METHODS AND SYSTEMS FOR TEMPERATURE REGULATION OF DEVICES AND PROCESSING THERMAL ENERGY OBTAINED THEREBY

A temperature regulation system includes a thermal transfer fluid, a fluid pump operable to pump the thermal transfer fluid, a fluid heat exchanger in fluid communication with the fluid pump, and a secondary heat exchanger in fluid communication with the fluid pump and the fluid heat exchanger. The fluid heat exchanger is configured for disposition in thermal communication with a device and configured to transfer heat from the device to the thermal transfer fluid. The secondary heat exchanger is configured to dissipate at least some of the heat contained in the thermal transfer fluid.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Patent Application Ser. No. 61/806,555, filed Mar. 29, 2013, which is hereby incorporated by reference in its entirety.

FIELD

This disclosure generally relates to temperature regulation and processing of thermal energy, and more specifically, to methods and systems for regulating temperature of a device and processing the thermal energy obtained.

BACKGROUND

Various devices can benefit from temperature regulation. In particular, many electronic and/or electrical devices benefit from temperature reduction and/or limiting temperature increases. For example, photovoltaic (PV) modules are devices which convert solar energy into electricity. Some known PV modules convert around 85% of incoming sunlight into heat. During peak conditions, this can result in a heat-generation of 850 W/m2 and PV module temperatures as high as 70° C. The electrical power produced by PV modules decreases linearly with increase in module temperature. For example, in bright sunlight, crystalline silicon PV modules may heat up to 20-30° C. above ambient temperature, resulting in a 10-15% reduction in power output relative to the rated power output for the PV module. Moreover, higher PV module temperatures may increase material degradation, such as thermal fatigue failure of interconnections between PV cells in the PV module. Accordingly, PV modules may benefit from reduced temperatures and/or from reducing a rate of increase in temperature.

This Background section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.

BRIEF SUMMARY

According to one aspect of this disclosure, a temperature regulation system includes a thermal transfer fluid, a fluid pump operable to pump the thermal transfer fluid, a fluid heat exchanger in fluid communication with the fluid pump, and a secondary heat exchanger in fluid communication with the fluid pump and the fluid heat exchanger. The fluid heat exchanger is configured for disposition in thermal communication with a device and configured to transfer heat from the device to the thermal transfer fluid. The secondary heat exchanger is configured to dissipate at least some of the heat contained in the thermal transfer fluid.

Another aspect of this disclosure is a method of operating a photovoltaic (PV) system including at least one PV module. The method includes transferring heat from the PV module to a thermal transfer fluid in a fluid heat exchanger in thermal communication with the PV module, and dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger in fluid communication with the fluid heat exchanger.

Various refinements exist of the features noted in relation to the above-mentioned aspects. Further features may also be incorporated in the above-mentioned aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the illustrated embodiments may be incorporated into any of the above-described aspects, alone or in any combination.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an example PV module;

FIG. 2 is a cross-sectional view of the PV module shown in FIG. 1 taken along the line A-A;

FIG. 3 is a cross-sectional view of a heat exchanger;

FIG. 4 is a temperature regulation system including the heat exchanger shown in FIG. 3;

FIG. 5 is a cross-sectional illustration of an assembly including a heat exchanger attached to a PV module;

FIG. 6 is a top view of an assembly including a heat exchanger integrated into a PV module;

FIG. 7 is a cross sectional view of the assembly shown in FIG. 6 taken along the line A-A in FIG. 6;

FIG. 8 is a top view of a stand-alone heat exchanger;

FIG. 9 is a cross sectional view of heat exchanger shown in FIG. 8 taken along the line B-B in FIG. 8;

FIG. 10 is a top view of a heat exchanger including a plurality of plastic spacers;

FIG. 11 is a cross sectional view of heat exchanger shown in FIG. 10 taken along the line C-C in FIG. 10;

FIG. 12 is a cross sectional view of a connection assembly for use as an inlet and/or outlet for a heat exchanger;

FIG. 13 is a heat exchanger coupled to a device;

FIG. 14 is a temperature regulation system including an in-ground secondary heat exchanger;

FIG. 15 is another temperature regulation system including an in-ground secondary heat exchanger;

FIG. 16 is a temperature regulation system with a secondary heat exchanger in a body of water;

FIG. 17 is a temperature regulation system with a secondary heat exchanger to provide hot water;

FIG. 18 is a temperature regulation system with a secondary heat exchanger to provide hot air;

FIG. 19 is a temperature regulation system with a PCM based storage and heat exchanger to provide hot water;

FIG. 20 is a temperature regulation system with a secondary heat exchanger to provide hot water to a hot water storage tank;

FIG. 21 is a temperature regulation system configured to provide hot water to coils for underfloor heating;

FIG. 22 is a temperature regulation system with a secondary heat exchanger to provide hot water to a pool;

FIG. 23 is an assembly of PV modules including heat exchangers; and

FIG. 24 is another exemplary assembly of PV modules including heat exchangers.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

The embodiments described herein generally relate to temperature regulation and control. More specifically, embodiments described herein relate to methods and systems for regulating and controlling temperature using a multilayered heat exchanger. Specific embodiments are described herein with reference to photovoltaic (PV) modules. However, the teachings of the present disclosure may be applied to any device that may benefit from enhanced temperature regulation. Moreover, although various embodiments will be discussed with respect to cooling a device, it should be understood that the embodiments described herein may additionally, or alternatively, be used to heat a device with which they are used.

