In-Situ Upgrading Of Biomass Pyrolysis Vapor Using Water-Gas Shift And Hydroprocessing
Processes for thermal conversion of biomass are provided. The processes involve upgrading the pyrolysis vapor from a pyrolysis reactor. The steps include thermally converting a biomass feedstock in a pyrolysis reactor, recovering a pyrolysis vapor from the reactor, passing the pyrolysis vapor in contact with a water-gas shift reaction catalyst and a hydrotreating catalyst, and converting the resulting upgraded pyrolysis vapor into a liquid product. The resulting biooil liquid product is more refined, and the overall processes offer economic and energy efficiency.
Latest Chevron U.S.A. Inc. Patents:
- Drill bit for downhole electrocrushing drilling
- Systems and methods for independent control and operations of tubing and annulus at the wellhead
- Combined analytic technique for differentiating changes to structures using acoustic signals
- NOVEL FEED FOR WASTE PLASTIC COPROCESSING IN A REFINERY
- Diverter test cell with replaceable insert
The present application relates to a process of upgrading biomass pyrolysis vapor. More specifically, the present application relates to a process of in-situ upgrading of biomass pyrolysis vapor using a multi-layer catalyst bed or a cascade of catalytic reactors.
BACKGROUNDWith the diminishing supply of fossil fuels, the use of renewable energy sources is becoming increasingly important as a feedstock for production of hydrocarbon compounds. Thermal conversion of carbonaceous materials, such as biomass and waste, can play an important role to provide materials that can replace fossil fuels. These conversions can be accomplished by pyrolysis processes.
Pyrolysis is one of two major pathways for converting biomass into fuels or chemicals in a thermochemical platform. The major product from a common fast pyrolysis process is called biocrude or biooil, a dark brown liquid that generally is acidic and has high oxygen and water content, which are characteristics that are usually not favored by existing refinery equipment or processes used for further processing to transportation fuels. For instance, the oxygen content could be 50 weight percent (wt %) or higher in biooil, thus requiring a high amount of hydrogen to upgrade the biooil into hydrocarbon fuels via hydroprocessing, which makes the process economically unattractive. In addition, the acidity of biooil causes the biooil to be corrosive to existing pipelines. Moreover, the water content is typically 20 to 30 wt % and the biooil is immiscible with petroleum crude, which makes co-refining difficult. Therefore, biooils with improved properties, such as with less oxygen, less water, and close to neutral pH, would be preferred.
Currently, most research on improving the properties of biooil has been focused on post-pyrolysis treatment involving upgrading the liquid biooil obtained from fast pyrolysis with hydroprocessing or hydrotreating, and other reactions like esterification. However, little or no effort has been put into in situ catalytic upgrading of pyrolysis vapor before it is condensed into liquid. For example, one common biooil upgrading method is to first separate it into two phases (aqueous and lignin phase), and then use the pyrolytic lignin phase (or organic phase) for hydroprocessing, while the aqueous phase is passed onto steam-reforming to generate the hydrogen required by the hydroprocessing. Although this approach may work, one distinct disadvantage is that both the aqueous and lignin phases have to be reheated up to high temperatures for steam reforming and hydroprocessing, which would require extra heat or energy, thus considerably reducing the overall thermal efficiency of the process.
Biomass-derived pyrolysis oil has the potential to replace up to 60 percent (%) of transportation fuels, thereby reducing the dependency on conventional petroleum and reducing its environmental impact. Therefore, there is a need in the industry for a process that is more economical and energy efficient for converting biomass to fuels.
SUMMARYThe present invention provides a process for in-situ upgrading of biomass pyrolysis vapor using a multi-layered catalyst bed or cascaded catalytic reactors. In one aspect, the present process for the thermal conversion of biomass comprises the steps of a) thermal conversion of a biomass feedstock in a pyrolysis reactor, b) recovering a pyrolysis vapor from the reactor, c) passing the pyrolysis vapor in contact with a cracking catalyst, a water-gas shift reaction catalyst, a hydrotreating catalyst, and an acid catalyst, and d) converting the resulting pyrolysis vapor from step c) into a liquid product.
In one other aspect, the present process for the thermal conversion of biomass comprises the steps of a) thermal conversion of a biomass feedstock in a pyrolysis reactor, b) recovering a pyrolysis vapor from the reactor, c) passing the pyrolysis vapor in contact with an acid catalyst in the presence of an alcohol, and d) converting the resulting pyrolysis vapor from step c) into a liquid product.
