator and β2c2 is CA's public key. CA2 publishes (α, ICA2, β1, β2, γCA2, p, q) in public domain.

Note when a user trusts CA2, he/she can use β2 directly.

6. Anyone can obtain CA2's (ID-based) implicitly verified public key from the public domain by computing


β2c21ƒ1γCA2(modp)

Phase 2. CA3 Applies for Implicit Certified Public Key from CA2.

1. CA3 randomly choose an integer k3 and computes αk3, then sends it to CA2.

2. CA2 chooses a unique distinguishes name or identity ICA3 and a random integer cCA3 with 1≦cCA3≦q−1. Then CA2 computes γCA3k3αcCA3 (mod p). (γCA3 is CA3's public key reconstruction public data.)

3. CA2 chooses a function ƒ2=F(γCA3, ICA3) and computes kCA3 (if kCA3=0, then chooses another cCA3 in step 2 an re-computes for kCA3).


kCA3≡c2ƒ2cCA3(modq)

4. CA2 computes γCA31=(αk3)cCA3 (mod p) and sends the triple (γCA31, kCA3, ICA3) to CA3.

5. CA3 computes γCA3=(γCA31)k3−1 αk3 (mod p). Then c3=kCA3+k3 (mod q) is CA3's private key, α is CA3'generator and β3c3 is CA3's public key. CA3 publishes (α, ICA3, β2, β3, γCA3, p, q) in public domain.

Note: when an entity trusts CA3, it can use β3 directly.

6. Anyone can obtain CA3's (ID-based) implicitly verified public key from the public domain by computing


β3c32ƒ2γCA3(modp)

Phase 3. User A Applies for Implicit Certified Public Key from CA3.

1. A randomly choose an integer k and computes αk, then sends it to CA3.

2. CA3 choose a unique distinguishes name or identity IA and a random integer cA with 1≦cA≦q−1. Then CA3 computes γAkαcA (mod p). (γA is A's public key reconstruction public data.)

3. CA3 choose a careful chosen function ƒ3=F(γA, IA) and computes kA (if kA=0, then choose another cA in step 2 and re-computes for kA).


kA≡c3ƒ3+cA(modq)

4. CA3 computes γA1=(αk)cA (mod p) and sends the triple (γA1, kA, IA) to A.

5. A computes γA=(γA1)k−1 αk (mod p). Then a=kA+k (mod q) is A's private key, α is A's generator and βAa is A's public key. A publishes (α, IA, β3, βA, γA, p, q) in public domain.

Note: when a user trusts A, he/she can use βA directly.

6. Anyone can obtain A's (ID-based) implicitly verified public key from the public domain by computing


βAa3ƒ3γA(mod p)

Phase 4. User A's Signature and Verification.

To sign a message M, user A does the following:

1. randomly chooses x, computes r=αx (mod p).

2. computes e=ƒA=F(r,M), where F is some fixed function.

3. computes s=ae+x (mod q)

4. The signature on M is (r,s).

Verifier does following:

1. gets CA1, CA2, CA3 and User A's public data

    • (α, ICA2, ICA3, IA, β1, β2, β3, βA, γCA2, γCA3, γA, p, q)

2. reconstructs user A's public key


βA1ƒ1ƒ2ƒ3γCAƒ2ƒ3γCAƒ3γA(modp)

3. computes e=ƒA=F(r,M).

4. computes r′=α3βA−e (mod p)

5. if r=r′, the signature is verified. At same time CA2, CA3 has user A's (ID-bases) public key are implicitly certified.

Reconstructing user A's public key needs only 3 known basis exponentiation operations and 3 multiplication operations. When the signature is value, CA2, CA3 and user A's (ID-bases) public key are implicitly verified.

Notes:

1. If verifier trusts A, Then A's public key is βA.

2. If verifier trusts CA3, Then A's reconstruction public key is βA3ƒ3γA (mod p)

3. If verifier trusts CA2, Then A's reconstruction public key is βA2ƒ2ƒ3γCA3ƒ3γA (mod p)

Co-Signing Scheme.

The following describes a scheme that allows multiple CA's to sign ONE implicit certificate. This is illustrated by the case where three CA's co-sign a certificate using the basic scheme 3′.

System Setup:

Let CA1, CA2 and CA3 have a common system parameters: (1) prime p with p=tq+1 where q is a large prime; (2) a generator α or order q; (3) a careful chosen function

ƒ=F(γ,(IA1+IA2+IA3)). CA1 selects a random integer c1, with 1≦c1≦q−1 as its private key, then computes the public key β1c1 mod p and publishes (β1, α, p, q). CA2 selects a random integer c2, with 1≦c2≦q−1 as its private key, then computes the public key β2c2 mod p and publishes (β2, α, p, q). CA3 selects a random integer c3, with 1≦c3≦q−1 as its private key, then computes the public key β3c3 mod p and publishes (β3, α, p, q).

