CONTAINER

A vessel is configured to hold a product in an interior region formed in the vessel. In illustrative embodiments, the vessel includes a floor and a side wall coupled to the floor to extend away from the floor. Together the floor and side wall cooperate to define the interior region.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
PRIORITY CLAIM

This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 61/783,994, filed Mar. 14, 2013, which is expressly incorporated by reference herein.

BACKGROUND

The present disclosure relates to vessels, and in particular to cup or bottles. More particularly, the present disclosure relates to a cup formed from polymeric materials.

SUMMARY

A vessel in accordance with the present disclosure is configured to hold a product in an interior region. In illustrative embodiments, the vessel is an insulated container such as a drink cup. In illustrative embodiments, the vessel is a container such as a shampoo bottle.

In illustrative embodiments, a container is formed multi-layer tube in a multi-layer co-extrusion blow molding process. The multi-layer tube includes an inner polymeric layer, an outer polymeric spaced apart from the inner polymeric material, and a middle cellular non-aromatic polymeric material located between the inner and outer polymeric layers.

In illustrative embodiments, the middle cellular non-aromatic polymeric layer has a density in a range of about 0.01 g/cm3 to about 0.19 g/cm3. In illustrative embodiments, the middle cellular non-aromatic polymeric layer has a density in a range of about 0.05 g/cm3 to about 0.19 g/cm3. In illustrative embodiments, the middle cellular non-aromatic polymeric layer has a density in a range of about 0.1 g/cm3 to about 0.185 g/cm3.

Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.

BRIEF DESCRIPTIONS OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures in which:

FIG. 1 is a perspective view of a first embodiment of a container in accordance with the present disclosure showing that the container includes, from top to bottom, a brim, a side wall, and a floor, and suggesting that the container is formed from a multilayer tube according to a container-manufacturing process as suggested in FIGS. 3A-4;

FIG. 2 is an enlarged sectional view of a portion of a side wall included in the container of FIG. 1 showing that the side wall is made form a multilayer tube that includes, from left to right, an outer polymeric layer, a middle cellular non-aromatic polymeric layer, and an inner polymeric layer;

FIGS. 3A-3C are a series of partial perspective view of a first embodiment of a container-manufacturing process in accordance with the present disclosure showing the formation of the container of FIG. 1;

FIG. 3A is a partial perspective view of a portion of the container-manufacturing process showing that the container-manufacturing process begins with extruding an inner layer, a middle layer, and an outer layer to establish a multi-layer tube that is received between two mold halves for forming as suggested in FIG. 3B;

FIG. 3B is a view similar to FIG. 3A showing the two mold halves in a closed position trapping the multilayer tube therebetween in a mold cavity formed by the two mold have when the two mold have are closed;

FIG. 3C is a view similar to FIG. 3B showing the two mold halves in an opened position and a molded vessel being ejected from the mold halves for further processing to establish the container of FIG. 1 as suggested in FIG. 4;

FIG. 4 is a diagrammatic view of the container-manufacturing process of FIGS. 3A-3C showing that the container-manufacturing process includes the operations extruding the inner layer that provides the inner polymeric layer, extruding the middle layer that provides the middle insulative cellular non-aromatic polymeric layer, extruding the outer layer that provides the outer polymeric layer, establishing a pre-form multilayer tube, extruding the pre-form multilayer tube into an open mold cavity, closing the mold, pumping air into the pre-form multilayer tube in the mold cavity to cause the multi-layer tube to expand and take the shape of the mold cavity, opening the mold, removing the vessel from the mold cavity, cutting a top portion off the vessel to establish a body as suggested in FIG. 5, and forming the container of FIG. 1 from the body;

FIG. 5 is a view similar to FIG. 1 showing the body formed during the container-manufacturing process of FIG. 4;

FIG. 6 is a perspective view taken from a bottom of the body showing a floor included in the container;

FIGS. 7A-7D are a series of partial perspective view of a second embodiment of a container-manufacturing process in accordance with the present disclosure showing the formation a body as suggested in FIG. 9 that processed to form a container;

