INTERCONNECT PARTITION BINDING API, ALLOCATION AND MANAGEMENT OF APPLICATION-SPECIFIC PARTITIONS
Systems and methods for operating a database in system memory within a virtual partition are described. One system includes one or more host computing systems, each host computing system including at least one execution core and a system memory. The system includes a plurality of virtual partitions executing on the one or more host computing systems and including a first partition having at least a portion of the system memory associated with at least one of the one or more host computing systems and configured to store a database therein. The system also includes an interconnect layer communicatively connecting the plurality of virtual partitions, the interconnect layer providing a programming interface by which direct memory access operations between partitions are coordinated. In response to database commands received at the first partition, the data stored in the database is provided to a requesting partition a direct memory access operation.
Latest UNISYS CORPORATION Patents:
- Virtual relay device for providing a secure connection to a remote device
- Virtual processor system and method utilizing discrete component elements
- System and method for the detection of processing hot-spots
- Network system architecture using a virtual private network (VPN) as a sidecar for containerized devices supporting containers
- System and method for the creation and provision of execution virtual context information
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/827,775, filed May 28, 2013, which is incorporated by reference in its entirety.
TECHNICAL FIELDThe present application relates generally to computing systems, and in particular to applications of an interconnect system across partitioned computing resources. More particularly, the present application relates to an interconnect partition binding Application Programming Interface (API) and partition-based applications thereof.
BACKGROUNDComputer system virtualization allows multiple operating systems and processes to share the hardware resources of a host computer. Ideally, the system virtualization provides resource isolation so that each operating system does not realize that it is sharing resources with another operating system and does not adversely affect the execution of the other operating system. Such system virtualization enables applications including server consolidation, co-located hosting facilities, distributed web services, applications mobility, secure computing platforms, and other applications that provide for efficient use of underlying hardware resources.
Virtual machine monitors (VMMs) have been used since the early 1970s to provide a software application that virtualizes the underlying hardware so that applications running on the VMMs are exposed to the same hardware functionality provided by the underlying machine without actually “touching” the underling hardware. As IA-32, or x86, architectures became more prevalent, it became desirable to develop VMMs that would operate on such platforms. Unfortunately, the IA-32 architecture was not designed for full virtualization as certain supervisor instructions had to be handled by the VMM for virtualization, but could not be handled appropriately because use of these supervisor instructions could not be handled using existing interrupt handling techniques.
Existing virtualization systems, such as those provided by VMWare and Microsoft, have developed relatively sophisticated virtualization systems that address these problems with IA-32 architecture by dynamically rewriting portions of the hosted machine's code to insert traps wherever VMM intervention might be required and to use binary translation to resolve the interrupts. This translation is applied to the entire guest operating system kernel since all non-trapping privileged instructions have to be caught and resolved. Furthermore, VMWare and Microsoft solutions generally are architected as a monolithic virtualization software system that hosts each virtualized system.
The complete virtualization approach taken by VMWare and Microsoft has significant processing costs and drawbacks based on assumptions made by those systems. For example, in such systems, it is generally assumed that each processing unit of native hardware can host many different virtual systems, thereby allowing disassociation of processing units and virtual processing units exposed to non-native software hosted by the virtualization system. If two or more virtualization systems are assigned to the same processing unit, these systems will essentially operate in a time-sharing arrangement, with the virtualization software detecting and managing context switching between those virtual systems.
This problem is compounded when considering other computing resources available to a virtualization system. For example, although virtual systems generally share processing units and communication interfaces, multiple virtual systems are typically entirely separated in terms of memory resources allocated thereto, with little (if any) sharing of resources available. When data is transferred among those systems, it typically must be transferred via a virtualized network or some other operation that introduces latency into the system due to the various layers of abstraction through which the data must be processed (e.g., through a Mellanox-based Infiniband communication protocol). This is the case even where two virtual systems are co-located on the same hardware or at least hardware in close proximity and connected by some type of high-speed interconnect, since the greatest level of distance possible in such a system are typically assumed.
Additionally, existing VMMs have relatively structured requirements for the definition of a partition. Accordingly, the VMM and partition for each particular partition are required to be co-located, and further requiring some dedicated memory, a dedicated or shared processing unit, and optionally I/O devices, which may also be shared among partitions. This limits the functionality and usability of those partitions, since the usability of the partition is limited by the resources that can be provided on a particular hardware platform. This limitation is particularly apparent in the case of database systems; although such systems perform at operations of magnitude better when data resides in memory, typical databases are sized much larger than allocated memory systems, such that on-disk storage is required on a particular host hardware system.
For these and other reasons, improvements are desirable.
SUMMARYIn accordance with the following disclosure, the above and other issues are addressed by the following:
In a first aspect, a system includes one or more host computing systems, each host computing system including at least one execution core and a system memory. The system includes a plurality of virtual partitions executing on the one or more host computing systems and including a first partition having at least a portion of the system memory associated with at least one of the one or more host computing systems and configured to store a database therein. The system also includes an interconnect layer communicatively connecting the plurality of virtual partitions, the interconnect layer providing a programming interface by which direct memory access operations between partitions are coordinated. In response to database commands received at the first partition, the data stored in the database is provided to a requesting partition via a direct memory access operation.