Step 1. A randomly chooses an integer k and computes αk, then sends it to CA1, CA2 and CA3.

Step 2. CA's exchange information and compute implicit certificates

Phase 1.

1. CA1 chooses a unique distinguished name or identity IA1 and a random integer cA1 with 1≦cA1≦q−1, computes αcA1 and send (αcA1, IA1) to CA2, and CA3.

2. CA2 choose a unique distinguished name or identity IA2 and a random integer cA2 with 1≦cA2≦q−1, computes (αcA2, IA2) and sends αcA2 to CA1 and CA3.

3. CA3 choose a unique distinguished name or identity IA3 and a random integer cA3 with 1≦cA3≦q−1, computes (αcA3, IA3) and sends αcA3 to CA1 and CA2.

Phase 2.

1. CA1 computes γ=αkαcA1αcA2αcA3 (mod p). (γ is A's public key reconstruction public data.), computes ƒ=F(γ,(IA1+IA2+IA3)) and computes kA1 (if kA1=0, then goes back to phase 1.)


kA1≡c1ƒ+cA1(modq)

CA1 computes γA11=(αk)cA1 (mod p) and sends the triple (γA11, kA1, IA1) to A.

2. CA2 computes γ=αkαcA1αcA2αcCA3 (mod p). (γ is A's public key reconstruction public data.), computes ƒ=F(γ,(IA1+IA2+IA3)) and computes kA2 (if kA2=0, then goes back to phase 1.)


kA2≡c2ƒ+cA2(modq)

CA2 computes γA21=(αk)cA2 (mod p) and sends the triple (γA21, kA2, IA2) to A.

3. CA3 computes γ=αkαcA1αcA2αcCA3 (mod p). (γ is A's public key reconstruction public data.), computes ƒ=Fγ,(IA1+IA2+IA3)) and computes kA3 (if kA3=0, then goes back to phase 1.)


kA3≡c3ƒ+cA3(modq)

CA3 computes γA31=(αk)cA3 (mod p) and sends the triple (γA31, kA3, IA3) to A.

Step 3 A computes implicitly co-certified private keys and public key reconstruction information.

1. A computes a=kA1+kA2+kA3+k (mod q). (If α is 0 or 1, then goes back to step 1.)

2. A computes γ=(γA11γA21γA31)k−1 αk (mod p), ƒ=F(γ,(IA1+IA2+IA3)). Then verifies if αa=(β1β2β3)ƒγ (mod p).

3. Then α is A's implicitly co-certified private key, α is A's generator, IA=IA1+IA2+IA3 is A's common ID and (β1β2β3)ƒγ (mod p).

4. A publishes (α, IA1, AA2, AA3, β1, β2, β3, γ, p, q) in public domain.

5. Anyone can obtain A's (ID-based) implicitly co-certified public key from the public domain by computing (β1β2β3)ƒγ (mod p)

Applications

The following examples are illustrated with respect to scheme 3 (or Scheme 7′) as CA's signing equation since everyone shares the same generator in this scheme. Each user can have a different CA as long as the CAs use the system parameters (p,q,d) and each user has the same generation.

Setup

CA1: system parameters (α, β1, p, q, d)

Alice has a private key a, generator α and publishes (α, IA, γA, p, q) in the public domain.

CA2: system parameters (α, β2, p, q)

Bob has a private key b, a generator α and publishes (α, IA, βA, p, q) in the public domain.

We use the MTI/C0 key agreement protocol to demonstrate how to use our new scheme. Assume Alice and Bob want to perform a key exchange.

The MTI/C0 protocol

1. Alice reconstructs Bob's public key αbF(γB,IBB, and randomly chooses an integer x and computes (αb)x, then sends it to Bob.

2. Bob reconstructs Alice's public key αaF(γA,IAA, and randomly chooses an integer y and computes (αa)y, then sends it to Alice.

3. Alice computes the shared key KA=(αay)xa−1xy

4. Bob computes the shared key KB=(αbx)yb−1xy

This is a two-pass protocol. With the implicit certificate scheme of the present invention, each party only does three exponentiation operations to get the shared key while at the same time performing an authentication key agreement and implicit public key verification.

The following are examples of signcryption schemes. We use scheme 3 (or scheme 7) as CA's signing equation since everyone shared the same generator in this scheme. For the scheme thereafter, we use scheme 13 as CA's signing equation. For all schemes in this section, each user can have a different CA as long as the CA's use the same system parameters (p, q, α) and each user has the same generator.

Setup:

CA1: system parameters (α, β1, p, q)

Alice: private key a, generator α and (α, IA, β1, γA, p, q) in public domain.