Referring initially to FIGS. 1 and 2, a PV module is indicated generally at 100. A perspective view of PV module 100 is shown in FIG. 1. FIG. 2 is a cross sectional view of PV module 100 taken at line A-A shown in FIG. 1. PV module 100 includes a solar panel 102 and a frame 104 circumscribing solar panel 102.

Solar panel 102 includes a top surface 106 and a bottom surface 108 (shown in FIG. 2). Edges 109 extend between top surface 106 and bottom surface 108. In this embodiment, solar panel 102 is rectangular shaped. In other embodiments, solar panel 102 may have any suitable shape.

As shown in FIG. 2, this solar panel 102 has a laminate structure that includes several layers 118. Layers 118 may include for example glass layers, non-reflective layers, electrical connection layers, n-type silicon layers, p-type silicon layers, and/or backing layers. In other embodiments, solar panel 102 may have more or fewer, including one, layers 118, may have different layers 118, and/or may have different types of layers 118.

As shown in FIG. 1, frame 104 circumscribes solar panel 102. Frame 104 is coupled to solar panel 102, as best seen in FIG. 2. Frame 104 assists in protecting edges 109 of solar panel 102. In this embodiment, frame 104 is constructed of four frame members 120. In other embodiments frame 104 may include more or fewer frame members 120.

Exemplary frame 104 includes an outer surface 130 spaced apart from solar panel 102 and an inner surface 132 adjacent solar panel 102. Outer surface 130 is spaced apart from and substantially parallel to inner surface 132. In this embodiment, frame 104 is made of aluminum. More particularly, in some embodiments frame 104 is made of 6000 series anodized aluminum. In other embodiments, frame 104 may be made of any other suitable material providing sufficient rigidity including, for example, rolled or stamped stainless steel, plastic, or carbon fiber.

FIG. 3 is a simplified cross-sectional view of a heat exchanger 300 according to one embodiment of the present disclosure. Heat exchanger 300 includes an inner layer 302, a fluid layer 304, and an outer layer 306. In this embodiment, fluid layer 304 includes a chamber 305 and one or more spacers or spacing material (not shown in FIG. 3) to maintain a substantially consistent separation between inner and outer layers 302 and 306. The spacers are connected to inner layer 302 and outer layer 306 to, among other things, prevent bulging of inner or outer layer 302 or 306 when fluid is pumped into chamber 305 of fluid layer 304. Seals 308 connect inner and outer layers 302 and 306 to provide a substantially water tight seal around fluid layer 304, and more specifically around chamber 305. Thus, a heat transfer fluid, such as water, oil, etc., may flow through fluid layer 304 to extract heat from a device with which heat exchanger 300 is used, without the fluid contacting the device. In some embodiments, seals 308 may be, additionally or alternatively, spacers or spacing material. Moreover, in some embodiments, seals 308 may be integrally formed with inner layer 302 and/or outer layer 306.

Inner layer 302 is the portion of heat exchanger 300 that will be in contact with the device to be temperature regulated by heat exchanger 300. Accordingly, inner layer 302 is made from a material having relatively high thermal conductivity, such as aluminum, copper, etc. Moreover, the material for inner layer 302 is selected to conform reasonably well to the surface of the device with which it will be used in order to provide sufficient thermal contact or thermal communication with the surface of the device. In this embodiment, inner layer 302 comprises a sheet that is suitably made of metal. In other embodiments, inner layer 302 may be an aluminum sheet.

The thickness of inner layer 302 may be varied to suit different uses. Thicker sheets may be used to provide increased rigidity and thermal transfer, but with a corresponding decrease in flexibility and/or conformability. In some embodiments, inner layer 302 is a thin, metal foil. In one exemplary embodiment, inner layer 302 is a metal foil having a thickness of about 0.1 millimeter. In another embodiment, inner layer 302 is an aluminum foil having a thickness of about 300 micrometers. Other embodiments may use thicker or thinner metal foils. The use of thinner materials for inner layer 302 may increase the flexibility of heat exchanger 300, reduce the weight of heat exchanger 300, and/or permit it to conform to more irregular shaped devices. In general, inner layer 302 may be constructed from any thermally conductive material of sufficient strength and impermeability to retain a heat transfer fluid within heat exchanger 300.