In a second aspect, a method of operation of a database in system memory within a virtual partition is disclosed. The method includes instantiating a plurality of virtual partitions in one or more host computing systems. The plurality of virtual partitions include a client partition and a database partition including system memory of one or more host computing systems, and the database partition includes an in-memory database maintained in the system memory. The method further includes receiving, at the database partition, a data request from a client partition hosting a database application. The method also includes, in response to the data request, copying data from the in-memory database into a portion of memory associated with a client partition.
In a third aspect, a computer-readable storage medium comprising computer-executable instructions is disclosed which, when executed on a computing system, performs a method that includes instantiating a plurality of virtual partitions in one or more host computing systems. The plurality of virtual partitions includes a client partition and a database partition, and the database partition includes system memory of one or more host computing systems. The database partition also includes an in-memory database maintained in the system memory. The method includes receiving, at the database partition, a data request from a client partition hosting a database application. The database partition includes a database manager, a data storage area, and a runtime library of programming interfaces useable to address a file organization within the database partition. The method includes, in response to the data request, copying data from the in-memory database into a portion of memory associated with a client partition, wherein copying data from the in-memory database comprises a direct memory transfer of data, thereby transferring data from the database partition to the client partition.
Various embodiments of the present invention will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the claimed invention.
The logical operations of the various embodiments of the disclosure described herein are implemented as: (1) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a computer, and/or (2) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a directory system, database, or compiler.
In general the present disclosure relates to methods and systems for providing a securely partitioned virtualization system. In some examples a virtualization system has separate portions, referred to herein as monitors, used to manage access to various physical resources on which virtualized software is run. In some such examples, a correspondence between the physical resources available and the resources exposed to the virtualized software allows for control of particular features, for example by way of dedicated partitions associated with various services provided to the overall system to be hosted via the virtualization system.
Those skilled in the art will appreciate that the virtualization design of the present disclosure provides a robust, failure-tolerant, and flexible system due to the distributed functionality that can be provided across partitions, as well as the various configurations of hardware that can be used to implement the various systems disclosed. Furthermore, based at least in part on the interconnect systems implemented in the para-virtualization system disclosed herein, a low-latency interconnect, and application programming interface, allows for low latency communication among partitions. In example embodiments, partitions co-located on a host can transfer data using direct memory access techniques without requiring additional layers of communication resources, such as may be required in a clustered storage arrangement as may be required in host bus adapters provided by Mellanox Technologies of Sunnyvale, Calif.
In the context of the present disclosure, virtualization software generally corresponds to software that executes natively on a computing system, through which non-native software can be executed by hosting that software with the virtualization software exposing those native resources in a way that is recognizable to the non-native software. By way of reference, non-native software, otherwise referred to herein as “virtualized software” or a “virtualized system”, refers to software not natively executed on a particular hardware system, for example due to it being written for execution by a different type of microprocessor configured to execute a different native instruction set. In some of the examples discussed herein, the native software set can be the x86-32, x86-64, or IA64 instruction set from Intel Corporation of Sunnyvale, Calif., while the non-native or virtualized system might be compiled for execution on an OS2200 system from Unisys Corporation of Blue Bell, Pa. However, it is understood that the principles of the present disclosure are not thereby limited; rather, non-native software simply can correspond to software not hosted or executed directly on hardware resources in the absence of a monitor system used to manage such execution, and to provide an abstraction layer between the application or workload to be executed and the underlying hardware resources.
In the context of the present disclosure, various special-purpose partitions can be established based on the computing requirements of a particular system, including, for example, raw data or database partitions that can be provided as service partitions that can grant access to data by one or more guest partitions or other service partitions. In alternative arrangements, other special-purpose service partitions, such as particular types of data service, network service, or processing service partitions can be established. These partitions can be, for example, allocated resources of a host computing system that are customized for the particular resource need of that partition, and according to the anticipated workload to be executed using that partition. Furthermore, the allocated resources can be located across one or more host computing systems. In example embodiments, a data partition can be allocated a large portion of system memory of one or more host computing systems and optionally a database service (e.g., a database management system), thereby allowing for a large-scale database to be maintained entirely in system memory. In alternative embodiments, a single service partition can be focused on particular processing tasks, and can accordingly be assigned a large number of processing cores across one or more host computing systems.
