Method and Apparatus to Perform Optimal Visually-Weighed Quantization of Time-Varying Visual Sequences in Transform Space
Pure transform-based technologies, such as the DCT or wavelets, can leverage a mathematical model based on few or one parameters to generate the expected distribution of the transform components' energy, and generate ideal entropy removal configuration data continuously responsive to changes in video behavior. Construction of successive-refinement streams is supported by this technology, permitting response to changing channel conditions. Lossless compression is also supported by this process. The embodiment described herein uses a video correlation model to develop optimal entropy removal tables and optimal transmission sequence based on a combination of descriptive characteristics of the video source, enabling independent derivation of said optimal entropy removal tables and optimal transmission sequence in both encoder and decoder sides of the compression and playback process.
Not Applicable.
PATENT CASE TEXTThis application claims benefit of a prior filed U.S. provisional application Ser. No. Ser. 61/818,423, filed May 1, 2013.
BACKGROUND1. Field of Invention
The present invention relates generally to compression of still image and moving video data, and more particularly to the application of calculation of statistics of the behavior of the quantized transform representation of the video from the measured variances and the measured correlations in pixel space. Once the statistical behavior of the video is modeled, the video streams can be collected into successive refinement streams (progressive mode), and the probabilities of the constructed symbols can be calculated for the purposes of entropy removal. The measured variances and correlations suffice to reconstruct the compressed video streams for any frame or group of frames.
2. Description of Prior Art
As depicted in
The JPEG zig-zag transmission order illustrated in
As depicted in
The original JPEG specification provides for a pre-defined entropy pre-shared encoding table as depicted in
As illustrated in
Each JPEG-2000 progressive transmission approach described above in
Much effort has been expended in the incremental increase of efficiency in the communication of entropy coding statistics between compressing and decompressing apparatuses, but no significant advances can be claimed over the prior-are techniques described herein. The current invention discloses a far more efficient means of developing entropy tables independently in compressor and decompressor.
SUMMARY OF INVENTIONIn accordance with one aspect of the invention, a method is provided for the optimal rearrangement of components into a transmission stream based on the calculated variance of individual quantized transform components from the measured variance and correlation of the raw untransformed visual samples.
A second aspect of the invention provides a method for the optimal calculation of entropy reduction tables for a transmission stream based on the calculated symbol probabilities based on the calculated probability distributions of individual quantized transform components.
A final aspect of the invention provides a method for the parallel construction of transmission stream rearrangement, symbol construction and entropy tables between compressing apparatus and decompressing apparatus via communication of the measured variances and correlations of the raw untransformed visual samples.
The quantized transform components of said one subblock 6110 of said plurality of multidimensional subblocks processed through a step 6120 to reorder quantized transform components into order of greatest probability of zero (lowest variance). Said step 6120 uses said calculated variances for said quantized transform components from said step 6030 to perform its sort processing.
Said reordered quantized transform components are then processed through a step 6130 of collection of said reordered quantized transform components into symbols. Each said collected symbol is then processed through a step 6140 of entropy coding of said symbol into a short sequence of bits. Said step 6140 uses said calculated relative probabilities for each symbol from said step 6040 in its entropy-removing calculations.
Said short sequence of bits is finally processed through an aggregation step 6150 to concatenate generated bit sequences into a transport stream.
Once said subsampled sequential stream of visual data 7010 has been processed through said compression unit 5150, a higher-resolution sequential stream of visual data less subband data 7110 may be processed. Said higher-resolution sequential stream of visual data less subband data 7110 is comprised of sequential stream of visual data 5110 where each and every coefficient comprising said subsampled sequential stream of visual data 7010 is set to 0 with a variance of 0. Said higher-resolution sequential stream of visual data less subband data 7110 is factored into a plurality of multidimensional subblocks 7120. Said plurality of multidimensional subblocks 7120 is then processed subblock by subblock by said compression unit 5150 to produce a sequence of compressed bits for transmission.
