METHOD AND EQUIPMENT FOR MEASURING MASS INERTIA OF MOVING SURFACES

A method for measuring mass inertia of moving surfaces, comprising the steps of: (a) Alignment of the center of gravity of an assembly (90) formed by the moving surface (50) and a support device (70) fastened to at least two joints (31, 32) in a rest position, this alignment comprising a reading in a comparing clock (40) and driving of an adjusting element arranged in the support device (70) for obtainment of a predetermined value in the comparing clock (40); (b) Measurement of the static moment of assembly (Mstatic) in an intermediate position through a dynamometer (60); (c) Measurement of the oscillation period of assembly (T) in a pendulum position through an accelerometer arranged in the support device (70) and (d) Reading of the static moment of assembly (Mstatic) and that of oscillation period of assembly (T) and obtainment of the inertial moment of the moving surface (Ihhsup)—An equipment (10) for measurement of mass inertia of moving surfaces, is further described, comprising: a structure (20) formed by first and second structural bodies (21, 22) concurrently, thus forming a free gap (23) for positioning of moving surfaces (50); the first structural body (21) comprising at least two joints (31, 32) fastened to its upper portion (211) and a comparing clock (40) arranged in its lower position (212); the structural body (22) comprising a dynamometer (60) positioned in an extension (25); and a support device (70) associated with at least two joints (31, 32) and in collaboration with a comparing clock (40) and the dynamometer (60).

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The present invention refers to an equipment for measuring mass inertia of moving surfaces, in particular primary aircraft moving surfaces, and a method for measuring the mass inertia of those moving surfaces by using that equipment and the concept of compound pendulum.

BACKGROUND OF THE INVENTION

There are many structural calculations to which aircraft parts and surfaces are submitted, and several measures and controls are applied these parts and surfaces.

Among parts and surfaces of an aircraft which have been strictly measured and controlled we can mention primary moving surfaces, such as rudder, profounder and aileron. Such surfaces are specially submitted to measurement of the mass inertial moment, which is a geometrical magnitude of the solids measuring the movement resistance regarding its distributed mass. Thus, in case of primary moving surfaces, there is a need of assuring both control and accuracy of this measurement within acceptable tolerances in order to meet aeroelasticity requirements of those surfaces.

Equipment and methods enabling calculation or measurement of inertial moment of a solid body are known by the art, the document U.S. Pat. No. 5,309,753 being highlighted.

This document U.S. Pat. No. 5,309,753 describes an equipment and a method for determining the inertial matrix and the inertial product of a rigid body with irregular forms, such as a golf-club head. In that case, this equipment and method allow the experimental determination of mass center location and inertial moments of this type of solid bodies.

The equipment is formed by two “L” structures on which a cantilever bar is supported. The golf-club head is mounted in a cantilever bar in such a way that the golf-club cable axis is parallel with and below the cantilever bar. A cylindrical bar crosses perpendicularly the cantilever bar and a known weight is hanged in one of the ends of that cylindrical bar, preferably at the end opposed to the golf-club head. Then, the golf-club head moves towards x, y and z shafts, so as to get these coordinates for calculation of inertial moment. From those calculations and with the use of a pendulum movement of the solid body measured, products of inertia are calculated and an inertial matrix is built.

Although the equipment and method described in this document of the art allow to calculate the inertial moment of solid bodies and use the principle of compound pendulum, the equipment described herein tends to be limited for small solid bodies and would not support aircraft moving surfaces, such as rudder, elevator and aileron. The method to determine an inertial matrix of a rigid body in turn makes use of complex steps for determination of the inertial moment of the solid body used only as an intermediate stage to obtain products of inertia and inertial matrix

SUMMARY OF THE INVENTION

Thus, the present invention has for object to provide an equipment for measuring the inertial mass of aircraft moving surfaces whose geometry enables the accurate measurement of big and complex surfaces.

This invention further has for object to provide an equipment for measuring the inertial mass of aircraft moving surfaces, thus enabling different positioning of those surfaces to be measured.

Another object of the present invention is to provide a method for measuring the inertial mass of aircraft moving surfaces in a simplified, accurate and quick manner.