In another aspect, the present process for the thermal conversion of biomass comprises the steps of a) thermal conversion of a biomass feedstock in a pyrolysis reactor, b) recovering a pyrolysis vapor from the reactor, c) passing the pyrolysis vapor in contact with a water-gas shift reaction catalyst and a hydrotreating catalyst, and d) converting the resulting pyrolysis vapor from step c) into a liquid product.
In yet another aspect, the present process for the thermal conversion of biomass comprises the steps of a) thermal conversion of a biomass feedstock in a pyrolysis reactor, b) recovering a pyrolysis vapor from the reactor, c) passing the pyrolysis vapor in contact with a cracking catalyst, a water-gas shift reaction catalyst, and a hydrotreating catalyst, and d) converting the resulting pyrolysis vapor from step c) into a liquid product.
Among other factors, it has been found that by in-situ upgrading the biomass pyrolysis vapor using the series of catalysts of the present processes, a liquid biooil product is obtained that is so refined that the liquid product can be combined with crude oil to make gasoline. In addition, it has been found that by in-situ upgrading the biomass pyrolysis vapor to have less acidity, one can attain a liquid biooil product which is easier to handle and less corrosive in post-pyrolysis treatment. It has also been found that in-situ upgrading of hot pyrolysis vapor is more attractive and economical, as biooil with improved properties, such as less oxygen and/or less acidity, is produced directly. This makes the further upgrading into liquid transportation fuels more cost effective due to less hydrogen being required. Energy is also saved for pyrolysis vapor cooling and pyrolysis oil reheating.
For a more complete understanding of the exemplary embodiments of the present invention and the advantages thereof, reference is now made to the following description in conjunction with the accompanying drawings, which are briefly described as follows.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. One of ordinary skill in the art will appreciate that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present invention may be better understood by reading the following description of non-limitative embodiments with reference to the attached drawings wherein like parts of each of the figures are identified by the same reference characters. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, for example, a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, for example, a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase. Moreover, various streams or conditions may be referred to with terms such as “hot,” “cold,” “cooled, “warm,” etc., or other like terminology. Those skilled in the art will recognize that such terms reflect conditions relative to another process stream, not an absolute measurement of any particular temperature.
The present application is directed to an improved biomass pyrolysis process that performs in-situ upgrading of pyrolysis-vapor using different catalysts. Specifically, a catalyst bed with multi-layered catalysts or cascaded catalytic reactors with different catalysts are implemented in a regular fast pyrolysis unit. The biooil produced this way will have improved properties, for instance, lower oxygen content and/or less acidity, over biooils produced from regular fast pyrolysis. The present application is also directed to systems for implementing such processes.
Referring to
The pyrolysis reactor 108 is any reactor type capable of completing a pyrolysis reaction involving thermal decomposition of the biomass stream 104 at short reaction times. The pyrolysis reaction is sometimes called “fast”, “flash”, or “rapid” pyrolysis. The reaction is conducted in a reactor type capable of high heat transfer rates to small biomass particles, in order to achieve the rapid increase in temperature of the particle that is necessary. Suitable examples of pyrolysis reactors include, but are not limited to, fluidized bed reactors, circulating fluidized bed reactors, and transport reactors. In fluidized bed reactors and circulating fluidized bed reactors, hot gases and solids are brought into intimate contact with the biomass particles in the biomass stream 104. In certain exemplary embodiments, the solids are normally inert, for instance, silica or sand. In transport reactors, either hot gas alone or a mixture of hot gas and solids may be used. All reactors generally require a significant recycled off-gas flow, usually from about 1 to about 10 times the weight of biomass stream 104 being processed. If the pyrolysis reaction is carried out in the absence of oxygen, for example, in a nitrogen atmosphere, then the non-condensable gases formed have significant contents of carbon monoxide, hydrogen, methane and other light hydrocarbons or organics, which can be burned. The pyrolysis reactor 108 is generally operated at conditions which promote maximum yield of organic liquid. In certain exemplary embodiments, the pyrolysis reactor 108 is operated at a temperature in the range of from about 400 degrees Celsius (° C.) to about 650° C., a vapor residence time of less than about 2 seconds, and at substantially atmospheric pressure. Generally, the pyrolysis reaction yields a pyrolysis vapor stream 110 that exits a top 108a of the pyrolysis reactor 108.