CA2: system parameters (α, β2, p, q)

Bob: private key b, generator α and (α, IB, β2, γB, p, q) in public domain

Bob wants to sent a signed and encrypted message M to Alice:

Signcryption Protocol 1:

Assume Bob wants to send a signed and encrypted message M to Alice:

Bob does the following:

1. reconstructs Alice's public key αaF(γA,IA)γA mod p

2. randomly chooses an integer x and computes a key r=(αa)x (mod p)

3. computes C=DESr(M)

4. computes e=hash(C IA)

5. computes s=be+x(mod q)

6. sends the pair (C,s) to Alice, thus C is the encrypted message and s is the signature.

To recover the message Alice does the following:

1. computes e=hash(C IA)

2. reconstructs Bob's public key αbF(γBB)γB mod p

3. computes αasb)−ac (mod p) which is r

4. decrypts the message M=DESr(C)

5. check for redundancy

Thus, Bob only does to exponentiation operations and Alice does three exponentiation operations. But Alice and Bob are both confident of each others authentication. Note that for this scheme, the message M must have some redundancy or pattern.

Signcryption Protocol 2 (General Case):

Setup:

CA1: system parameters (α, β1, p, q)

Alice: private key a, generator α and (α, IA, β1, γA, p, q) in public domain.

CA2: system parameters (α, β2, p, q)

Bob: private key b, generator α and (α, IB, βB, γB, p, q) in public domain

Note: this set up is for implicit certificate. For usual certificate scheme systems, we only required that Alice and Bob has same generator.

To signcrypt a message to Alice, Bob does following:

1. gets Alice's public key αa (in the case of implicit certificate scheme, reconstructs Alice's public key αa1F(γA1IA)γA (mod p))

2. random choose an integer x and computes r=(αa)x (mod p)

3. computes C=DESr(M)

4. computes e=hash(C|αa)

5. computes s=be+x (mod q)

6. sends (C,s) to Alice. C is the encrypted message and s is the signature.

To recover the message Alice does following:

1. computes e=hash(C∥αa)

2. gets Bob's public key αb (in the case of implicit certificate scheme, reconstructs Bob's public key αb2F(γB2,IB) γB (mod p))

3. computes α(αb) (mod p) which is r

4. decrypts the message M=DESr(C)

Note:

1. If the certificate scheme is not the implicit certificate as described herein, Alice and Bob's public key should be verified.

2. The message M must have some redundancy or pattern.

3. Anyone who knows one value r can decrypt any messages from Bob to Alice since the value αab will be exposed.

4. In general, we should include an option parameter to the hash e, i.e. e=hash(C∥αa∥OP). For example, OP=αb or OP=αb∥β1∥β2.

The signcryption schemes above have a drawback that if the signer lost his/her private signing key, then all message the signer signcrypted will be exposed to public. To protect post encryption we propose a new signcryption scheme. In new scheme, each user has two pairs of key, one pair is for signature key, another pair is encryption key. The new scheme can be used with any certificate scheme. But if it is used with our implicit certificate scheme, it is more efficient.

Signcryption Protocol 3 (General Case):

Setup:

Alice: private signing key α and private encryption key aE, generator α and (α, αaE, IA, γ1, γA, p, q) in public domain.

CA2: system parameters (α, β2, p, q)

Bob: private signing key b and private encryption key bE, generator α and (α, αbE, IB, β2, γB, p, q) in public domain

Note: this set up is for implicit certificate using scheme 6.c. For usual certificate scheme systems, we only required that Alice and Bob has same generator.

To signcrypt a message to Alice, Bob does the following:

1 gets Alice's public signing key αa and public encryption key αaE (in the case of implicit certificate scheme, reconstructs Alice's public signing key

α a = β 1 F ( γ A , β I , I A , a a E ) γ A ( mod p ) )

2 random choose an integer x and computes r=(αaαaE)x (mod p)

3 computes C=DESr(M)

4 computes e=hash(C∥αa∥αaE∥αb∥αbE∥OP.)

5 computes s=be+x+bE (mod q)

6 sends (C,s) to Alice. C is the encrypted message and s is the signature.

To recover the message Alice does the following:

1. computes e=hash(C∥αa∥αaE∥αb∥αbE∥OP)

2. gets Bob's public signing key αb and public encryption key αbE (in the case of implicit certification scheme, reconstructs Bob's public sign key αb2γB (mod p))

3. computes α(a+aE)s b) (mod p) which is r

4. decrypts the message M=DESr(C)

Note:

1. we can think the receiver Alice's private key is a+aE, This means the receiver only needs one private key instead of two private keys. But the sender Bob needs two private keys. In case of normal certificate, the receiver only need one private key.

2. If the certificate scheme is not the implicit certificate described in this application, Alice and Bob's public key should be verified.