Outer layer 306 is the portion of heat exchanger 300 opposite the side of heat exchanger 300 that will be in contact with the device to be temperature regulated by heat exchanger 300 (i.e., opposite inner layer 302). In some embodiments, outer layer 306 is made of a material having relatively high thermal conductivity, such as a metal sheet or a metal foil, to permit heat to radiate from fluid layer 304 through outer layer 306. In other embodiments, outer layer is fabricated from a material that is not particularly thermally conductive, such as a plastic sheet or film. The thickness of outer layer 306 may be varied to suit different uses. Thicker sheets may be used to provide increased rigidity and thermal transfer, but with a corresponding decrease in flexibility and/or conformability. In some embodiments, outer layer 306 is a thin, metal foil. In other embodiments, outer layer 306 is a thin sheet that is suitably made of plastic. The use of thinner materials for outer layer 306 may increase the flexibility of heat exchanger 300, reduce the weight of heat exchanger 300, and/or permit it to conform to more irregular shaped devices. In general, outer layer 306 may be made of any material of sufficient strength and impermeability to retain a heat transfer fluid within heat exchanger 300. In one example embodiment, outer layer 306 is a transparent acrylic sheet having a thickness of about three millimeters.

FIG. 4 is a simplified diagram of a closed loop temperature control or regulation system 400 including heat exchanger 300 (heat exchanger may alternatively be referred to as a meshplate). Heat exchanger 300 is coupled to a device 402 that may benefit from temperature regulation provided by heat exchanger. In this embodiment, device 402 is a device, such as PV module 100, that generates heat and heat exchanger 300 is used to reduce the temperature and/or slow the rise in temperature of device 402. In other embodiments, heat exchanger 300 may be used to increase the temperature of device 402 and/or slow the decrease in temperature of device.

In this embodiment, a pump 404 pumps a thermal transfer fluid (e.g., a coolant) to an inlet (not shown in FIG. 4) of heat exchanger 300. The transfer fluid passes into chamber 305 of fluid layer 304 through the inlet. Within chamber 305, the thermal transfer fluid draws off heat from device 402, via thermal conduction through connection of inner layer 302 to device 402. The thermal transfer fluid exits heat exchanger 300 via an outlet (not shown in FIG. 4) and is directed to a fluid heat exchanger 406 (also referred to herein as a secondary heat exchanger). As will be described in more detail below, fluid heat exchanger 406 may be any heat exchange device suitable for extracting the heat carried by the thermal transfer fluid. For example, fluid heat exchanger may be a radiator, an extended length of thermally conductive conduit, a condenser, etc. Moreover, in some embodiments fluid heat exchanger 406 may be part of another system, such that heat extracted from thermal transfer fluid may be used by the other system. In one example embodiment fluid heat exchanger 406 is a radiator used to warm the air inside a structure. In another embodiment fluid heat exchanger 406 is used to heat water.

As will be readily understood by those of ordinary skill in the art, system 400 may, additionally or alternatively, be used to heat device 402. In such embodiments, thermal transfer fluid having a temperature greater than device 402 is pumped by pump 404 to heat exchanger 300. Within chamber 305, the thermal transfer fluid loses its heat to device 402, via conduction through inner layer 302. Fluid heat exchanger 406 then increases the temperature of the heat transfer fluid before pump 404 returns the fluid to heat exchange device 300. A single system 400 may be used to selectively heat or cool device 402 through use of a dual purpose fluid heat exchanger 406 or separate, selectable, fluid heat exchangers 406: one for heating the thermal fluid and another for cooling the thermal fluid. Thus, device 402 may be cooled by system 400 when temperatures are relatively high, and warmed by system 400 when temperatures are relatively cool.

A controller 408 controls operation of system 400. More specifically, controller 408 controls operation of system 400 to obtain a desired amount of cooling and/or heating of device 402. In some embodiments, controller 408 may monitor a temperature of device 402 with a sensor (not shown). Other embodiments do not include controller 408. In this embodiment, controller 408 is configured to control operation of pump 404. Controller 408 may operate pump 404 continuously, intermittently, and/or may pulse pump 404 to achieve a desired heating/cooling of device 402. In some embodiments, controller 408 may additionally, or alternatively, control operation of fluid heat exchanger 406 and/or heat exchanger 300. In still other embodiments, controller 408 may also control operation of device 402. For example, controller 408 may be a PV system controller that controls operation of a direct current (DC) to alternating current (AC) power converter extracting power from a PV module device 402.

In this embodiment, controller 408 is configured to operate pump 404 other than continuously. Controller 408 can operate pump 404 at a duty cycle of less than 100% in some embodiments because system 400 cools device 402 faster than the device 402 heats up when pump 404 is turned off (i.e., not pumping). In one example, device 402 is PV module 100 and system 400 is operable to cool down the PV module 100 twice as fast as the PV module 100 heats up due to the high heat capacity and low thermal conductivity of PV module 100. In this example, controller 408 may operate pump 404 with a duty cycle between 30% and 50%. This may provide significant energy gain while reducing pumping costs and coolant usage.