I. Para-Virtualization System Architecture
Referring to
In
A boot partition 12 contains the host boot firmware and functions to initially load the control, I/O and command partitions (elements 14-20). Once launched, the resource management “control” partition 14 includes minimal firmware that tracks resource usage using a tracking application referred to herein as a control or resource management application. Host resource management decisions are performed in command partition 20 and distributed decisions amongst partitions in one or more host computing systems 10 are managed by operations partition 22. I/O to disk drives and the like is controlled by one or both of I/O partitions 16 and 18 so as to provide both failover and load balancing capabilities. Operating systems in the guest partitions 24, 26, and 28 communicate with the I/O partitions 16 and 18 via memory channels (
The resource manager application of the control partition 14, shown as application 40 in
The partition monitors 36 in each partition constrain the guest OS and its applications to the assigned resources. Each monitor 36 implements a system call interface 32 that is used by the guest OS of its partition to request usage of allocated resources. The system call interface 32 includes protection exceptions that occur when the guest OS attempts to use privileged processor op-codes. Different partitions can use different monitors 36. This allows support of multiple system call interfaces 32 and for these standards to evolve over time. It also allows independent upgrade of monitor components in different partitions.
The monitor 36 is preferably aware of processor capabilities so that it may be optimized to utilize any available processor virtualization support. With appropriate monitor 36 and processor support, a guest OS in a guest partition (e.g., 24-28) need not be aware of the control system of the invention and need not make any explicit ‘system’ calls to the monitor 36. In this case, processor virtualization interrupts provide the necessary and sufficient system call interface 32. However, to optimize performance, explicit calls from a guest OS to a monitor system call interface 32 are still desirable.
The monitor 36 also maintains a map of resources allocated to the partition it monitors and ensures that the guest OS (and applications) in its partition use only the allocated hardware resources. The monitor 36 can do this since it is the first code running in the partition at the processor's most privileged level. The monitor 36 boots the partition firmware at a decreased privilege. The firmware subsequently boots the OS and applications. Normal processor protection mechanisms prevent the firmware, OS, and applications from ever obtaining the processor's most privileged protection level.
Unlike a conventional VMM, a monitor 36 has no I/O interfaces. All I/O is performed by I/O hardware mapped to I/O partitions 16, 18 that use memory channels to communicate with their client partitions. A responsibility of a monitor 36 is instead to protect processor provided resources (e.g., processor privileged functions and memory management units). The monitor 36 also protects access to I/O hardware primarily through protection of memory mapped I/O. The monitor 36 further provides channel endpoint capabilities which are the basis for I/O capabilities between guest partitions.
The monitor 34 for the control partition 14 is a “lead” monitor with two special roles. It creates and destroys monitors 36, and also provides services to the created monitors 36 to aid processor context switches. During a processor context switch, monitors 34, 36 save the guest partition state in the virtual processor structure, save the privileged state in virtual processor structure and then invoke the control monitor switch service. This service loads the privileged state of the target partition monitor and switches to the target partition monitor which then restores the remainder of the guest partition state.
The most privileged processor level (e.g., x86 ring 0) is retained by having the monitors 34, 36 running below the system call interface 32. This is most effective if the processor implements at least three distinct protection levels: e.g., x86 ring 1, 2, and 3 available to the guest OS and applications. The control partition 14 connects to the monitors 34, 36 at the base (most privileged level) of each partition. The monitor 34 grants itself read only access to the partition descriptor in the control partition 14, and the control partition 14 has read only access to one page of monitor state stored in the resource database 33.
Those skilled in the art will appreciate that the monitors 34, 36 of the invention are similar to a classic VMM in that they constrain the partition to its assigned resources, interrupt handlers provide protection exceptions that emulate privileged behaviors as necessary, and system call interfaces are implemented for “aware” contained system code. However, as explained in further detail below, the monitors 34, 36 of the invention are unlike a classic VMM in that the master resource database 33 is contained in a virtual (control) partition for recoverability, the resource database 33 implements a simple transaction mechanism, and the virtualized system is constructed from a collection of cooperating monitors 34, 36 whereby a failure in one monitor 34, 36 need not result in failure of all partitions and need not result in the failure of a multiprocessor/multi-core partition; in particular, any symmetric multiprocessing system can, due to use of a monitor per execution core, preserve operation of the partition using remaining execution cores. Furthermore, failure of a single physical processing unit need not result in failure of all partitions of a system, since partitions are affiliated with different processing units.
The monitors 34, 36 of the invention are also different from classic VMMs in that each partition is contained by its assigned monitor(s), partitions with simpler containment requirements can use simpler and thus more reliable (and higher security) monitor implementations, and the monitor implementations for different partitions may, but need not be, shared. Also, unlike conventional VMMs, a lead monitor 34 provides access by other monitors 36 to the control partition resource database 33.
Partitions in the control environment include the available resources organized by host computing system 10. Available computing resources in a host node, also referred to herein as a host computing system are described by way of example in
Unused physical processors are assigned to a special ‘Idle’ partition 13. The idle partition 13 is the simplest partition that is assigned processor resources. It contains a virtual processor for each available physical processor, and each virtual processor executes an idle loop that contains appropriate processor instructions to minimize processor power usage. The idle virtual processors may cede time at the next control time quantum interrupt, and the monitor 36 of the idle partition 13 may switch processor context to a virtual processor in a different partition. During host bootstrap, the boot processor of the boot partition 12 boots all of the other processors into the idle partition 13.