FIG. 7A is a partial perspective view of a portion of the container-manufacturing process showing that the container-manufacturing process begins with extruding an inner layer, a middle layer, and an outer layer to establish a multi-layer tube that is received between two mold halves for forming as suggested in FIG. 7B;

FIG. 7B is a view similar to FIG. 7A showing the two mold halves in a closed position trapping the multilayer tube therebetween in a mold cavity formed by the two mold have when the two mold have are closed;

FIG. 7C is a view similar to FIG. 7B showing the two mold halves in an opened position and a molded vessel being ejected from the mold halves for further processing where a cutting operation removes a top and bottom end of the vessel to establish a side wall;

FIG. 7D is a view similar to FIG. 7C showing the side wall after the cutting operation has been performed and a floor has been coupled to a bottom end of the side wall to establish a body as suggested in FIG. 9;

FIG. 8 is a diagrammatic view of the container-manufacturing process of FIGS. 7A-7D showing that the container-manufacturing process includes the operations extruding the inner layer that provides the inner polymeric layer, extruding the middle layer that provides the middle insulative cellular non-aromatic polymeric layer, extruding the outer layer that provides the outer polymeric layer, establishing a pre-form multilayer tube, extruding the pre-form multilayer tube into an open mold cavity, closing the mold, pumping air into the pre-form multilayer tube in the mold cavity to cause the multi-layer tube to expand and take the shape of the mold cavity, opening the mold, removing the vessel from the mold cavity, cutting top and bottom portions off the vessel to establish the side wall, forming the floor, coupling the floor to the side wall to establish the body, and forming the container as suggested in FIG. 9;

FIG. 9 is a perspective view of a another embodiment of the body formed using the container-manufacturing process of FIGS. 7A-8 with portions broken away to reveal that the container includes the side wall and the floor;

FIG. 10 is a perspective view taken from a bottom of the body of FIG. 9 showing the floor coupled to the side wall of the body;

FIG. 11 is a perspective view of another embodiment of a container in accordance with the present disclosure suggesting that a container including, from top to bottom, a brim, a side wall including a plurality of ribs, and a floor may be formed using the container-manufacturing processes of the present disclosure;

FIG. 12 is a perspective view taken from a bottom of the container of FIG. 11 showing the floor appended to the side wall of the container

FIG. 13A is a photograph showing two containers in accordance with another embodiment of the present disclosure;

FIG. 13B is a photograph showing one of the containers of FIG. 13A with a portion of a side wall removed for photographing as suggested in FIG. 13C;

FIG. 13C is an enlarged photograph of a portion of the side wall of FIG. 13B showing that the side wall includes, from top bottom, a inner polymeric layer, a middle insulative cellular non-aromatic polymeric layer, an outer polymeric layer;

FIG. 13D is an enlarged photograph of a portion of the side wall in section showing that the side wall includes, from top to bottom, an outer polymeric layer (outside skin), a middle insulative cellular non-aromatic polymeric layer (foam core), and an inner polymeric layer (inside skin);

FIG. 13E is a photograph showing one of the containers of FIG. 13A coupled to a top-load testing device undergoing top-load testing;

FIG. 14A is a photograph showing another embodiment of a container in accordance with the present disclosure being removed from a mold cavity after air has been pumped into a pre-form multilayer tube in a mold cavity to cause the multi-layer tube to expand and take the shape of the mold cavity;

FIG. 14B is a photograph showing a series of finished containers formed in accordance with the present disclosure;

FIG. 14C is an enlarged photograph showing a section of a side wall included in the containers of FIGS. 14A and 14B showing that the side wall includes, from top bottom, a inner polymeric layer, a middle insulative cellular non-aromatic polymeric layer, and an outer polymeric layer;

FIG. 14D is a photograph showing two containers formed in accordance with the present disclosure and two multi-layer tubes used to form the containers; and

FIG. 14E is a photograph showing two containers formed in accordance with the present disclosure and two multi-layer tubes used to form the containers.