Once the pyrolysis on the biomass stream 104 is complete, the pyrolysis vapor stream 110 is often passed through separation devices, such as filters or cyclones, in order to remove any entrained solid particles, or char, 112a, 112b, resulting from the pyrolysis reaction. In certain exemplary embodiments, the pyrolysis vapor stream 110 enters a first cyclone reactor 114 to separate pyrolysis vapors from entrained char. A pyrolysis vapor stream 116 exits the first cyclone reactor 114 and enters a second cyclone reactor 118 to further separate pyrolysis vapors from entrained char. A pyrolysis vapor stream 120 exits the second cyclone reactor 118 and is introduced at a top 102a of the multi-layered catalyst bed reactor 102. In certain exemplary embodiments, the pyrolysis vapor stream 120 is substantially free of particles so as not to plug the catalyst bed reactor 102.
The catalyst bed reactor 102 includes multiple layers of the different catalysts. The pyrolysis vapor stream 120 passes through each catalyst bed, in sequence from the top 102a to a bottom 102b, in the multi-layer catalyst bed reactor 102. The selection and proper combination of different catalysts is important, as it determines the performance of the catalytic treatment of the pyrolysis vapor stream 120.
In certain exemplary embodiments, a top catalyst 102c would be a zeolite type cracking catalyst, preferably HZSM-5, as this catalyst can be operated at a temperature between about 370 and about 410° C., at atmospheric pressure. The cracking catalyst will crack the hydrocarbon in the pyrolysis vapor stream 120. Suitable examples of other zeolite cracking catalysts for use include, but are not limited to, REX, REY, and USY zeolites. Any suitable temperature and pressure can be used, based upon the degree of cracking desired. Some zeolite type catalysts, such HZSM-5, are prone to coke or char formation on the catalyst. The extent of the coking can be controlled by the relative space velocity of the pyrolysis vapor stream in the catalyst bed. Other cracking catalysts, for example those used in catalytic crackers (for instance fluid catalytic cracking units), may be less prone to coking relative to zeolites. Other types of catalysts, such as alumina based catalysts, can be used as cracking catalysts and will have lower coking tendencies.
In certain exemplary embodiments, a middle catalyst 102d would be a high temperature water-gas-shift catalyst, for example, a precious metal catalyst such as platinum (Pt)/mixed oxide, which are good for operating in the temperature range of from about 350 to about 450° C. The purpose of using a shift catalyst is to convert the water and carbon monoxide (CO) in the pyrolysis vapor stream 120 into hydrogen (H2) and carbon dioxide (CO2), thus providing the hydrogen required by hydrodeoxygenation or hydrotreating. The water-gas shift reaction catalysts generally include a transition metal or transition metal oxide. In certain exemplary embodiments, precious metal catalysts, such as platinum in a mixed oxide, are utilized for operating in a temperature range of from about 350 to about 450° C. The hydrogen is then available for the hydrotreating or hydrodeoxygenation. The relative space velocity of the hot vapor stream through the bed can be designed and controlled to produce the maximum amount of hydrogen. The limiting factor will be the amount of carbon monoxide present in the pyrolysis vapor stream. Since water-gas shift is an equilibrium process, injection of additional hot water vapor before this catalyst would drive the conversion of all of the carbon monoxide into carbon dioxide and produce more hydrogen.
A third catalyst 102e would include a hydrotreating (or hydrodeoxygenation) catalyst. Suitable examples of hydrotreating or hydrodeoxygenation catalysts include, but are not limited to, any known nickel molybdenum (NiMo), cobalt molybdenum (CoMo), or noble metal catalyst supported on γ-alumina. Generally, such catalysts are commercially available. In certain exemplary embodiments, the reaction is generally run at a temperature in the range from about 350 to about 450° C., at atmospheric pressure. The hydrotreating removes the oxygen containing-hydrocarbons in the pyrolysis vapor.
In certain exemplary embodiments, a solid acid catalyst 102f, such as sulfated zirconia, zeolite β, or Nafion-silicone disoxide (SiO2) composite (SAC-13), can be added to the very bottom 102b of the catalyst bed reactor 102 with an injection of an alcohol stream 124 to perform an esterification process. The alcohol stream 124 can include methanol or ethanol, and can be injected into the catalyst 102f bed, catalyst bed reactor 102, or pyrolysis vapor stream 120 to support the esterification reaction. The purpose of using the catalyst 102f is to reduce the acidity of pyrolysis vapor stream 120 by letting the carboxylic acid (e.g., acetic acid) in the pyrolysis vapor stream 120 react with the alcohol stream 124 to form ester and water. An upgraded pyrolysis vapor stream 130 is removed from the bottom 102b of the catalyst bed reactor 102 and directed to a quench tower 134. The pyrolysis vapor stream 130 is generally less acidic and safer for transport through pipes and equipment.