In some embodiments, multiple control partitions 14 are also possible for large host partitions to avoid a single point of failure. Each would be responsible for resources of the appropriate portion of the host computing system 10. Resource service allocations would be partitioned in each portion of the host system 10. This allows clusters to run within a host computing system 10 (one cluster node in each zone) and still survive failure of a control partition 14.
As illustrated in
In the embodiments discussed herein, control partition 14 concentrates on server input/output requirements. Plug and Play operating systems function with appropriate virtual port/miniport drivers installed as boot time drivers. The hypervisor system call interface 32 may, in some embodiments, include an Extensible Firmware Interface (EFI) to provide a modern maintainable firmware environment that is used as the basis for the virtual firmware. The firmware provides standard mechanisms to access virtual Advanced Configuration and Power Interface (ACPI) tables. These tables allow operating systems to use standard mechanisms to discover and interact with the virtual hardware.
The boot partition 12 may provide certain Basic Input/Output System (BIOS) compatibility drivers if and when necessary to enable boot of operating systems that lack EFI loaders. The boot partition 12 also may provide limited support for these operating systems.
Different partitions may use different firmware implementations or different firmware versions. The firmware identified by partition policy is loaded when the partition is activated. During an upgrade of the monitor associated with the control partition, running partitions continue to use the loaded firmware, and may switch to a new version as determined by the effective partition policy the next time the partition is reactivated.
As noted above, monitors 36 provide enforcement of isolation from other partitions. The monitors 36 run at the most privileged processor level, and each partition has one or more monitors mapped into privileged address space. Each monitor 36 uses protection exceptions as necessary to monitor software within the virtual partition and to thwart any (inadvertent) attempt to reference resources not assigned to the associated virtual partition. Each monitor 36 constrains the guest OS and applications in the guest partitions 24, 26, 28, and the lead monitor 34 constrains the resource management application in the control partition 14 and uses its access and special hypervisor system call interface 32 with the resource management application to communicate individual partition resource lists with the associated partition monitors 36.
According to some embodiments, there are two main categories of partitions in the virtualization system of the present disclosure. The ‘user’ partitions run guest operating systems for customer applications, and the system infrastructure partitions provide various platform infrastructure services. For reliability, the virtualization system architecture minimizes any implementation that is not contained within a partition, since a failure in one partition can be contained and need not impact other partitions.
As will be explained in more detail below, system partition types can include:
-
- Boot 12
- Idle 13
- Control 14
- Command 20
- Operations 22
- I/O 16, 18
Each of these types is briefly discussed below.
Boot Partition 12
The boot partition 12 has assigned thereto one virtual CPU (corresponding to a physical processing core or a fractional/timeshared part thereof), and contains the hardware partition boot firmware. It is used during recovery operations when necessary to boot and reboot the command partition 20 and the I/O partitions 16, 18. During bootstrap, the boot partition 12 reserves available memory and constructs the control partition 14 and the initial resource map in resource database 33 with all memory assigned either to the boot partition 12, the control partition 14, or the ‘available’ partition. The boot partition 12 initiates transactions to the resource manager application until it has also booted the command partition 20. At this point the control partition 14 is attached to the command partition 20 and accepts only its command transactions. The boot partition boot processor also initializes all additional processors to run the idle partition 13.
Idle Partition 13
In example embodiments, the idle partition 13 has one virtual CPU for each physical CPU. These virtual CPUs are used as place holders in the system's CPU schedule. If the control partition 14 or partition monitor 34 error recovery must remove a CPU/partition from the schedule, it is replaced with a reference to one of these virtual CPUs. Idle processors ‘run’ in the idle partition 13, rather than the control partition 14, to reduce the scope of error recovery should a hardware error occur while a hardware processor is idle. In actuality, the idle partition suspends a processor (to reduce power and cooling load) until the next virtual quantum interrupt. In typical scenarios, processors can be idle a significant fraction of time. The idle time is the current shared processor headroom in the hardware partition.
Control Partition 14
The control partition 14 owns the memory that contains the resource database 33 that stores the resource allocation maps. This includes the ‘fractal’ map for memory, the processor schedule, and mapped I/O hardware devices. For Peripheral Component Interconnect (PCI) I/O hardware, this map would allocate individual PCI devices, rather than require I/O partitions 16, 18 to enumerate a PCI bus. Different devices on the same PCI bus can be assigned to different I/O partitions 16, 18. A resource allocation application in the control partition 14 tracks the resources, applies transactions to the resource database 33, and is also the server for the command and control channels. The resource allocation application runs in the control partition 14 with a minimal operating environment. All state changes for the resource manager application are performed as transactions. If a processor error occurs when one of its virtual CPUs is active, any partial transactions can be rolled back. The hypervisor system call interface 32, which is responsible for virtual processor context switches and delivery of physical and virtual interrupts, does not write to the master resource maps managed by the application. It constrains itself to memory writes of memory associated with individual partitions and read only of the master resource maps in the resource database 33.