DETAILED DESCRIPTION

A first embodiment of a container 10 in accordance with the present disclosure is shown in FIG. 1. Container 10 is made from a multi-layer tube 12, also called multi-layer parison 12, as shown in FIGS. 3A-3C and 7A-7C. Multi-layer tube 12 includes an inner polymeric layer 12I, a middle cellular non-aromatic polymeric layer 12M, and an outer polymeric layer 12O as shown in FIG. 2. Container 10 is formed using a first embodiment of a container-manufacturing process 100 as shown, for example, in FIGS. 3A-4. Another embodiment of a body 218 in accordance with the present disclosure is shown, for example in FIGS. 9 and 10. Body 218 is formed during and used in a second embodiment of a container-manufacturing process 300 as shown, for example, in FIGS. 7A-8. Still yet another embodiment of a container 410 formed using one of the container-manufacturing process of the present disclosure is shown, for example, in FIGS. 11 and 12. Another embodiment of a container 510 formed using one of the container-manufacturing processes of the present disclosure is shown, for example, in FIGS. 13A and 13E. Another embodiment of a container 610 is formed using one of the container-manufacturing processes of the present disclosure is shown, for example, in FIGS. 14B, 14D, and 14E.

Container 10 is made during container-manufacturing process 100 from multi-layer tube 12 as shown in FIG. 3A-3C. Multi-layer tube 12 includes inner polymeric layer 12I, middle cellular non-aromatic polymeric layer 12M, and outer polymeric layer 12O as shown in FIG. 2. In one example, inner polymeric layer 12I, middle insulative cellular non-aromatic polymeric layer 12M, and outer polymeric layer 12O are made from the same polymeric material or materials. In another example, each of the inner polymeric layer 12I, middle insulative cellular non-aromatic polymeric layer 12M, and outer polymeric layer 12O are made from different materials.

In one example, inner and outer polymeric layers 12I, 12O are made from polypropylene. In another example, inner and outer polymeric layers 12I, 12O are made from high density polyethylene. In still yet another example, one of the polymeric layers may include a polymeric material and an oxygen barrier material such as Ethylene Vinyl Alcohol (EVOH). However, inner and outer polymeric layers 12I, 12 may be made from any suitable polymeric material.

Middle insulative cellular non-aromatic polymeric layer 12M is configured to provide means for insulating a beverage or food placed in an interior region 14 formed in container 10, forming a structure having sufficient mechanical characteristics to support the beverage or food, and providing resistance to deformation and puncture. In one example, middle insulative cellular non-aromatic polymeric layer 12M is made from an insulative cellular non-aromatic high density polyethylene material. In another example, middle insulative cellular non-aromatic polymeric layer 12M is made from a predominantly polypropylene material. Reference is hereby made to U.S. application Ser. No. 13/491,007, filed Jun. 7, 2012 and titled POLYMERIC MATERIAL FOR AN INSULATED CONTAINER for disclosure relating to a polypropylene based insulative cellular non-aromatic polymeric material, which application is hereby incorporated in its entirety herein.

In illustrative embodiments, the middle cellular non-aromatic polymeric layer 12M has a density in a range of about 0.01 g/cm3 to about 0.19 g/cm3. In illustrative embodiments, the middle cellular non-aromatic polymeric layer has a density in a range of about 0.05 g/cm3 to about 0.19 g/cm3. In illustrative embodiments, the middle cellular non-aromatic polymeric layer has a density in a range of about 0.1 g/cm3 to about 0.185 g/cm3.

Outer polymeric layer 12O and inner polymeric layer 12I are, for example, made a non-aromatic polymer. Inner polymeric layer 12I is spaced apart from outer polymeric layer 12O so as to locate middle insulative cellular non-aromatic polymeric layer 12M therebetween Inner polymer layer 12I is located between interior region 14 and middle insulative cellular non-aromatic polymeric layer 12M as shown, for example, in FIG. 2.

In one illustrative example, outer and inner polymeric layers 12O, 12I are made from polypropylene. While inner and outer polymeric layers 12O, 12I may be made from the same material, they may also be made from different materials so as to achieve desired performance characteristics of the container.