Controller 408 may be any suitable controller, including any suitable analog controller, digital controller, or combination of analog and digital controllers. In some embodiments, controller 408 includes a processor (not shown) that executes instructions for software that may be loaded into a memory device. The processor may be a set of one or more processors or may include multiple processor cores, depending on the particular implementation. Further, the processor may be implemented using one or more heterogeneous processor systems in which a main processor is present with secondary processors on a single chip. In another embodiment, the processor may be a homogeneous processor system containing multiple processors of the same type. In some embodiments, controller 408 includes a memory device (not shown). As used herein, a memory device is any tangible piece of hardware that is capable of storing information either on a temporary basis and/or a permanent basis. The memory device may be, for example, without limitation, a random access memory and/or any other suitable volatile or non-volatile storage device. The memory device may take various forms depending on the particular implementation, and may contain one or more components or devices. For example, the memory device may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, and/or some combination of the above. The media used by memory device also may be removable. For example, without limitation, a removable hard drive may be used for the memory device.

FIG. 5 is a cross-sectional illustration of an assembly including heat exchanger 300 attached to PV module 100.

In this embodiment, solar panel 102 includes a front glass 500, solar cells 502 surrounded by an encapsulant 504, and a back sheet 506. In this embodiment, the encapsulant 504 comprises ethylene vinyl acetate (EVA). In other embodiments, any other suitable encapsulant may be used. In this embodiment, back sheet 506 is a polyvinyl fluoride (PVF) material. In other embodiments, back sheet 506 may be any other suitable back sheet material or a laminate of materials, including, for example a laminate of PVF surrounding a polyester material.

Thermal transfer fluid enters heat exchanger 300 via inlet 508 and passes through chamber 305 to outlet 510. A spacer 512 is contained within chamber 305. Spacer 512 separates inner and outer layers 302 and 306 and slows the flow of the thermal transfer fluid through chamber 305 to permit the thermal transfer fluid to absorb heat from solar panel 102. In this embodiment, spacer 512 includes a mesh. More specifically, mesh is a woven-plastic mesh. In other embodiments, spacer 512 may include a non-woven mesh, a metal mesh, a sponge, spacer strips, capillary tubes, or some combination of the above. In this embodiment, mesh 512 is attached to inner and outer layers 302 and 306 and substantially fills chamber 305. In one exemplary embodiment, mesh 512 is approximately 300 micrometers thick.

Heat exchanger 300 may be permanently or semi-permanently integrated into PV module 102, or may be a standalone component that may be removably attached to a device. A standalone heat exchanger 300 may be coupled to device 402 by any suitable means to provide a thermally connection between inner layer 302 and a surface of device 402. In some embodiments, heat exchanger 300 is connected to device 402 using a thermally conductive adhesive, including for example a double-sided, thermally conductive tape.

FIG. 6 is a top view of an assembly 600 including heat exchanger 300 integrated into PV module 100. FIG. 7 is a cross sectional view of assembly 600 taken along the line A-A in FIG. 6.

In assembly 600, heat exchanger 300 is integrally formed with PV module 100 and does not need to be separately adhered to PV module 100. Moreover, heat exchanger 300 uses backsheet 506 of PV module 100 as inner layer 302. Spacer strips 602 extend between inner layer 302 (i.e., backsheet 506) and outer layer 306 to define cavity 305. Although not shown in FIGS. 6 and 7, cavity 305 also includes spacer 512. In this embodiment, spacer 512 is a metallic mesh 512 capable of withstanding the heat and pressure of lamination with PV module 100. In other embodiments, cavity 305 may include any other suitable filler and/or spacer. Outer layer 306 extends around spacer strips 602 to adhere heat exchanger 300 to PV module 100 and facilitate sealing cavity 305.

FIG. 8 is a top view of a stand-alone heat exchanger 300 of one embodiment. FIG. 9 is a cross sectional view of heat exchanger 300 taken along the line B-B in FIG. 8. The embodiment of heat exchanger 300 shown in FIGS. 8 and 9 is not integrally formed with any device and may be attached to any device, such as PV module 100, by any suitable type of attachment. In this embodiment, two sets of seals 308 are included around spacer 512.

FIGS. 10 and 11 show an example heat exchanger 300 in which spacer 512 includes a parallel arrangement of plastic spacers. FIG. 10 is a top view, and FIG. 11 is a cross sectional view taken along the line C-C in FIG. 10. The illustrated heat exchanger 300 provides a serpentine fluid flow through heat exchanger 300. The serpentine fluid flow provides increased heat transfer as compared to non-serpentine fluid flows. Heat exchanger 300 shown in FIGS. 10 and 11 may be integrated into a device or may be a standalone heat exchanger 300. The gap between adjacent spacers may be any suitable distance that ensures good fluid flow within the system to improve heat transfer and reduce bloating issues.

In one example, a heat exchanger 300 shown in FIGS. 10 and 11 was used to cool PV module 100. A twenty liter per hour (LPH) flow rate of water fluid through heat exchanger 300 produced a 12% power gain and output water that was 2° C. hotter than the input water. A 2.5 LPH flow produced a 3% power gain in PV module 100 and output water that was 11° C. hotter than the input water.