It is noted that, when multiple control partitions 14 are used, an associated command partition 20 is provided for each. This allows the resource database 33 of a large host to be (literally) partitioned and limits the size of the largest virtual partition in the host while reducing the impact of failure of an control partition 14. Multiple control partitions 14 are recommended for (very) large host partitions, or anytime a partitioned virtualized system can contain the largest virtual partition.
Command Partition 20
In example embodiments, the command partition 20 owns the resource allocation policy for each hardware partition 10. The operating environment is, for example, XP embedded which provides a .NET Framework execution environment. Another possibility is, for example, Windows CE and the .NET Compact Framework.
The command partition 20 maintains a synchronized snapshot of the resource allocation map managed by the resource management application, and all changes to the map are transactions coordinated through the command channel 38 (
It is noted that in a multiple host hardware partition environment, a stub command partition 20 in each host 10 could simply run in the EFI environment and use an EFI application to pipe a command channel 38 from the control partition 14, through a network, to a shared remote command partition 20. However, this would have an impact on both reliability and recovery times, while providing only a modest cost advantage. Multiple command partitions 20 configured for failover are also possible, especially when multiple control partitions 14 are present. Restart of a command partition 20 occurs while other partitions remain operating with current resource assignments.
In accordance with the present disclosure, only a resource service in the command partition 20 makes requests of the resource manager application in the control partition 14. This allows actual allocations to be controlled by policy. Agents representing the partitions (and domains, as described below) participate to make the actual policy decisions. The policy service provides a mechanism for autonomous management of the virtual partitions. Standard and custom agents negotiate and cooperate on the use of physical computing resources, such as processor scheduling and memory assignments, in one or more physical host partitions. There are two cooperating services. The partition resource service is an application in the command partition 20 that is tightly coupled with the control resource manager application and provides services to a higher level policy service that runs in the operations partition 22 (described below) and is tightly coupled with (i.e. implements) a persistent partition configuration database, and is a client of the resource service. The resource service also provides monitoring services for the presentation tier. The partition resource objects are tightly controlled (e.g. administrators can not install resource agents) since the system responsiveness and reliability partially depends on them. A catastrophic failure in one of these objects impacts responsiveness while the server is restarted. Recurring catastrophic failures can prevent changes to the resource allocation.
Operations Partition 22
In some embodiments, the operations partition 22 owns the configuration policy for the domains in one or more host computing systems 10. The operations partition 22 is also where a data center operations (policy) service runs. As will be explained below, at least one host computing system 10 in a given virtual data center will have an operations partition 22. Not all host computing systems 10 run an operations partition 22. An operations partition 22 may be provided by multiple hosts in a virtual data center for load balancing and failover. The operations partition 22 does not need to run within a given hardware partition, and need not run as a virtual partition. The operating environment within the operations partition 22 can be, for example, MICROSOFT WINDOWS XP Professional or Windows Server, or analogous operating environments. This partition (cluster) can be shared across multiple hardware partitions. The configuration policy objects and ASP.NET user interface components run in the operations partition 22. These components can share a virtual partition with the command partition 20 to reduce cost for single host deployments.
For availability reasons, customization of partition resource agents is discouraged in favor of customization of policy agents. This is because a failure in a policy agent has less impact than a resource agent to the availability and responsiveness of the resource mechanisms. The policy agents make requests of the standard resource agents. The standard policy agents can also be extended with custom implementations. In simple single hardware partition installations, the services of the operations partition 22 can be hosted in the command partition 20.
The partition definition/configuration objects are intended to be a purpose of customization. The partition policy objects are clients of the resource objects. The policy service provides configuration services for the presentation tier.
The operations partition user interface components are typically integrated within the operations partition 22. An exemplary implementation may use Hypertext Markup Language (HTML) Version 4, CSS, and Jscript. The operations partition user interface is principally a web interface implemented by an ASP.NET application that interacts with the policy service. The user interface interacts directly with the Partition Policy Service and indirectly with a partition database of the operations partition 22.
A .NET smart client may also be provided in the operations partition 22 to provide a rich client interface that may interact directly with the policy and resource services to present a rich view of current (enterprise) computing resources.
A resource service in the command partition 20 selects appropriate resources and creates a transaction to assign the resources to new partitions. The transaction is sent to the control partition 14 which saves transaction request to un-cached memory as a transaction audit log entry (with before and after images). The transaction is validated and applied to the resource database 33.
An audit log tracks changes due to transactions since the last time the resource database 33 was backed up (flushed to memory), thereby allowing transactions to be rolled back without requiring the resource database 33 to be frequently flushed to memory. The successful transactions stored in the audit log since the last resource database 33 backup may be reapplied from the audit log to restart a failed partition. A resource also may be recovered that has been reserved by a completed transaction. A transaction that has not completed has reserved no resource. The audit log may be used by the resource allocation software to rollback any partially completed transaction that survived the cache. It should be noted that a transaction that has not completed would have assigned some but not all resources specified in a transaction to a partition and the rollback would undo that assignment if it survived the cache.