The invention has for object a method for measuring the inertial mass of moving surfaces, comprising the steps of:

(a) Alignment of an assembly formed by the moving surface and a support device fastened through joints in a rest position, this alignment comprising a reading in a comparing clock and driving of an adjusting element arranged in the support device aiming to obtain a predetermined value in the comparing clock;

(b) Measurement of static moment of the assembly (Mstatic) in an intermediate position through a dynamometer;

(c) Measurement of the oscillation period of the assembly in a pendulum position through an accelerometer arranged in the support device;

(d) Obtainment of the inertial moment of the moving surface (IhhSup)

Another object to the present invention is an equipment for measuring the mass inertia of moving surfaces, comprising: a structure formed by a first and a second structural bodies which are concurrent, thus forming a free gap for moving surfaces positioning; the first structural body comprises at least two joints fastened to its upper part and a comparing clock arranged at its lower part; the second structural body comprising a dynamometer positioned in an extension; and a support device associated with joints and collaborating with the comparing clock and the dynamometer.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will now be described in detail based on an example of performance represented in drawings. Figures show:

FIG. 1—is a first schematic view of the equipment for measuring inertial mass of moving surfaces of this invention, with no surfaces coupled thereto;

FIG. 2—is a second schematic view of the equipment for measuring of mass inertia of moving surfaces of the present invention, with a moving surface coupled thereto;

FIG. 3—is a third schematic view of the equipment for measuring the mass inertia of moving surfaces of the present invention, also comprising a moving surface coupled thereto;

FIG. 4—is a fourth schematic view of the equipment for measuring the mass inertia of moving surfaces of the present invention, comprising a moving surface coupled thereto, unlike the surface illustrated in FIG. 3;

FIG. 5—is a fifth schematic view of the equipment for measuring mass inertia of moving surfaces of this invention, comprising a moving surface coupled thereto, whose surface is different from the surfaces illustrated in FIGS. 3 and 4; and

FIG. 6—is a block diagram of the method for measuring mass inertia of moving surfaces of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

According to a preferred embodiment and as it can be seen in FIGS. 1 to 5, the equipment 10 for measuring mass inertial of moving surfaces of the present invention comprises a rigid structure 20 formed by the first and second rigid structural bodies 21, 22 and concurrently, forming a free gap 23 for positioning of moving surfaces 50.

The first structural body 21 is formed by an upper portion 211 and a lower portion 212 parallel each other and supported by side bars 24, 24′.

At least two joints 31 and 32 are fastened to the upper portion 211 of the first structural body 21. Alternatively, other joints 31′, 31″, 32′, 32″ can be fastened to the upper portion 211 of the first structural body 21. Joints 31, 31′, 31″, 32, 32′ and 32″ are arranged aligned along the longitudinal shaft of the upper portion 211, more specifically in line and in the same height. Said joints are provided with locking pins (not illustrated) allowing, through unlocking, rotation of each joint regarding said longitudinal shaft. A comparing clock 40 is fastened to the lower portion 212 of the first structural body 21, pursuant to a preestablished alignment regarding joints 31, 31′, 31″, 32, 32′, 32″ arranged in the upper portion 211.

The second structural body 22 is also formed by upper 221 and lower 222 portions which are parallel each other and supported by side bars 24′, 24″. Side bar 24″ comprises an extension 25 perpendicular to the second structural body 22 and over the extension 25, a dynamometer 60 is positioned.

The equipment 10 further comprises a support device 70 provided with a main bar 71, perpendicularly associated with a secondary bar 72 so as to form a “T”.

The main bar 71 is rectilinear and fastened to two joints among joints 31, 31′, 31″, 32, 32′ and 32″, in such a way that the other joints (the remaining four joints) are unlocked and rotated upwards, allowing installation of the bar 71 only at two joints. The secondary bar 72, which is also rectilinear, comprises a free end 73 which is in collaboration with the comparing clock 40 and dynamometer 60, as it will be described in details afterwards. The free end 73 of the secondary bar 72 is provided with an accelerometer (not illustrated).