FIG. 12 is a partially schematic cross section of a suitable connection assembly 1200 for use at inlet 508 and/or outlet 510 of any embodiment of heat exchanger 300. Assembly 1200 includes a male component 1202 positioned inside exchanger 300 and extending through outer layer 306. A female component 1204 is positioned outside of heat exchanger 300 adjacent outer layer 306. Female component 1204 receives and surrounds the portion of male component 1202 that extends outside of heat exchanger 300. A portion of outer layer 306 is trapped between female component 1204 and male component 1202. Tubing 1206, used to transport thermal transfer fluid to and from heat exchanger 300, is inserted into female component 1204 to couple tubing 1206 to male component 1202. Assembly 1200 forms a liquid tight connection to heat exchanger 300. Thermal transfer fluid (e.g., a suitable coolant) may be transferred, via tubing 1206 and assembly 1200, from outside of heat exchanger 300 to the interior of heat exchanger 300, and vice versa.

FIG. 13 is a partially schematic view of heat exchanger 300 coupled to a device 1300. The device may be any suitable device that may benefit from temperature regulation provided by heat exchanger 300.

FIGS. 14-22 illustrate various embodiments of closed loop temperature control or regulation system 400 including heat exchanger 300. It should be understood that any of the embodiments of heat exchanger 300 described above may be used in the temperature regulation systems 400 shown in FIGS. 14-22.

FIG. 14 is a simplified diagram of a temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and an in-ground secondary heat exchanger 1400. The secondary heat exchanger 1400 is a fluid retaining tank positioned underground. The secondary heat exchanger 1400 may be made of metal, plastic, or any other suitable material or combination of materials. Fluid from the secondary heat exchanger 1400 is pumped through heat exchanger 300 by pump 404. The heated fluid exiting the heat exchanger 300 flows back to the secondary heat exchanger 1400. The heat stored in the fluid in secondary heat exchanger 1400 is dissipated through the secondary heat exchange 1400 into the ground. The dissipation of heat into the ground occurs particularly at times when the fluid is not being used to cool the PV module 100, such as a night. The secondary heat exchanger 1400 is buried a depth “h” below the ground level 1402. In some embodiments, h is a depth below ground level 1402 at which the annual ground temperature is relatively constant. Alternatively, the depth h may be any other suitable depth. In some embodiments, additives (e.g., charcoal, metal dust, etc.) may be added to the soil surrounding the secondary heat exchanger 1400 to enhance the heat transfer between the secondary heat exchanger 1400 and the ground. In still other embodiments secondary heat exchanger 1400 may be positioned on or above ground level.

FIG. 15 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and an in-ground secondary heat exchanger 1500. The secondary heat exchanger 1500 is a serpentine array of tubes positioned underground. The secondary heat exchanger 1500 may be made of metal, plastic, or any other suitable material or combination of materials. The heated fluid exiting the heat exchanger 300 flows through the secondary heat exchanger 1500 before returning to the heat exchanger 300. At least some of the heat stored in the fluid is dissipated through the secondary heat exchange 1500 into the ground. The secondary heat exchanger 1500 is buried a depth “h” below the ground level 1402. In some embodiments, h is a depth below ground level 1402 at which the annual ground temperature is relatively constant. Alternatively, the depth h may be any other suitable depth. In some embodiments, additives may be added to the soil surrounding the secondary heat exchanger 1500 to enhance the heat transfer between the secondary heat exchanger 1500 and the ground. Although shown as a vertical array of tubes, secondary heat exchanger 1500 may be a vertical array of tubes, a horizontal array of tubes, an array of coils, an array of vertical and horizontal tubes, an array of arbitrary angled tubes, and/or any suitable combination of horizontal tubes, vertical tubes, arbitrary angled tubes, and coils.

FIG. 16 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and a secondary heat exchanger 1600. The secondary heat exchanger 1600 is a serpentine array of tubes disposed in a body of water 1602. The secondary heat exchanger 1600 may be made of metal, plastic, or any other suitable material or combination of materials. The heated fluid exiting the heat exchanger 300 flows through the secondary heat exchanger 1600 before being returned by pump 404 to the heat exchanger 300. At least some of the heat stored in the fluid is dissipated through the secondary heat exchange 1600 into the body of water 1602. In the illustrated embodiment, the body of water is an open body of water, such as a lake or pond. Alternatively, the body of water 1602 may be an underground body of water, including a reservoir, an underground lake, an underground river, etc. Although shown as a horizontal array of tubes, secondary heat exchanger 1600 may be a vertical array of tubes, a horizontal array of tubes, an array of coils, an array of vertical and horizontal tubes, an array of arbitrary angled tubes, and/or any suitable combination of horizontal tubes, vertical tubes, arbitrary angled tubes, and coils.