Container 10 includes, from top to bottom, a brim 16 and a body 18 as shown in FIG. 1. Brim 16 is appended to a top portion of body 18 and arranged to define a mouth 20 opening into interior region 14 formed in body 18. In one example, container 10 is an insulative drink cup and brim 16 is adapted to mate with a lid which covers and closes mouth 20.

Container 10 is formed using container-manufacturing process 100 as shown, for example in FIGS. 3A-4. Container-manufacturing process 100 is, for example, a multi-layer co-extruded blow molding operation as suggested in FIGS. 3A and 4. Container-manufacturing process 100 includes an inner layer extrusion operation 102, a middle layer extrusion operation 104, an outer layer extrusion operation 106, and a tube forming operation 108 as shown in FIGS. 3A and 4 Inner layer extrusion operation 102 occurs when a first extruder 131 extrudes an inner layer 142 which provides inner polymeric layer 12I. Middle layer extrusion operation 104 occurs when a second extruder 132 extrudes a middle layer 142 which provides middle cellular non-aromatic polymeric layer 12M. Outer layer extrusion operation 106 occurs when a third extruder 133 extrudes an outer layer 143 which provides outer polymeric layer 12O. All three layers 141, 142, 143 are brought together in order during tube forming operation 108 in a die 140 to establish multi-layer tube 12 as shown in FIG. 3A.

While container-manufacturing process 100 shows the extrusion of three layers, any number of inner layers, middle layers, and outer layers may be extruded by any number of extrudes. These various layers may then be combined in the die to establish a multi-layer tube.

Container-manufacturing process 100 further includes an extruding multi-layer tube operation 110, a mold closing operation 112, an air pumping operation 114, a mold opening operation 116, and a vessel removing operation 118 as shown, for example, in FIGS. 3B-4. During extruding multi-layer tube operation 110, extruders 131, 132, 133 continue to extrude associated layers 141, 142, 143 so that multi-layer tube 12 is extruded between two mold halves 134A, 134B included in a mold 134 as shown in FIG. 3A. During mold closing operation 112, mold halves 134A, 134B are brought together to establish a mold cavity 134C formed in mold 134. Next, air is pumped into a portion of multi-layer tube 12 trapped in mold cavity 134C to cause multi-layer tube 12 to expand and take on a shape of mold cavity 134C and establish a vessel 22 including an interior space 24 filled with air. However, in another example vacuum may be applied to the multi-layer tube 12 in mold cavity 134 to take on the shape of mold cavity 134. During mold opening operation 116, mold halves 134A, 134B open and move away from one another as shown in FIG. 3C. Vessel 22 is removed from mold 134.

In one example, a continuous extrusion process may be used in combination with a rotary blow molding machine. In this example, a continuous multi-layer tube is extruded and a series of molds included in the rotary blow molding machine rotate relative to the multi-layer tube. As molds approach the extruders forming the multi-layer tube, they begin to move from an opened arrangement to a closed arrangement trapping a portion of the multi-layer tube in a mold cavity formed in the mold. As the molds move away from the extruders forming the multi-layer tube, they move from the closed position to an opened position where a vessel is ejected from the mold cavity. One example of a rotary extrusion blow molding machine is available from Wilmington Machinery of Wilmington, N.C.

In another example, a continuous extrusion process may be used in combination with a shuttle blow molding machine. In this example, a first mold on a track moves to an opened position, slides over to receive the multi-layer tube in the mold cavity, and moves to a closed position. The first mold then slides away from the multi-layer tube where air is pumped into the interior space to cause the multi-layer tube to assume the mold shape. When the first mold moves away from the multi-layer tube, a second mold moves to an opened position, slides over to receive the continuously extruded multi-layer tube in a mold cavity of the second mold, and moves to a closed position. The second mold then slides away from the multi-layer tube where air is pumped into the interior space. While the second mold moves away from the multi-layer tube, the first mold moves to the opened position ejecting the vessel to start the process over again. One example of a shuttle blow molding machine is available from Graham Engineering Corporation of York, Pa.

Container-manufacturing process 100 may include an optional step of inserting a label or other item in the mold cavity prior to receiving the multi-layer tube 12 therein. As a result, body 18 may be formed with a printed label or other feature coupled to the side wall 28 during molding. Thus, container-manufacturing process 100 is capable of an-mold labeling operation.