The moving surface 50 is associated to the support device 70, thus forming an assembly 90 (FIGS. 2 to 5). Thus, main bar 71 size and that of secondary bar 72 varies in light of the size of the moving surface 50 to be measured.

Coupled to the comparing clock 40 there is an adjusting device for alignment 41 in collaboration with the free end 73 of the support device 70. Said alignment adjusting device 41 allows the alignment of the assembly 90 with the joint shafts 31, 31′, 31″, 32, 32′, 32″.

The dynamometer 60 is fastened to a movement ruler 61 arranged in the extension 25 of the second structural body 22. That movement ruler 61 moves sideways to the right and to the left over rails (not illustrated) and in light of the movements of the support device 70. In this sense, ruler 61 with the dynamometer 60 moves to the right so that the support device 70 may be lifted above the dynamometer 60 height, then the ruler 61 is moved to the left and the support device 70 is moved downwards, until being supported at the dynamometer 60 for measuring. After the measurement, rule 61 moves again to the right for repositioning the support device 70 out of dynamometer 60.

As illustrated in FIGS. 3, 4 and 5, the equipment 10 allows inertia measurement of different moving surfaces 50. For certain types of moving surfaces 50, it is necessary to use a transporting car 100 for the correct positioning of the moving surface 50 next to the support device 70. As the moving surface 50 is fastened to device 70, the transporting car 100 can be removed from the gap 23 of the equipment 10 (FIG. 5).

As illustrated in FIG. 2, the equipment 10 also comprises a data acquisition and processing system 200 positioned adjacent to structure 20. The data acquisition and processing system 200 consists preferably of a computer which can be associated with the equipment 10 either through cables or remotely. Other systems may also be used, provided that they meet the same function as the computer.

As previously described, the moving surface 50 to be measured is associated to support device 70, thus forming an assembly 90. This assembly 90 is supported at two joints between joints 31, 31′, 31″, 32, 32′, 32″ in such a way that the main bar 71 of the support device 70 is fastened to the two joints and the secondary bar 72 of device 70 is released, with the free end 73 adjacent to the comparing clock 40, in the rest position (FIG. 2).

In that rest position, the free end 73 of the support device 70 is in collaboration with the comparing clock 40 so as to define the alignment of the gravity center of assembly 90. As described above, the alignment adjusting device 41, coupled with the comparing clock 40, allows the alignment of assembly 90 with joint line 31, 31′, 31″, 32, 32′ and 32″. The alignment adjusting device 41 may be a type of single-clutch device.

In order to perform the measurement, the free end 73 of the support device 70 is rotated regarding joints 31, 31′, 31″, 32, 32, 32″. The free end 73 is taken to the meet the dynamometer 60 causing the assembly 90 to become perpendicular regarding the upper portion 211 of the fist structural body 21. The free end 73 is supported in the dynamometer 60 for reading and obtainment of a datum sent to the data acquisition and processing system 200.

After cooperation with the dynamometer 60 the free end 73 is positioned again in the rest position so that this free end 73 is rotated at an angle of approximately 5° and released, in order to perform a pendulum movement. Through the accelerometer arranged at the end 73, data of oscillation period of the assembly 90 is obtained and sent to the data acquisition and processing system 200.

After having received from data sent by dynamometer 60 and by accelerometer arranged at the end 73, the data acquisition and processing system 200, by means of mathematic calculation routines provides the measurement result of the moving surface 50 inertial moment associated with the support device 70.

This equipment 10 of the present invention has a geometry allowing measuring several types of aeronautic moving surfaces 50, with varied dimensions and weights, such as aileron, rudder or elevator. Moreover, this equipment 10 secures measurement accuracy, which allows meeting the most demanding project requirements.

Another advantage of this equipment 10 is the agility with which the inertial measurement is carried out, thus contributing to an increased productivity and safety in accomplishment of project stages.

Also, cost is a differential of this equipment 10 as it is composed by simple and commercially-available components, and its rigid construction is widely simplified, requiring low maintenance.

As it can be seen in FIG. 6, the present invention refers to a method for measuring mass inertia of moving surfaces 50.