I/O Partitions 16, 18
In the embodiment shown, a plurality of I/O partitions 16, 18 are active on a host node 10. I/O partitions 16, 18 allow multi-path I/O from the user partitions 24-28 and allow certain types of failures in an I/O partition 16, 18 to be recovered transparently. All I/O hardware in host hardware partitions is mapped to the I/O partitions 16, 18. These partitions are typically allocated a dedicated processor to minimize latency and allow interrupt affinity with limited overhead to pend interrupts that could occur when the I/O partition 16, 18 is not the current context. The configuration for the I/O partitions 16, 18 determines whether the storage, network, and console components share virtual partitions or run in separate virtual partitions.
User Partitions 24-28
The user partitions 24, 26, 28 host the workloads that form the purpose of the virtualization system, and are described in normal domains for a user. These are the partitions that a user primarily interacts with. All of the other partition types are described in the system domains and are generally kept out of view of typical users.
System Startup
When the host computing system 10 is booted, the EFI firmware is loaded first. The EFI firmware boots the operating system associated with the control partition 14. The EFI firmware uses a standard mechanism to pick the boot target. Assuming the loader is configured and selected, boot proceeds as follows.
The loader allocates almost all of available memory to prevent its use by the firmware. (It leaves a small pool to allow proper operation of the firmware.) The loader then creates the resource database's memory data structures in the allocated memory (which includes a boot command channel predefined in these initial data structures). The loader then uses the EFI executable image loader to load the control monitor 34 and monitoring application into the control partition 14. The loader also jacks the boot monitor underneath the boot partition 12 at some point before the boot loader is finished.
The loader then creates transactions to create the I/O partition 16 and command partition 20. These special boot partitions are loaded from special replicas of the master partition definitions. The command partition 20 updates these replicas as necessary. The boot loader loads the monitor, and firmware into the new partitions. At this point, the boot loader transfers boot path hardware ownership from the boot firmware to the I/O partition 16. The I/O partition 16 begins running and is ready to process I/O requests.
The loader creates transactions to create a storage channel from the command partition 20 to an I/O partition 16, and a command channel 38 from the command partition 20 to the control partition 14. At this point the boot loader sends a final command to the control partition 14 to relinquish the command channel 38 and pass control to the command partition 20. The command partition 20 begins running and is ready to initialize the resource service.
The command partition operating environment is loaded from the boot volume through the boot storage channel path. The operating environment loads the command partition's resource service application. The resource service takes ownership of the command channel 38 and obtains a snapshot of the resources from the control partition's resource database 33.
A fragment of the policy service is also running in the command partition 20. This fragment contains a replica of the infrastructure partitions assigned to this host. The policy service connects to the resource service and requests that the ‘boot’ partitions are started first. The resource service identifies the already running partitions. By this time, the virtual boot partition 12 is isolated and no longer running at the most privileged processor level. The virtual boot partition 12 can now connect to the I/O partition 16 as preparation to reboot the command partition 20. If all I/O partitions should fail, the virtual boot partition 12 also can connect to the control partition 14 and re-obtain the boot storage hardware. This is used to reboot the first I/O partition 16.
The boot partition 12 remains running to reboot the I/O and command partitions 16, 20 should they fail during operation. The control partition 14 implements watchdog timers to detect failures in these (as well as any other) partitions. The policy service then activates other infrastructure partitions as dictated by the current policy. This would typically start the redundant I/O partition 18.
If the present host computing system 10 is a host of an operations partition 22, operations partition 22 is also started at this time. The command partition 20 then listens for requests from the distributed operations partitions. As will be explained below, the operations partition 22 connects to command partitions 20 in this and other hosts through a network channel and network zone. In a simple single host implementation, an internal network can be used for this connection. At this point, the distributed operations partitions 22 start the remaining partitions as the current policy dictates.
All available (not allocated) memory resources are owned by the special ‘available’ partition. In the example of
Referring to
As shown in
A firmware channel bus (not shown) enumerates virtual boot devices. A separate bus driver tailored to the operating system enumerates these boot devices as well as runtime only devices. Except for I/O virtual partitions 16, 18, no PCI bus is present in the virtual partitions. This reduces complexity and increases the reliability of all other virtual partitions.
Virtual device drivers manage each virtual device. Virtual firmware implementations are provided for the boot devices, and operating system drivers are provided for runtime devices. The device drivers convert device requests into channel commands appropriate for the virtual device type.
Additional details regarding possible implementation details of a partitioned, para-virtualization system, including discussion of multiple are discussed in U.S. Pat. No. 7,984,104, assigned to Unisys Corporation of Blue Bell, Pa., the disclosure of which is hereby incorporated by reference in its entirety.
II. Structures for Establishing Low-Latency Interconnect
Referring now to
As illustrated in
As illustrated in
In various embodiments, at each location 102, the host systems 104 are interconnected by a high-speed, high-bandwidth interconnect, thereby minimizing latency due to data transfers between host systems. In an example embodiment, the interconnect can be provided by an Infiniband switched fabric communications link; in alternative embodiments, other types of interconnect technologies, such as Fibre Channel, PCI Express, Serial ATA, or other interconnect could be used as well.