Container-manufacturing process 100 further includes a cutting operation 120 and a forming operation 122 as shown in FIG. 4. During cutting operation 120, a top portion 26 of vessel 22 is cut and separated from vessel 22 to cause body 18 to be established. As shown in FIGS. 5 and 6, body 18 includes a side wall 28 and a floor 30. Floor 30 is appended to a lower portion of side wall 28 and cooperates with side wall 28 to define interior region 14 as shown in FIG. 5. Body 18 may then be accumulated and transported to forming operation 122 where a brim-forming step and a printing step may be performed. During the brim-forming step, brim 16 is formed on body 18 using a brim-forming machine (not shown) where a top portion of body 18 is rolled downwardly toward side wall 28. During the printing step, graphics, words, or other indicia may be printed on outwardly facing surface of outer polymeric layer 12O. Once brim 16 is established on body 18, container 10 is established.

Body 18 is shown, for example, in FIGS. 5 and 6 after cutting operation 120 has been performed on vessel 22. Body 18 includes side wall 28 and floor 30 as shown in FIGS. 5 and 6. An aperture 32 is formed as a result of cutting operation 120. Aperture 32 will become mouth 20 after the brim-forming step has occurred.

Body 218 is formed using container-manufacturing process 300 as shown, for example in FIGS. 7A-8. Container-manufacturing process 300 is, for example, a multi-layer co-extruded blow molding operation as suggested in FIGS. 7A-8. Container-manufacturing operation 300 includes inner layer extrusion operation 102, middle layer extrusion operation 104, outer layer extrusion operation 106, and tube forming operation 108 as shown in FIGS. 3A, 4, 7A, and 8 Inner layer extrusion operation 102 occurs when first extruder 131 extrudes an inner layer 141 which provides inner polymeric layer 12I. Middle layer extrusion operation 104 occurs when second extruder 132 extrudes a middle layer 142 which provides middle insulative cellular non-aromatic polymeric layer 12M. Outer layer extrusion operation 106 occurs when third extruder 133 extrudes an outer layer 143 which provides outer polymeric layer 12O. All three layers 141, 142, 143 are brought together in die 140 during tube forming operation 108 to establish multi-layer tube 12 as shown in FIG. 7A.

Container-manufacturing process 300 further includes extruding multi-layer tube operation 110, mold closing operation 112, air pumping operation 114, mold opening operation 116, and vessel removing operation 118 as shown, for example, in FIGS. 7B-8. During extruding multi-layer tube operation 110, extruders 131, 132, 133 continue to extrude associated layers 141, 142, 143 so that multi-layer tube 12 is extruded between two mold halves 134A, 134B included in mold 134 as shown in FIG. 7A. During mold closing operation 112, mold halves 134A, 134B are brought together to establish mold cavity 134C formed in mold 134. Next, air is pumped into a portion of multi-layer tube 12 trapped in mold cavity 134C to cause multi-layer tube 12 to expand and take on the shape of mold cavity 134C and establish vessel 22 including interior space 24 filled with air. During mold opening operation 116, mold halves 134A, 134B open and move away from one anther as shown in FIG. 7C. Vessel 22 is removed from mold 134.

Container-manufacturing process 300 further includes a cutting operation 320, a floor forming operation 322, a floor coupling operation 324, and a body establishing operation 326 as shown in FIG. 8. During cutting operation 320, a top portion 226 of vessel 22 and a bottom portion 227 of vessel 22 is cut and separated from vessel 22 to cause a side wall 228 to be established as suggested in FIGS. 7C and 7D. During floor forming operation 322, a floor 230 is formed. Floor 230 may be injection molded, thermoformed, or any other suitable alternative. During floor coupling operation 324, floor 230 is coupled to a bottom portion of side wall 228. Body 218 is established during body establishing operation 326 as shown in FIGS. 7D, 9, and 10.