3. The message M must have some redundant or pattern.

4. The parameter OP inside hash e=hash(C∥αa∥αaE∥αb∥abE∥OP) may be empty or OP=β1∥β2.

5. Knowing one r value does not reveal any information of the post messages.

6. With implicit certificate scheme, Bob only does 2 exponentiation operations and Alice does 4 exponentiation operations. But Alice and Bob both are confidential that each other is authentication part.

7. If anyone knows Alice's private key aαaE, or Bob lost both private keys, the post encrypted message can not be protected.

For normal signatures, one problem is that the signer denies he/she signs the signature. This called repudiation. Protocol 1 and 2 above have a non-repudiation feature provided one trusts the judge. That is the signer can not deny that he/she signed the signcrypted message. Protocol 3 has a non-repudiation feature even when the judge is not trusted. Next protocol demonstrates how a judge decides a case where Bob wants to deny the signature.

Non-Repudiation Protocol:

1. Alice sends (C,s) to Judge

2. Judge computes e=hash(C∥αa∥αaE∥αb∥αbE∥OP) and α12b)−e α−bE (Note: Alice and Bob's two pairs of public key should be verified. In the case of implicit certificate scheme, the public keys should be computed from the reconstruction public data.)

3. Judge randomly chooses two integer r1 and r2 and computes L=(αx)r1 αr2 and sends L to Alice

4. Alice computes La+aE and sends it back to Judge

5. Judge computes r=(L(a+aE)aαaE)−r2)r1−1 and recover the message by M=DESr(C)

6. If M has proper format, the (C,s) must be signcrypted by Bob.

7. After the judge make decision, he sends the values (αx, r1, r2, L, La+aE, r) to Alice and Bob to back up his decision.

For the other two signcryption protocols the non-repudiation protocols are similar provided one fully trust the judge.

In conclusion it may be seen that the present scheme, when combined with an application protocol for which the user's private key must be used directly in computation, provides an implicitly certified ID-based public key of the user. These schemes can also be used for a Key Authentication Center (KAC) to distribute implicitly certified public keys to users.

A further application of implicitly certified public keys is that the bit strength of the certifying authority is the same as the user or entity public keys being certified. By bit strength it is implied the relative key sizes and processing power of the entities concerned.

One approach to addressing this issue is to embed implicitly certified public keys into more traditional certificate structures such as specified in X.509 certificates, where the signature on the certificate is at a higher bit strength than the implicitly certified public key. Hence, the CA has certified the user public key at two different security levels. Any other entity retrieving a public key can decide on which security level they wish to accept. In some applications it may be that only the lower level provided by the implicit value is necessary to provide the performance required.

While the invention has been described in connection with specific embodiments thereof and in specific uses, various modifications thereof will occur to those skilled in the art without departing from the spirit of the invention as set forth in the appended claims. For example in the above description of preferred embodiments, use is made of multiplicative notation, however the method of the subject invention may be equally well described utilizing additive notation. It is well known for example that elliptic curve algorithm embodied in the ECDSA is equivalent of the DSA and that the elliptic curve analog of a discrete log logarithm algorithm that is usually described in a setting of, Fp* the multiplicative group of the integers modulo a prime. There is a correspondence between the elements and operations of the group Fp* and the elliptic curve group E(Fq). Furthermore, this signature technique is equally well applicable to functions performed in a field defined over Fp and . It is also be noted that the DSA signature scheme described above is a specific instance of the ElGamal generalized signature scheme which is known in the art and thus the present techniques are applicable thereto.

Claims

1. A computer implemented method of a trusted entity CA facilitating generation of a public key by a correspondent A in an electronic data communication using implicit certificates, said method comprising the steps of:

a cryptographic unit of said trusted CA selecting a unique identity IA distinguishing said correspondent A;
said cryptographic unit generating public key reconstruction public data γA for said correspondent A by mathematically combining a private value of said trusted entity CA and information made public by said trusted entity CA to obtain a pair (IA, γA) serving as an implicit certificate for said correspondent A;
said cryptographic unit generating a private key a for said correspondent A using said implicit certificate and said private value of said trusted entity CA such that said public key is computable by combining said data γA and said private key a, wherein generating said private key a comprises generating a value ƒ being a function of said pair (IA, γA) including a hash of said pair (IA, γA), and evaluating said private key a from an equation comprising ƒ and said private value of said trusted entity CA; and
said cryptographic unit providing a signature (IA, a, γA) to said correspondent A over a secure channel of said data communication system.
Patent History
Publication number: 20140229730
Type: Application
Filed: Apr 21, 2014
Publication Date: Aug 14, 2014
Inventors: Minghua Qu (Mississauga), Scott A. Vanstone (Campbellville)
Application Number: 14/257,781
Classifications
Current U.S. Class: By Certificate (713/156)
International Classification: H04L 9/32 (20060101);