A covariance matrix Apixel,x 8020 is composed of the multiplication of said measured pixel variance in the x direction by the autocorrelation matrix derived from said measured pixel correlation in the x direction. Similar matrices Apixel,y and Apixel,z (in the case of three-dimensional said multidimensional subblocks 7120) will utilize the measured pixel variance, pixel correlations and length of each dimension of the said multidimensional subblocks 7020.
DCT covariance matrix Ax 8030 is calculated as the product of said matrix DCTx 8010, said covariance matrix Apixel,x 8020, and the transpose of said matrix DCTx 8010.
The variance of the quantized transform component 8040 of index u,v,w within said multidimensional subblocks 7020, σ2u,v,w, is calculated as the product of the trace of said DCT covariance matrix Ax 8030 with the trace of said DCT covariant matrix Ay (and with the trace of said DCT covariant matrix Az if said multidimensional subblocks 7020 are three-dimensional) divided by the quantizer value for said quantized transform component 8040 of index u,v,w within said multidimensional subblocks 7020.
The probability pu,v,w(x==0) 9020 that any quantized transform component of index u,v,w within said quantized transform subblock is 0 is calculated from the Cumulative Distribution Function of a normal distribution with expectation of 0 and variance equal to that of said quantized transform component of index u,v,w within said quantized transform.
The probability pu,v,w(log2(x)==n) 9030 that any quantized transform component of index u,v,w within said quantized transform subblock has n bits in its representation is calculated from the Cumulative Distribution Function of a normal distribution with expectation of 0 and variance equal to that of said quantized transform component of index u,v,w within said quantized transform.
A typical symbol Su,v,w(r,b) 9040 comprised of a run length of r zeros followed by a non-zero value of length b is calculated as the conditional probability the each symbol in the order of said rearrangement of said quantized transform component within said quantized transform subblock. The probability of the ith quantized transform component following quantized transform component index u,v,w within said quantized transform subblock being 0 is written p(u,v,w)+i(x==0). The probability of the rth quantized transform component following quantized transform component index u,v,w within said quantized transform subblock requiring b bits is written p(u,v,w)+r(log2(x)==b).
Conclusion
While the present invention has been described in its preferred version or embodiment with some degree of particularity, it is understood that this description is intended as an example only, and that numerous changes in the composition or arrangements of apparatus elements and process steps may be made within the scope and spirit of the invention. In particular, rearrangement and recalculation of statistics may be made to support various modes of progressive transmission, including spectral banding or bitwise refinement. Further, pixel statistics may be measured and transmitted on a per-block or global basis, and may be measured in each dimension or averaged across all dimensions. Block sizes may also be taken to be as large as the entire frame, as would be typical when using the wavelet transform.
With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claimed invention.
Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be apparent to those of skill in the art upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
Claims
1. An apparatus comprised of a compressor and decompressor and a method for generating an optimally compressed representation of multidimensional visual data after transformation by a multidimensional orthogonal transform of a specified transformation block size, after quantization by coefficients of said transformation block size, and after rearrangement of said quantized coefficients into a transmission sequence, and after collection of said quantized transformation coefficients into symbols, by the application of said quantized decorrelating transform to a plurality of measured variances of uncompressed multidimensional visual data and measured correlation coefficients of uncompressed multidimensional visual data to calculate the probability distribution of each quantized transform coefficient required to perform entropy removal,
2. The method of claim 1 where said orthogonal transform is the discrete cosine transform,
3. The method of claim 1 where said multidimensional visual data comprises a two-dimensional still image,
4. The method of claim 3 where said transformation block size comprises the entire image,
5. The method of claim 3 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per block and said plurality of correlation coefficients is one averaged value per frame,
6. The method of claim 3 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per block and said plurality of correlation coefficients is one averaged value per block,
7. The method of claim 3 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per dimension per frame and said plurality of correlation coefficients is one averaged value per dimension per frame,
8. The method of claim 3 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per block and said plurality of correlation coefficients is one averaged value per dimension per block,
9. The method of claim 1 where said multidimensional visual data comprises a three-dimensional moving video sequence,
10. The method of claim 9 where said transformation block size comprises a number of frames by the entire size of a single frame,
11. The method of claim 9 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per group of frames and said plurality of correlation coefficients is one averaged value per group of frames,
12. The method of claim 9 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per block and said plurality of correlation coefficients is one averaged value per block,
13. The method of claim 9 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per dimension per group of frames and said plurality of correlation coefficients is one averaged value per dimension per group of frames,
14. The method of claim 9 where said plurality of measured variances of uncompressed multidimensional visual data is one averaged value per dimension per block and said plurality of correlation coefficients is one averaged value per dimension per block,
15. The method of claim 1 where said quantizers are all ones,
16. The method of claim 1 where said quantizers are all equal,
17. The method of claim 1 where said quantizers are visually weighed,
18. The method of claim 1 where coefficients are organized within each block into order of decreasing calculated component variance,
19. The method of claim 18 where the probability of symbols is calculated from a definition of a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the actual non-zero value, a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the number of bits required to represent the non-zero value, an end-of-block symbol whose conditional expectation is calculated from the cumulative probability of a sequence of symbols comprised solely of zeroes, and an escape symbol whose conditional expectation is calculated from the accumulation of the probability of all symbols not otherwise defined.
20. The method of claim 1 where coefficients are organized across blocks into order of decreasing calculated component variance,
21. The method of claim 20 where the probability of symbols is calculated from a definition of a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the actual non-zero value, a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the number of bits required to represent the non-zero value, an end-of-block symbol whose conditional expectation is calculated from the cumulative probability of a sequence of symbols comprised solely of zeroes, and an escape symbol whose conditional expectation is calculated from the accumulation of the probability of all symbols not otherwise defined.
22. The method of claim 1 where coefficients are organized across blocks into bands of decreasing calculated component variance within of order successive refinement,
23. The method of claim 22 where the probability of symbols is calculated from a definition of a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the actual non-zero value, a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the number of bits required to represent the non-zero value, an end-of-block symbol whose conditional expectation is calculated from the cumulative probability of a sequence of symbols comprised solely of zeroes, and an escape symbol whose conditional expectation is calculated from the accumulation of the probability of all symbols not otherwise defined.
24. The method of claim 1 where coefficients are organized across blocks into bands of equal weight in order of decreasing calculated component variance,
25. The method of claim 24 where the probability of symbols is calculated from a definition of a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the actual non-zero value, a plurality of symbols as collected from sequences of component values whose conditional expectation is zero followed by the number of bits required to represent the non-zero value, an end-of-block symbol whose conditional expectation is calculated from the cumulative probability of a sequence of symbols comprised solely of zeroes, and an escape symbol whose conditional expectation is calculated from the accumulation of the probability of all symbols not otherwise defined.
26. The method of claim 1 where Huffman coding based used to perform entropy removal on the constructed stream of symbols,
27. The method of claim 26 where said measured variances of uncompressed multidimensional visual data and said measured correlations of uncompressed multidimensional visual data are communicated between compressor and decompressor,
28. The method of claim 1 where arithmetic coding based is used to perform entropy removal on the constructed stream of symbols,
29. The method of claim 28 where said measured variances of uncompressed multidimensional visual data and said measured correlations of uncompressed multidimensional visual data are communicated between compressor and decompressor,
30. The method of claim 1 where said decorrelating transform is any orthonormal wavelet.
Type: Application
Filed: Apr 30, 2014
Publication Date: Nov 6, 2014
Inventor: Raymond John Westwater (Princeton, NJ)
Application Number: 14/266,645
International Classification: H04N 19/597 (20060101);