Body 218 includes side wall 228 and floor 230 as shown in FIGS. 9 and 10. Floor 230 is coupled to the lower portion of side wall 228 and cooperates with side wall 228 to define interior region 214 as shown in FIG. 9. In one example, floor 230 is coupled by adhesive to floor 230. In another example, floor 230 is coupled by a heat seal to floor 230. However, any suitable means for coupling floor 230 to side wall 228 may be used.

Body 218 may then be accumulated and transported to forming operation 328 where a brim-forming step and a printing step may be performed. During the brim-forming step, a brim is formed on body 218 using a brim-forming machine (not shown) where a top portion of body 218 is rolled downwardly toward side wall 228. During the printing step, graphics, words, or other indicia may be printed on outwardly facing surface of outer polymeric layer 12O. Once the brim is established on body 218, a container is established.

Another embodiment of a container 410 in accordance with the present disclosure is shown, for example, in FIGS. 11 and 12. Container 410 is made using one of the container-manufacturing processes 100, 300. Container 410 includes a brim 416, a side wall 428, a floor 430 as shown, for example in FIGS. 11 and 12. Container 410 has relatively vertical side wall 428 as compared to container 10 which has an angled side wall 28. In addition, side wall 428 is formed to include a plurality of ribs 434 as shown in FIGS. 11 and 12. Ribs 434 may be used to maximize stack strength of container 410.

Another embodiment of a container 510 in accordance with the present disclosure is shown, for example, in FIGS. 13A and 13E. Container 510 is made from another embodiment of a multi-layer tube that includes an inner polymeric layer 512I, middle insulative cellular non-aromatic polymeric layer 512M, and outer polymeric layer 512O as shown in FIGS. 13C and 13D. Container 510 has, for example, an interior region 514 configured to hold about 750 ml. Container 510 weights about 44 grams.

Inner polymeric layer 512I is made from a polymeric material including high density polyethylene and colorant. Outer polymeric layer 512O is made from a polymeric material including high density polyethylene. Middle insulative cellular non-aromatic polymeric layer 512M is made from an insulative cellular non-aromatic polymeric material that includes high density polyethylene and a talc nucleating agent as suggested in FIG. 13D.

Container 510 includes, from top to bottom, a brim 516 and a body 518 as shown in FIG. 13A. Brim 516 is appended to a top portion of body 518 and arranged to define a mouth 520 opening into interior region 514 formed in body 518. In one example, container 510 is an insulative drink cup and brim 516 is adapted to mate with a lid which covers and closes mouth 520. Body 518 includes a side wall 528 and a floor 530 as shown in FIG. 13B.

In one example, containers 510 were formed from a multi-layer tube. The middle layer used to form middle insulative cellular non-aromatic polymeric material 512M had a density of about 0.83 grams per cubic centimeter. After mating the inner layer with the inner and outer layers and forming container 510, container 510 had a density of about 0.95 grams per cubic centimeter.

In another example, operation of the second extruder 132 was optimized to minimize density of the middle layer. In addition, thicknesses of inner and outer layers were minimized. As a result, inner polymeric layer 512I is about 15% of a total thickness of side wall 528 of container 510. Outer polymeric layer 512O is about 15% of the total thickness of side wall 528 of container 510. Middle insulative cellular non-aromatic polymeric material 512M is about 70% the total thickness of side wall 528 of container 510. Container 510, as a result, has a density of about 0.87 grams per cubic centimeter after optimization.

Inner polymeric layer 512I of container 510 has a weight of about 32 grams. Outer polymeric layer 512O of container 510 has a weight of about 40 grams. Middle insulative cellular non-aromatic polymeric material 512M has a weight of about 35 grams.

The optimized container 510 was tested in an Instron tester to determine top load performance as suggested in FIG. 13E. Containers were tested until they failed or necked in to form an hourglass shape. Table 1 shows the performance of several containers 510 (including middle cellular layer 512M) tested vs. several high density polyethylene containers (excluding middle cellular layer 512M).

TABLE 1 Comparison of Non-Cellular Containers vs. Cellular Containers in top-loading performance (higher collapse force is better and lower mass of container is better) Container Type Mass of Container (grams) Collapse Force (lbs) Non-Cellular 44.0 57 Non-Cellular 40.0 36 Non-Cellular 35.0 26 Cellular 40.0 58 Cellular 35.0 41 Cellular 32.0 32

The results of the top-loading testing show that containers 510 withstood higher collapse force even when about 10% lighter than non-cellular containers. As a result, container 510 provides for a more sustainable container as less material is a stronger container is provided that maximizes stack strength.