This method begins with alignment of CG—Center of Gravity—of assembly 90 regarding joints 31, 31′, 31″, 32, 32′, 32″. For this, the moving surface 50 to be measured is installed in the support device 70 forming the assembly 90, which is fastened to two joints between joints 31, 31′, 31″, 32, 32′, 32″ in a rest position.

In rest position, the free end 73 of the support device 70 is adjacent to the comparing clock 40, as illustrated in FIG. 2. In that position, the free end 73 contacts the comparing clock 40, thus obtaining a reading at the comparing clock 40. If the reading does not correspond to the predetermined value zero, which means that the assembly 90 is aligned, a compensation mass is installed in the supporting device 70, and a fine adjustment by screwing an adjusting pin (not shown), arranged at the free end 73, is carried out. Said compensation and fine adjustment are performed until the reading in the comparing clock reaches zero.

Once the assembly 90 is aligned, the same rotates up to an intermediate position, in such a way that the free end 73 of the support device 70 is 90° regarding the rest position and regarding joints 31, 31′, 31″, 32, 32′, 32″. In that position, the free end 73 is supported in the dynamometer 60, by performing the measurement of the static moment Mstatic. The datum of static moment of assembly Mstatic is collected and stored by the data acquisition and processing system 200.

After measuring the static moment of assembly Mstatic, assembly 90 returns to the rest position, when it is rotated again in a range from 1° to 5° regarding the rest position and released, preferably 5°, thus enabling a free oscillation. By means of free oscillation of assembly 90, the period of oscillation of T assembly is measured by the accelerometer, which sends these data to the data acquisition and processing system 200, where it is stored.

The compound pendulum methodology used in the method of the present invention is based on the measurement of the surface inertial moment around the joint shaft, and that of the surface oscillation period. Thus, through equation I below, the mass inertial moment regarding the joint shaft is obtained, in this case to the shaft of joints 31, 31′, 31″, 32, 32′, 32″:

I hh = T 2 · M static · g 4 · π 2 ( 1 )

Where:

Ihh=mass inertial moment;

T=pendulum oscillation period;

Mstatic=static moment regarding joint shaft; and

g=acceleration of gravity.

Thus, from the reading of the static moment of assembly Mstatic and the oscillation period T, with equation I above, the inertial moment of assembly IhhSup+Disp is obtained.

The obtainment of inertial moment of a moving surface IhhSup occurs by subtracting, from the inertial moment of assembly IhhSup+Disp, the inertial moment of support device IhhDisp. For that purpose, prior to performing the first stage of this method, the inertial moment of support device IhhDisp is measured separately, by submitting only the support device 70 to steps of this method as described above. The inertial moment of support device IhhDisp is stored by the data acquisition and processing system 200 in such a way that the inertial moment of the moving surface (IhhSup) is calculated by data acquisition and processing system 200 from equation (II):


IhhSup=IhhSup+Disp−IhhDisp   (II)

Where:

IhhSup=is the mass inertial moment of the relevant moving surface;

IhhSup+Disp=is the mass inertial moment of assembly 90; and

IhhDisp=is the mass inertial moment of the support device 70.

After describing an example of preferred embodiment, it should be understood that the scope of the present invention covers other possible variations, it being limited only by the contents of the attached claims, the possible equivalents being included therein.

Claims

1. Method for measuring inertial mass of moving surfaces, characterized for comprising the steps of:

(a) Alignment of the gravity center of an assembly (90) formed by the moving surface (50) and a support device (70) fastened at least to two joints (31, 32) in a rest position, this alignment comprising a reading in a comparing clock (40) and driving of an adjusting element arranged in the support device (70) for obtainment of a predetermined value in the comparing clock (40);
(b) Measurement of the static moment of assembly (Mstatic) in an intermediate position through a dynamometer (60);
(c) Measurement of the oscillation period of assembly (T) in a pendulum position through an accelerometer arranged in the support device (70) and (d) Reading of the static moment of assembly (Mstatic) and that of the oscillation period of assembly (T) and obtainment of the inertial moment of the moving surface (IhhSup).