The order in which the pyrolysis vapor stream 120 contacts the foregoing catalysts can be any order. In certain exemplary embodiments, the water-gas shift catalyst is generally contacted prior to the hydrotreating catalyst so that the water-gas shift reaction can produce hydrogen, which can be used in the hydrotreating reaction, and thereby make the process more efficient. In one embodiment, the cracking catalyst is contacted first, followed by the water-gas shift catalyst, hydrotreating catalyst, and then the acid catalyst. In another embodiment, the water-gas shift catalyst is contacted first, followed by the hydrotreating catalyst, the acid catalyst, and then the cracking catalyst.
The pyrolysis vapor stream 130 is quenched and converted into a liquid biooil product 140, and collected at a base 136 of the quench tower 134. A portion 140a of the biooil product 140 is collected in a biooil collection tank 144, while a portion 140b can be pumped via pump 146 through a heat exchanger 148 to produce a cooled biooil stream 150. In certain exemplary embodiments, the cooled biooil stream 150 is reintroduced at a top 134a of the quench tower 134 to quench the pyrolysis vapor stream 130.
In certain exemplary embodiments, a biooil vapor stream 154 from the quench tower 134 is directed to a condenser 156 to cool and condense the biooil vapor stream 154 to produce a condensed biooil stream 158 and a non-condensable gas stream 160. In certain exemplary embodiments, the condensed biooil stream 158 is routed to the biooil collection tank 144. The biooil collected in tank 144 generally has an oxygen content in the range of from about 30 to about 40 percent (%) (dry, ash free basis) and a water content in the range of from about 15 to about 25%, depending on the operating temperatures of the quench tower and the condensers. The biooil product is generally phase stable and which may separate from a lighter density, more water rich product phase. Typical pH values for the biooil product are in the range of from about 2 to about 5.
Referring now to
The pyrolysis vapor stream 214 is introduced into a second catalytic reactor 218. In certain exemplary embodiments, the second catalytic reactor 218 includes a water-gas shift catalyst therein. A pyrolysis vapor stream 220 exits the second catalytic reactor 218 and is passed through a heat exchanger 222 to control the temperature of the pyrolysis vapor stream 220 to produce a pyrolysis vapor stream 224. The temperature of the pyrolysis vapor stream 220 is adjusted to achieve optimal conditions for catalysis.
The pyrolysis vapor stream 224 is introduced into a third catalytic reactor 228. In certain exemplary embodiments, the third catalytic reactor 228 includes a hydrotreating catalyst therein. A pyrolysis vapor stream 230 exits the third catalytic reactor 228 and is passed through a heat exchanger 232 to control the temperature of the pyrolysis vapor stream 230 to produce a pyrolysis vapor stream 234. The temperature of the pyrolysis vapor stream 230 is adjusted to achieve optimal conditions for catalysis.
The pyrolysis vapor stream 234 is introduced into a fourth catalytic reactor 238. In certain exemplary embodiments, the fourth catalytic reactor 238 includes an acid catalyst therein. The alcohol stream 124 can be injected with the pyrolysis vapor stream 234 to perform the esterification process and lower the acidity of the resulting upgraded pyrolysis vapor stream 240. The pyrolysis vapor stream 240 exits the fourth catalytic reactor 238 and is directed to the quench tower 134.
Generally, the processes of the present invention involves thermal conversion of biomass by pyrolysis, i.e., in a pyrolysis reactor. A greatly improved liquid, biooil product is obtained by the present process as the pyrolysis vapor is upgraded. The pyrolysis vapor is contacted with a cracking catalyst, a water-gas shift reaction catalyst, a hydrotreating catalyst and an acid catalyst. This particular selection of catalysts provides an upgraded vapor that is converted into a liquid product by a means such as by quenching, thus resulting in a biooil liquid so refined that it can be combined with crude oil to give a useful gasoline product. No additional refining is necessary. Further refining, of course, can be conducted to fine tune the properties of the biooil product, depending on the ultimate product desired.