Another embodiment of a container 610 in accordance with the present disclosure is shown, for example, in FIGS. 14B, 14D, and 14E. Container 610 is made from another embodiment of a multi-layer tube 612 that includes an inner polymeric layer 612I, middle insulative cellular non-aromatic polymeric layer 612M, and outer polymeric layer 612O as shown in FIG. 14C. Container 610 has, for example, an interior region 614.

Container 610 includes, from top to bottom, a neck 616 and a body 618 as shown in FIG. 14B. Neck 616 is appended to a top portion of body 618 and arranged to define a mouth 620 opening into interior region 614 formed in body 618. In one example, container 610 is a shampoo bottle and neck 616 is adapted to mate with a lid which covers and closes mouth 620. Body 618 includes a side wall 628 and a floor 630 as shown in FIG. 14B.

In one example, containers 610 were formed from a multi-layer tube. The middle layer used to form middle insulative cellular non-aromatic polymeric layer 612M had a density of about 0.62 grams per cubic centimeter. After mating the inner layer with the inner and outer layers and forming container 610, container 610 has a density of about 0.88 grams per cubic centimeter as suggested in FIG. 14D. Another embodiment of a container 610A has a density of about 0.81 grams per cubic centimeter as suggested in FIG. 14E.

Claims

1. A vessel comprising

a floor and
a side wall coupled to the floor and arranged to extend upwardly from ground underlying the floor and to cooperate with the floor to define an interior product-storage region therebetween,
wherein the floor and the side wall cooperate to form a monolithic element comprising an inner polymeric layer forming a boundary of the interior product-storage region, an outer polymeric layer arranged to lie in spaced-apart relation to the inner polymeric layer to define a core chamber therebetween, and a middle cellular non-aromatic polymeric material located in the core chamber to lie between the outer polymeric layer and the inner polymeric layer, and
wherein the middle cellular non-aromatic polymeric material has a density in a range of about 0.01 g/cm3 to about 0.19 g/cm3.

2. The vessel of claim 1, wherein the middle cellular non-aromatic polymeric material comprises polypropylene.

3. The vessel of claim 2, wherein the density of the middle cellular non-aromatic polymeric material is in a range of about 0.1 g/cm3 to about 0.185 g/cm3.

4. The vessel of claim 3, wherein each of the inner polymeric layer, the outer polymeric layer comprise polypropylene.

5. The vessel of claim 2, wherein each of the inner polymeric layer, the outer polymeric layer comprise polypropylene.

6. The vessel of claim 1, wherein the middle cellular non-aromatic polymeric material comprises high density polyethylene.

7. The vessel of claim 6, wherein the density of the middle cellular non-aromatic polymeric material is in a range of about 0.1 g/cm3 to about 0.185 g/cm3.

8. The vessel of claim 6, wherein each of the inner polymeric layer, the outer polymeric layer comprise polypropylene.

9. The vessel of claim 1, wherein the density of the middle cellular non-aromatic polymeric material is in a range of about 0.1 g/cm3 to about 0.185 g/cm3.

10. The vessel of claim 1, wherein each of the inner polymeric layer, the outer polymeric layer, and the middle cellular non-aromatic polymeric material comprises polypropylene.

11. The vessel of claim 1, further comprising a brim coupled to an upper portion of the side wall and formed to include a mouth opening into the interior product-storage region.

12. The vessel of claim 11, wherein the brim is coupled to each of the inner polymeric layer and the outer polymeric layer to close an annular opening into a portion of the core chamber formed in the side wall.

13. The vessel of claim 1, wherein the middle cellular non-aromatic polymeric material is the only material located in the core chamber.

14. The vessel of claim 13, wherein the middle cellular non-aromatic polymeric material is arranged to fill the core chamber completely.