2. Method, according to claim 1, characterized in that, prior to step (a), the inertial moment of support device (IhhDisp) is obtained separately.

3. Method, according to claim 2, characterized in that, the inertial moment of support device (IhhDisp) is stored in a dada acquisition and processing system (200).

4. Method, according to claim 1, characterized in that, in step (b), the intermediate position of assembly consists in rotation of assembly (90) regarding at least two joints (31, 32) at 90° angle from the rest position.

5. Method, according to claim 1, characterized in that, at step (b) a free end (73) of the support device (70) is supported in the dynamometer (60) and the reading of the static moment of assembly (Mstatic) is performed in the dynamometer (60). static, is

6. Method, according to claim 5, characterized in that, the static moment datum of assembly (Mstatic) is collected and stored by a data acquisition ands processing system (200).

7. Method, according to claim 1, characterized in that, at step (c), assembly (90) is taken to the rest position, and then rotated in the range of 1° to 5° regarding the rest position and released, thus allowing a free oscillation.

8. Method, according to claim 7, characterized in that, through the free oscillation of assembly (90), the oscillation period of assembly (T) is measured by accelerometer and sent to a data acquisition and processing system (200).

9. Method, according to claim 1, characterized in that, step (d) is carried out by a data acquisition and processing system (200).

10. Method, according to claim 9, characterized in that, the inertial moment of a moving surface (IhhSup) is obtained from equation (II)

IhhSup=IhhSup+Disp−IhhDisp   (II)

11. Equipment (10) for measuring mass inertia of moving surfaces, characterized for comprising:

a structure (20) formed by first and second structural bodies (21, 22) concurrently, thus forming a free gap (23) of positioning of moving surfaces (50);
the first structural body (21) comprising at least two joints (31, 32) fastened to its upper portion (211) and a comparing clock (40) arranged at its lower portion (212);
the second structural body (22) comprising a dynamometer (60) positioned in an extension (25); and
a support device (70) associated with at least two joints (31, 32) and in collaboration with the comparing clock (40) and the dynamometer (60).

12. Equipment, according to claim 11, characterized in that the support device (70) comprises a main bar (71) perpendicularly associated with a secondary bar (72), thus forming a “T”, the main bar (71) being fastened to at least two joints (31, 32) and a secondary bar (72) in collaboration with the comparing clock (40) and the dynamometer (60) through a free end (73).

13. Equipment, according to claim 12, characterized in that the free end (73) of the secondary bar (72) comprises an accelerometer.

14. Equipment, according to claim 13, characterized in that the moving surface (50) is associated to the support device (70), thus forming an assembly (90).

15. Equipment, according to claim 14, characterized in that the size of the support device (70) varies in light of the size of the moving surface (50) to be associated.

16. Equipment, according to claim 14, characterized for comprising an adjusting device (41) in collaboration with the support device (70), thus aligning and adjusting the assembly (90) with at least two joints (31, 32).

17. Equipment, according to claim 11, characterized in that the extension (25) is positioned substantially perpendicular to the second structural body (22) and comprises a movement ruler (61) to which the dynamometer (60) is fastened, this movement ruler (61) being displaced as per the movement of the support device (70).

18. Equipment, according to claim 11, characterized for comprising a data acquisition and processing system (200) positioned adjacent to the structure (20).

Patent History
Publication number: 20140244211
Type: Application
Filed: Jul 27, 2012
Publication Date: Aug 28, 2014
Applicant: ENBRAER S.A. (San Jose dos Campos)
Inventors: José Carlos Dos Santos (San Jose dos Campos), Anderson Tobias Lindegger (San Jose dos Campos), Claudio Nagafchi (San Jose dos Campos), Douglas Alves Morae (San Jose dos Campos), Osvaldo Escobar (San Jose dos Campos), Marcelo Camilo Alves Costa (San Jose dos Campos), Altair Tomaz Mendes (San Jose dos Campos)
Application Number: 14/235,379
Classifications
Current U.S. Class: Of Moving Article (702/175)
International Classification: G01G 19/00 (20060101);