The selection and proper combination of the different catalysts allows for upgrading of the pyrolysis vapor, and thereby provides the resulting refined biooil. The use of a cracking catalyst, in combination with a hydrotreating catalyst and a water-gas shift reaction catalyst, and an acid catalyst, can provide one with a liquid biooil product having reduced oxygen and water content as well as lowered acidity. In general, the pyrolysis vapor can contact the different catalysts in any order desired. The catalysts can be arranged in a multi-layer fashion, in separate reactors, or in a combination of such.
Contacting the catalysts with the pyrolysis vapor stream 120 can be conducted in any suitable fashion. In certain embodiments, the contacting is conducted in a single reactor where the catalysts are situated in a multilayer fashion. The vapor contacts each catalyst in order as situated in the multilayer fashion. In other embodiments, the catalysts are arranged in separate reactors, with the pyrolysis vapor being passed in sequence through each reactor. Heat exchangers can be included in between the cascaded reactors to heat or cool the pyrolysis vapor for the appropriate temperatures required by various upgrading catalysts. In addition, it would allow for easier sampling of the upgraded vapor for analysis after each stage, thus allowing more control over the process. In such an embodiment, the temperature and pressure for each reaction can be better fine tuned to control the reaction. Also, guard beds can be placed before each reactor to filter out unwanted materials, if so desired.
Referring now to
The pyrolysis vapor stream 524 is introduced into a second catalytic reactor 528. In certain exemplary embodiments, the second catalytic reactor 528 includes a hydrotreating catalyst therein. A pyrolysis vapor stream 530 exits the second catalytic reactor 528 and is directed to the quench tower 134. By upgrading the pyrolysis vapor in accordance with the processes 400, 500, the overall upgrading process is more thermally efficient. The heat loss due to condensation of pyrolysis vapor and the reheating of biooil is avoided. Furthermore, no hydrogen is needed, as hydrogen can be provided internally by the water-gas-shift reaction. In addition, the biooil produced from the quench tower 134 would have a lower oxygen content, lower water content, and lower acidity.
Referring now to
The pyrolysis vapor stream 714 is introduced into a second catalytic reactor 718. In certain exemplary embodiments, the second catalytic reactor 718 includes a water-gas shift catalyst therein. A pyrolysis vapor stream 720 exits the second catalytic reactor 718 and is passed through a heat exchanger 722 to control the temperature of the pyrolysis vapor stream 720 to produce a pyrolysis vapor stream 724. The temperature of the pyrolysis vapor stream 720 is adjusted to achieve optimal conditions for catalysis.
The pyrolysis vapor stream 724 is introduced into a third catalytic reactor 728. In certain exemplary embodiments, the third catalytic reactor 728 includes a hydrotreating catalyst therein. A pyrolysis vapor stream 730 exits the third catalytic reactor 728 and is directed to the quench tower 134. By upgrading the pyrolysis vapor in accordance with the processes 600, 700, the overall upgrading process is more thermally efficient. The heat loss due to condensation of pyrolysis vapor and the reheating of biooil is avoided. Also, a liquid biooil product is obtained that is refined such that the product can be combined with crude oil to produce gasoline. Furthermore, no hydrogen is needed, as hydrogen can be provided internally by the water-gas-shift reaction. In addition, the biooil produced from the quench tower 134 would have a lower oxygen content, lower water content, and lower acidity.
By upgrading pyrolysis vapor in accordance with the processes of the present invention, the overall upgrading process is more thermally efficient than conventional processes. Heat loss due to condensation of pyrolysis vapor and reheating of biooil is avoided. Furthermore, no hydrogen (H2) is needed, as hydrogen can be provided internally by the water-gas-shift reactions. In addition, the biooil produced from the quench tower has less oxygen, less water, and fewer acids than biooils produced using conventional processes, and therefore has an improved quality over conventional biooils. By treating the pyrolysis vapor in accordance with the present invention, a liquid biooil product can be obtained that is already so refined that it can be combined directly, or with minimal further refining, to crude oil to make a gasoline product.
To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention.
EXAMPLES Example 1The typical operating conditions for a multi-layer fixed-bed reactor would be:
-
- Catalysts used: Top layer—HZSM-5 (cracking catalyst);
- 2nd layer—Pt supported on mixed oxide (water-gas shift catalyst);
- 3rd layer—NiMo and CoMo Supported on γ-alumina (hydrotreating catalyst);
- Bottom layer—Zeolite β (acid catalyst).
- Pressure: Atmospheric
- Temperature: 350-400° C.