FIG. 17 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and a secondary heat exchanger 1700. The cooling fluid flows through heat exchanger 300 in a first fluid loop. The secondary heat exchanger 1700 is configured to transfer at least some of the heat contained in fluid exiting the heat exchanger 300 to a secondary fluid loop. In the illustrated embodiment, the secondary fluid loop provides heated water for residential, commercial, industrial, or any other suitable application. More particularly, the secondary heat exchanger 1700 receives the heated fluid from the heat exchanger 300 and cooler water from a water supply (not shown). A second pump 1702 pumps the water to secondary heat exchanger 1700. The heat contained in the fluid exiting the heat exchanger 300 is transferred to the water pumped into the secondary heat exchanger 1700. The reduced temperature cooling fluid is returned to the heat exchanger 300 by pump 404. The heated water exits the secondary heat exchanger 1700 and is delivered for use.

FIG. 18 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and a secondary heat exchanger 1800. The cooling fluid flows through heat exchanger 300 in a first fluid loop. The secondary heat exchanger 1800 is configured to transfer at least some of the heat contained in fluid exiting the heat exchanger 300 to a secondary fluid loop. In the illustrated embodiment, the secondary fluid loop provides heated air for residential, commercial, industrial, or any other suitable application. More particularly, the secondary heat exchanger 1800 receives the heated fluid from the heat exchanger 300 and a cooler air input. A pump, fan, blower, or other suitable motivator (not shown) forces the cooler air into secondary heat exchanger 1800. The heat contained in the fluid exiting the heat exchanger 300 is transferred to the air in secondary heat exchanger 1800. The reduced temperature cooling fluid is returned to the heat exchanger 300 by pump 404. The heated air exits the secondary heat exchanger 1700 and is input to an auxiliary heater 1802 to provide additional heat to the air. Alternatively, the heated air exiting the secondary heat exchanger 1800 is delivered for use without heating by an auxiliary heater 1802.

FIG. 19 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and a secondary heat exchanger 1900. The cooling fluid flows through heat exchanger 300 in a first fluid loop. The secondary heat exchanger 1900 is a phase change material (PCM) combined heat storage and heat exchanger configured to transfer at least some of the heat contained in fluid exiting the heat exchanger 300 to a secondary fluid loop. In the illustrated embodiment, the secondary fluid loop provides heated water for residential, commercial, industrial, or any other suitable application. More particularly, the secondary heat exchanger 1900 receives the heated fluid from the heat exchanger 300 and cooler water from a water supply (not shown). A second pump 1902 pumps the water to secondary heat exchanger 1900. The heat contained in the fluid exiting the heat exchanger 300 is transferred, via a phase change material, to the water pumped into the secondary heat exchanger 1900. The reduced temperature cooling fluid is returned to the heat exchanger 300 by pump 404. The heated water exits the secondary heat exchanger 1900 and is delivered for processing and/or use.

FIG. 20 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and a secondary heat exchanger 2000. The cooling fluid flows through heat exchanger 300 in a first fluid loop. The secondary heat exchanger 2000 is configured to transfer at least some of the heat contained in fluid exiting the heat exchanger 300 to a secondary fluid loop. In the illustrated embodiment, the secondary fluid loop provides heated water for residential, commercial, industrial, or any other suitable application. More particularly, the secondary heat exchanger 2000 receives the heated fluid from the heat exchanger 300 and cooler water from a water supply (not shown). A second pump 2002 pumps the water to secondary heat exchanger 2000. The heat contained in the fluid exiting the heat exchanger 300 is transferred to the water pumped into the secondary heat exchanger 2000. The reduced temperature cooling fluid is returned to the heat exchanger 300 by pump 404. The heated water exits the secondary heat exchanger 2000 and is delivered to an insulated hot water storage tank 2004. The storage tank 2004 includes an auxiliary heater 2006 to provide additional heat to the water stored in the storage tank 2004. Alternatively, the auxiliary heater 2006 may be omitted. The heated water stored in storage tank 2004 is delivered from the hot water storage tank 2004 for processing and/or use. In the illustrated embodiment, pump 2002 pumps water from storage tank 2004 to secondary heat exchanger 2000, while the water supply provide water into storage tank 2004 as needed. Alternatively, water may be provided to secondary heat exchanger 2000 from the water supply directly.

FIG. 21 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and a secondary heat exchanger 2100. The secondary heat exchanger 2100 is an array of coils 2102 for underfloor heating. The coils 2102 are disposed underneath the surface of a floor (not shown) in a home, office, warehouse, etc. In some embodiments, the coils 2102 are disposed within a floor, such as by being embedded in a concrete foundation. The secondary heat exchanger 2100 may be made of metal, plastic, or any other suitable material or combination of materials. The heated fluid exiting the heat exchanger 300 flows through the secondary heat exchanger 2100 before being returned by pump 404 to the heat exchanger 300. At least some of the heat stored in the fluid is dissipated through the secondary heat exchange 2100 into the floor. Secondary heat exchanger 2100 may be include a vertical array of tubes, a horizontal array of tubes, an array of coils, an array of vertical and horizontal tubes, an array of arbitrary angled tubes, and/or any suitable combination of horizontal tubes, vertical tubes, arbitrary angled tubes, and coils.