15. The vessel of claim 14, wherein the middle cellular non-aromatic polymeric material comprises polypropylene.

16. The vessel of claim 15, wherein the density of the middle cellular non-aromatic polymeric material is in a range of about 0.1 g/cm3 to about 0.185 g/cm3.

17. The vessel of claim 15, wherein each of the inner polymeric layer, the outer polymeric layer comprise polypropylene.

18. A vessel comprising

a floor and
a side wall coupled to the floor and arranged to extend upwardly from ground underlying the floor and to cooperate with the floor to define an interior product-storage region therebetween,
wherein the floor and the side wall cooperate to form a monolithic element comprising an inner polymeric layer forming a boundary of the interior product-storage region, an outer polymeric layer arranged to lie in spaced-apart relation to the inner polymeric layer to define a core chamber therebetween, and a middle cellular non-aromatic polymeric material located in the core chamber to lie between the outer polymeric layer and the inner polymeric layer, and
wherein the inner polymeric layer, the outer polymeric layer, and the middle cellular non-aromatic polymeric material cooperate to maximize resistance to a collapse force while minimizing a weight of the vessel.

19. The vessel of claim 18, wherein the middle cellular non-aromatic polymeric material comprises high density polyethylene.

20. The vessel of claim 19, wherein the density of the middle cellular non-aromatic polymeric material is in a range of about 0.1 g/cm3 to about 0.185 g/cm3.

21. The vessel of claim 20, wherein the collapse force required to collapse the vessel is greater than a collapse force required to collapse a non-cellular vessel having a shape about the same as a shape of the vessel.

22. The vessel of claim 21, wherein a mass of the vessel is about equal to a mass of the non-cellular vessel.

23. The vessel of claim 22, wherein the collapse force required to collapse the vessel is about 55% to about 65% greater than the collapse force required to collapse the non-cellular vessel.

24. The vessel of claim 23, wherein the collapse force required to collapse the vessel is about 58% greater than the collapse force required to collapse the non-cellular vessel.

25. The vessel of claim 24, wherein the mass is about 35 grams.

26. The vessel of claim 23, wherein the collapse force required to collapse the vessel is about 61% greater than the collapse force required to collapse the non-cellular vessel.

27. The vessel of claim 26, wherein the mass is about 40 grams.

28. The vessel of claim 21, wherein a mass of the vessel is less than a mass of the non-cellular vessel.

29. The vessel of claim 28, wherein the collapse force required to collapse the vessel is about 1% to about 25% greater than a collapse force required to collapse the non-cellular vessel.

30. The vessel of claim 29, wherein a mass of the vessel is about 32 grams and a mass of the non-cellular vessel is about 35 grams.

31. The vessel of claim 30, wherein the collapse force required to collapse the vessel is about 23% greater than the collapse force required to collapse the non-cellular vessel.

32. The vessel of claim 29, wherein a mass of the vessel is about 35 grams and a mass of the non-cellular vessel is about 40 grams.

33. The vessel of claim 32, wherein the collapse force required to collapse the vessel is about 14% greater than the collapse force required to collapse the non-cellular vessel.

34. The vessel of claim 29, wherein a mass of the vessel is about 40 grams and a mass of the non-cellular vessel is about 44 grams.

35. The vessel of claim 34, wherein the collapse force required to collapse the vessel is about 2% greater than the collapse force required to collapse the non-cellular vessel.

36. The vessel of claim 29, wherein a mass of the vessel is about 5% to about 15% smaller than a mass of the non-cellular vessel is about 35 grams.

37. The vessel of claim 36, wherein the collapse force required to collapse the vessel is about 1% to about 25% greater than a collapse force required to collapse the non-cellular vessel.

Patent History
Publication number: 20140262916
Type: Application
Filed: Mar 14, 2014
Publication Date: Sep 18, 2014
Applicant: Berry Plastics Corporation (Evansville, IN)
Inventors: Jeffrey C. Minnette (Evansville, IN), Rolland Strasser (Asbury, NJ)
Application Number: 14/211,553
Classifications
Current U.S. Class: Plural Different Lamina Wall (206/524.2)
International Classification: B65D 1/40 (20060101);