- Volume Ratio: Determined by space velocities required; also considering cost, generally
- Top layer:2nd layer:3rd layer:Bottom layer=5:2:3:10
- Expected Bio-oil Quality:
- Oxygen content: <10 wt %
- Water content: <5 wt %
- pH: 5-6
- Catalysts used: Top layer—HZSM-5 (cracking catalyst);
The typical operating conditions for an acid catalyst fixed-bed reactor would be:
-
- Catalysts used: Zeolite β (acid catalyst).
- Pressure: Atmospheric
- Temperature: 350-400° C.
- Expected Bio-oil Quality:
- pH: 5-6
The typical operating conditions for a multi-layer fixed-bed reactor would be:
-
- Catalysts used: Top layer—Pt supported on mixed oxide (water-gas shift catalyst);
- 2nd layer-NiMo and CoMo Supported on γ-alumina (hydrotreating catalyst);
- Pressure: Atmospheric
- Temperature: 350-400° C.
- Expected Bio-oil Quality:
- Oxygen content: <10 wt %
- Water content: <5 wt %
- Catalysts used: Top layer—Pt supported on mixed oxide (water-gas shift catalyst);
The typical operating conditions for a multi-layer fixed -bed reactor would be:
-
- Catalysts used: Top layer—HZSM-5 (cracking catalyst);
- 2nd layer—Pt supported on mixed oxide (water-gas shift catalyst);
- 3rd layer-NiMo and CoMo Supported on y-alumina (hydrotreating catalyst).
- Pressure: Atmospheric
- Temperature: 350-400° C.
- Volume Ratio: Determined by space velocities required; also considering cost, generally
- Top layer:2nd layer:3rd layer=5:2:3
- Expected Bio-oil Quality:
- Oxygen content: <10 wt %
- Water content: <5 wt %
- Catalysts used: Top layer—HZSM-5 (cracking catalyst);
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
Claims
1. A process for the thermal conversion of biomass comprising the steps of:
- a) thermal conversion of a biomass feedstock in a pyrolysis reactor;
- b) recovering a pyrolysis vapor from the reactor;
- c) passing the pyrolysis vapor in contact with a water-gas shift reaction catalyst and a hydrotreating catalyst to produce an upgraded pyrolysis vapor; and
- d) converting the upgraded pyrolysis vapor from step c) into a liquid product.
2. The process of claim 1, wherein the catalysts in step c) are layered in a single reactor.
3. The process of claim 2, wherein the catalysts are layered so that the pyrolysis vapor contacts the water-gas shift reaction catalyst first and the hydrotreating catalyst second.
4. The process of claim 2, wherein the reaction temperature is controlled for each catalyst layer in order to promote the corresponding reaction.
5. The process of claim 4, wherein the temperature is changed for each catalyst layer.
6. The process of claim 1, wherein the water-gas shift reaction catalyst comprises a transaction metal or transaction metal oxide, and the hydrotreating catalyst comprises a noble metal catalyst, nickel molybdenum catalyst, or cobalt molybdenum catalyst.
7. The process of claim 2, wherein hydrogen produced in the water-gas shift reaction is used with the hydrotreating catalyst.
8. The process of claim 1, wherein the catalysts in step c) are contacted with the pyrolysis vapor in separate reactors connected in series.
9. The process of claim 8, wherein the pyrolysis vapor contacts a guard bed before at least one of the reactors.
10. The process of claim 8, wherein the temperature and pressure is controlled for each of the reactors.
11. The process of claim 10, wherein at least the temperature is different for each reactor.
12. The process of claim 8, wherein hydrogen produced in the water-gas shift reactor is used in the reactor with the hydrotreating catalyst.
13. The process of claim 8, wherein the pyrolysis vapor contacts the water-gas shift reaction catalyst first and the hydrotreating catalyst second.
14. The process of claim 2, further comprising combining the liquid product directly with crude oil to make a gasoline product.
15. The process of claim 8, further comprising combining the liquid product directly with crude oil to make a gasoline product.
Type: Application
Filed: Feb 21, 2013
Publication Date: Aug 21, 2014
Applicant: Chevron U.S.A. Inc. (San Ramon, CA)
Inventors: Yunquan Liu (Xiamen), Armando Joseph Belardinelli (Sugar Land, TX), Curtis L. Krause (Houston, TX)
Application Number: 13/772,738
International Classification: C10L 1/18 (20060101);