FIG. 22 is a simplified diagram of another temperature regulation system 400 including heat exchanger 300 coupled to PV module 100 and a secondary heat exchanger 2200. The cooling fluid flows through heat exchanger 300 in a first fluid loop. The secondary heat exchanger 2200 is configured to transfer at least some of the heat contained in fluid exiting the heat exchanger 300 to a secondary fluid loop. The secondary fluid loop provides heated water for heating a body of water. In the illustrated embodiment, the body of water is a pool 2202. Alternatively, the body of water may be a pond, a lake, a tub, or any other body of water that may benefit from heating. The secondary heat exchanger 2200 receives the heated fluid from the heat exchanger 300 and cooler water from the pool 2202. A second pump 2204 pumps the water to secondary heat exchanger 2200. The heat contained in the fluid exiting the heat exchanger 300 is transferred to the water pumped into the secondary heat exchanger 2200. The reduced temperature cooling fluid is returned to the heat exchanger 300 by pump 404. The heated water exits the secondary heat exchanger 2200 and is delivered to the pool 2202.

It should be recognized that the exemplary temperature regulation systems described above may be combined without departing from the scope of this disclosure. For example, a temperature regulation system may include the secondary heat exchanger 1700 and the secondary heat exchanger 1400. Cooling fluid exiting the secondary heat exchanger 1700 may be delivered to secondary heat exchanger 1400 for further heat dissipation. Moreover, the systems described herein are not limited to the exemplary uses described. For example, the exemplary systems may be used to provide a low grade energy input to vapor absorption systems for cooling applications. Other uses include a wide range of heating applications in the food product industry, dairies, breweries, distilleries, automobile industry, machine industry, chemical industries, paper and pulp industries, timber processing, etc.

Although the exemplary embodiments were described above with reference to a single device 402 and/or a single PV module 100, the apparatus, methods, and systems described herein are not so limited. A temperature regulation system 400 may include more than one heat exchanger 300 coupled to one or more devices 402. FIGS. 23 and 24 illustrate two exemplary configurations of such systems. In FIG. 23, the system 400 includes four heat exchangers 300. PV modules 100 are coupled to each heat exchanger 300. The fluid flows through the heat exchangers 300 in parallel. Cooling fluid branches off from an input 2300, e.g. the output of pump 404, to provide cooling fluid to each heat exchanger 300. The cooling fluid exiting each heat exchanger 300 is provided to an output 2302 to be delivered to a secondary heat exchanger. In FIG. 24, the cooling fluid flows through four heat exchangers 300 in series. The cooling fluid output from one heat exchanger 300 is input to the next heat exchanger 300 in the series. The cooling fluid from the last heat exchanger in the series or delivered to a secondary heat exchanger for extraction of the heat in the cooling fluid. The parallel configuration shown in FIG. 23 provides for a greater cooling fluid flow rate than the series configuration shown in FIG. 24. The series configuration of FIG. 24 provides a higher output temperature for the cooling fluid than the parallel configuration shown in FIG. 23. Moreover, the parallel configuration of FIG. 23 may provide more even cooling of the PV modules 100 than the series connection of FIG. 24.

The heat exchangers and systems described herein generally provide inexpensive and effective ways to regulate temperature of a device, such as a PV module. Moreover, the temperature regulation provided by the exemplary heat exchangers and systems may permit PV modules to be mounted without the significant gap typically needed between the back of the PV module and an underlying support (such as a roof) to permit natural convective cooling of the PV module. Such flush mounting of PV modules may decrease wind loading on support structures and reduce installation costs. Moreover, experiments have shown that the temperature of the surface beneath PV modules including the exemplary temperature regulation systems may be lower than the surface beneath a PV module without the exemplary temperature regulation systems. This can reduce conductive and/or convective heating of space below the mounting surface. In roof mounted installations, the space beneath the mounting surface may be the interior of a building. Accordingly, the exemplary systems may facilitate reducing the cooling costs of a building to which PV modules are attached.

Some embodiments of the heat exchangers disclosed herein can be integrated into the backsheet structure of a PV module using only an encapsulant and, can thereby capitalize on existing manufacturing infrastructure and its economy of scale. Some embodiments of the heat exchangers can be used with a simple attachment mechanism to be affixed to nearly any PV modules, thereby making it field-retrofittable and easy to clean and/or replace. These heat exchangers are thus usable to convert a conventional PV system or module into a PV-thermal system.

Moreover, coolant losses in the exemplary heat exchangers and systems will be negligible in a properly constructed system because coolant is retained within the system, i.e., it is a closed loop system, and there is no provision to allow coolant to intentionally escape. When used to cool PV modules, some heat exchangers of this disclosure have produced a decrease in PV module temperature of 18-20° C., and increased power output of the PV modules by about 10% at peak operating conditions. Other implementations may result in greater or lesser temperature reductions and/or greater or lesser increases in PV module efficiency. Furthermore, some embodiments provide useful dissipation of the heat extracted from a device. For example, the extracted heat may be used to provide heated water, to heat a pool or other body of water, and/or to heat air.