Among the locations 102a-c, a variety of communication technologies can also be used to provide communicative connections of host systems 104 at different locations. For example, a packet-switched networking arrangement, such as via the Internet 108, could be used. Preferably, the interconnections among locations 102a-c are provided on a high-bandwidth connection, such as a fiber optic communication connection.
In the embodiment shown, the various host system 104 at locations 102a-c can be accessed by a client computing system 110. The client computing system can be any of a variety of desktop or mobile computing systems, such as a desktop, laptop, tablet, smartphone, or other type of user computing system. In alternative embodiments, the client computing system 110 can correspond to a server not forming a cooperative part of the para-virtualization system described herein, but rather which accesses data hosted on such a system. It is of course noted that various virtualized partitions within a para-virtualization system could also host applications accessible to a user and correspond to client systems as well.
It is noted that, in various embodiments, different arrangements of host systems 104 within the overall system 100 can be used; for example, different host systems 104 may have different numbers or types of processing cores, and different capacity and type of memory and/or caching subsystems could be implemented in different ones of the host system 104. Furthermore, one or more different types of communicative interconnect technologies might be used in the different locations 102a-c, or within a particular location.
Referring to
In addition, each of the processing subsystems 202 can include one or more card-based processing subsystems including a plurality of sockets for supporting execution cores 206a-n, or alternatively can support a socket-based or mounted arrangement in which one or more execution cores are included on a single die to be mounted within the host computing system 200. Furthermore, in the embodiment shown, a plurality of processing subsystems 202 can be included in the host computing system, thereby providing a system in which one or more cores could be allocated to different partitions hosted by the same computing hardware; in alternative embodiments, a single processing subsystem including one or more processing cores 206a-n could be included in the host computing system 200, and that processing subsystem 202 could be implemented without separation from system memory 204 by a card-based implementation.
As illustrated, the system memory 204 is communicatively interconnected to the one or more processing subsystems 202 by way of a system bus 205. The system bus is largely dependent upon the architecture and memory speed support of the processing subsystems with which it is implemented; although example systems provide different frequencies and throughputs of such system buses, in general the bus system between processing subsystems 202 and the system memory is a low-latency, high bandwidth connection useable to rapidly retrieve data from the system memory 204. System memory 204 includes one or more computer storage media capable of storing data and/or instructions in a manner that provides for quick retrieval of such data and/or instructions by a corresponding processing core 206. In different embodiments, the system memory 204 is implemented in different ways. For example, the memory 204 can be implemented using various types of computer storage media.
In the embodiment shown, system memory 204 can be allocated to one or more partitions using the software described herein. In the example illustration shown, sub-sections of the system memory 204 can be allocated to a control partition section 210 and one or more memory partitions 212. The control partition section 210 includes a monitor 211, which in some embodiments can represent monitor 34. The control partition section 210 can also include a resource database 214 that tracks resources allocated to other partitions within the host computing system 200. This can include, for example, a listing of execution cores 206, capacity and location of system memory 204, as well as I/O devices or other types of devices associated with each partition. In example embodiments, the resource database 214 can correspond to database 33 of
In the embodiment shown, the system memory 204 includes memory partitions 212 which each are associated with different partitions formed within a host computing system 200. The memory partitions 212 can, in the embodiment shown, each include a monitor 216, an associated operating system 218, and one or more applications or workloads 220 to be executed within the partition. Since each memory partition 212 can be associated with one or more execution cores 206 in the resource database 214, the assigned execution cores can be used to access and execute the monitor software 216 as well as the operating system 218 and workloads 220.
It is noted that in some embodiments, the partition 212 may include multiple instances of the monitor software 216. This may be the case, for example, for partitions that have allocated thereto more than one execution core. For such cases, monitor software 216 may be allocated for and used with each execution core. Therefore, there may be more than one such monitor executing per partition, with each monitor handling various I/O, memory, or interrupt servicing tasks that may be issued with respect to that particular execution core. Each monitor supervises execution of software within a partition as allocated to a particular execution n core; accordingly, if a single partition has multiple execution cores, the operating system 218 may allocate execution of operating system tasks, or the workload(s) 220, to one or both of the execution cores. The host computing device includes an I/O subsystem 222 that includes one or more input devices 224, output devices 226, and storage devices 228. The input devices 224 can include, for example, a keyboard, a mouse, a pen, a sound input device, a touch input device, etc. Output device(s) 226 can include, for example, a display, speakers, a printer, etc. The aforementioned devices are examples and others may be used. Storage devices 228 store data and software instructions not directly accessible by the processing subsystems 202. In other words, the processing subsystems 202 perform an I/O operation to retrieve data and/or software instructions from the storage device 228. In various embodiments, the secondary storage device 228 includes various types of computer storage media. For example, the secondary storage device 228 can include one or more magnetic disks, magnetic tape drives, optical discs, solid state memory devices, and/or other types of computer storage media.