When introducing elements of the present invention or the embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.

As various changes could be made in the above without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims

1. A temperature regulation system comprising:

a thermal transfer fluid;
a fluid pump operable to pump the thermal transfer fluid;
a fluid heat exchanger in fluid communication with the fluid pump, the fluid heat exchanger configured for disposition in thermal communication with a device and to transfer heat from the device to the thermal transfer fluid; and
a secondary heat exchanger in fluid communication with the fluid pump and the fluid heat exchanger, the secondary heat exchanger configured to dissipate at least some of the heat contained in the thermal transfer fluid.

2. The temperature regulation system of claim 1, wherein the device is a photovoltaic (PV) module, and wherein the fluid heat exchanger is configured for attachment to the PV module.

3. The temperature regulation system of claim 1, wherein the secondary heat exchanger comprises a storage tank.

4. The temperature regulation system of claim 3, wherein the storage tank is configured to be buried underground.

5. The temperature regulation system of claim 2, wherein the secondary heat exchanger comprises an array of tubes.

6. The temperature regulation system of claim 5, wherein the array of tubes is configured to be buried underground.

7. The temperature regulation system of claim 5, wherein the array of tubes is configured for disposition under a floor to provide underfloor heating.

8. The temperature regulation system of claim 5, wherein the array of tubes is configured for disposition in a body of water.

9. The temperature regulation system of claim 1, wherein the secondary heat exchanger comprises an array of coils.

10. The temperature regulation system of claim 9, wherein the array of coils is configured to be buried underground.

11. The temperature regulation system of claim 9, wherein the array of coils is configured for disposition under a floor to provide underfloor heating.

12. The temperature regulation system of claim 9, wherein the array of tubes is configured for disposition in a body of water.

13. The temperature regulation system of claim 1, wherein the secondary heat exchanger is configured to indirectly dissipate at least some of the heat contained in the thermal transfer fluid to a second fluid.

14. The temperature regulation system of claim 13, wherein the second fluid is air.

15. The temperature regulation system of claim 13, wherein the second fluid is water.

16. The temperature regulation system of claim 15, wherein the secondary heat exchanger is coupled to a water storage tank to provide the water to the water storage tank after dissipating at least some of the heat contained in the thermal transfer fluid to the water.

17. The temperature regulation system of claim 15, wherein the secondary heat exchanger is coupled to a body of water to provide the water to the body of water after dissipating at least some of the heat contained in the thermal transfer fluid to the water.

18. The temperature regulation system of claim 17, wherein the body of water is a pool.

19. The temperature regulation system of claim 13, wherein the secondary heat exchanger comprises a phase change material based heat exchanger.

20. A method of operating a photovoltaic (PV) system including at least one PV module, the method comprising:

transferring heat from the PV module to a thermal transfer fluid in a fluid heat exchanger in thermal communication with the PV module; and
dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger in fluid communication with the fluid heat exchanger.

21. The method of claim 20, further comprising pumping the thermal transfer fluid from the fluid heat exchanger to the secondary heat exchanger.

22. The method of claim 21, further comprising pumping the thermal transfer fluid from the secondary heat exchanger to the fluid heat exchanger after the at least some of the heat has been dissipated.

23. The method of claim 20, wherein dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger comprises dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger comprising one of a storage tank, an array of tubes, and an array of coils.

24. The method of claim 23, wherein dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger comprising one of a storage tank, an array of tubes, and an array of coils comprises dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger that is one of buried underground, disposed under a floor in a building, and disposed in a body of water.

25. The method of claim 20, wherein dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger comprises indirectly dissipating at least some of the heat contained in the thermal transfer fluid to a second fluid.

26. The method of claim 25, wherein indirectly dissipating at least some of the heat contained in the thermal transfer fluid to a second fluid comprises indirectly dissipating at least some of the heat contained in the thermal transfer fluid to water.

27. The method of claim 26, indirectly dissipating at least some of the heat contained in the thermal transfer fluid to water comprises indirectly dissipating at least some of the heat contained in the thermal transfer fluid to water in a water storage tank to provide the heated water.

28. The method of claim 26, indirectly dissipating at least some of the heat contained in the thermal transfer fluid to water comprises indirectly dissipating at least some of the heat contained in the thermal transfer fluid to water in a pool of water.

29. The method of claim 25, wherein dissipating at least some of the heat contained in the thermal transfer fluid in a secondary heat exchanger comprises dissipating at least some of the heat contained in the thermal transfer fluid in a phase change material based secondary heat exchanger.

Patent History
Publication number: 20140290915
Type: Application
Filed: Mar 28, 2014
Publication Date: Oct 2, 2014
Inventors: Sandeep Rammohan Koppikar (Bangalore), Marath Prakash (Bangalore), Nagendra Srinivas Cherukupalli (Cupertino, CA)
Application Number: 14/228,853
Classifications
Current U.S. Class: By Application Of Mechanical Energy (165/104.31)
International Classification: F28F 3/00 (20060101);