The I/O subsystem 222 further includes one or more communication connections 230. The communication connections 230 enable the computing device 1000 to send data to and receive data from a network of one or more such devices. In different embodiments, the communication connections can be implemented in different ways. For example, the communications connections can include a network interface card implementing an Ethernet interface, a token-ring network interface, a fiber optic network interface, a wireless network interface (e.g., Wi-Fi, WiMax, etc.), or another type of network interface. The communication connections 232 can also include an inter-system communication connection for direct data communication between computing systems, such as a Infiniband switched fabric communications link, or a Fibre Channel, PCI Express, Serial ATA, or other type of direct data communication link.
It is noted that, in some embodiments of the present disclosure, other arrangements of a partition may be included as well, providing various allocations of execution cores 206, system memory 204, and L/O devices 224, 226 within the I/O subsystem 222. For example, a partition may include zero or more execution cores 206; in the event that no processor is included with the partition, the partition may lack a monitor 216, and may instead of having an executable operating system 218 may instead include a library of commands accessible to one or more services partitions, for example useable to provide I/O or memory services to those other service partitions. Furthermore, a particular partition could be allocated access to a storage device 228 or communication connections 230.
It is noted that, in typical hypervisor arrangements, failures occurring in one execution core allocated to the partition result in failure of the partition overall, since the failure results in failure of the monitor associated with the partition. In connection with the present disclosure, partitions including multiple monitors can potentially recover from such failures by restarting the execution core and associated monitor using the remaining, correctly-executing monitor and execution core. Accordingly, the partition need not fail.
As used in this document, a computer storage medium is a device or article of manufacture that stores data and/or computer-executable instructions. Computer storage media may include volatile and nonvolatile, removable and non-removable devices or articles of manufacture implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. By way of example, and not limitation, computer storage media may include dynamic random access memory (DRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), reduced latency DRAM, DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM, solid state memory, read-only memory (ROM), electrically-erasable programmable ROM, optical discs (e.g., CD-ROMs, DVDs, etc.), magnetic disks (e.g., hard disks, floppy disks, etc.), magnetic tapes, and other types of devices and/or articles of manufacture that store data. Computer storage media generally excludes transitory wired or wireless signals. Communication media may be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” may describe a signal that has one or more characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as Wi-Fi, acoustic, radio frequency (RF), infrared, and other wireless media. In accordance with the present disclosure, the term computer readable media as used herein may include computer storage media, but generally excludes transitory embodiments of communication media, such as modulated data signals.
Furthermore, embodiments of the present disclosure may be practiced in an electrical circuit comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors. For example, embodiments of the invention may be practiced via a system-on-a-chip (SOC) where each or many of the components illustrated in
Although particular features are discussed herein as included within a host computing system 200, it is recognized that in certain embodiments not all such components or features may be included within a computing device executing according to the methods and systems of the present disclosure. Furthermore, different types of hardware and/or software systems could be incorporated into such an electronic computing device.
Referring now to
In some embodiments, the partition 300 can be referred to as a “virtual” partition, indicating that the partition 300 includes some level of abstraction between the hardware computing resources allocated thereto and the applications 220 and operating system 218 executing within that partition. For example, the partition may be virtual in the sense that it shares computing resources with another partition, or that it operates on a different computing architecture than is expected by the operating system 218 (and therefore is hosted by some additional emulation system), or that at least a portion of the computing resources accessed by the partition are in fact emulated. In some embodiments, partitions are at least partially virtual by adding an interconnection layer that abstracts an underlying communications transport used by the partition, such as by using interconnect instantiation 302 and API 304.
As further illustrated in
In example embodiments, the API instantiation 302 also provides instantiation of message and/or data queues useable to communicate data among partitions. Interconnect API provides a layer of abstraction between the underlying interconnect layer 306, which corresponds to a hardware layer included within and among host computing systems as illustrated in
As illustrated in
The block diagram can, for example, correspond to an interconnect arrangement for a guest partition within the para-virtualization system of
The API specification 416 defines a plurality of callable functions allowing a given partition to instantiate a connection to another partition as well as schedule data communications between partitions. It is noted that, despite the fact that various possible interconnections are available as part of the interconnect or memory layer 418, common functions are generally available for accessing or transmitting data at a same host computing system or on a different computing system within a network of host computing systems, without requiring that the hosted system 402 or operating system 400 be exposed to details of the interconnect and memory layer 418.
In example embodiments, the API specification 416 defines three general classes of interconnections: an internal interconnect, used to communicate among applications to perform functions to create a system, an external interconnect to communicate to system peripherals (e.g., disk) and external networks (e.g., Internet, systems outside the para-virtualization system), and a local interconnect used by physical interfaces and transparent to the applications executing on the various partitions.
The API specification 416 includes a library with which calling applications can execute various functions, an example listing of which is provided below. It is noted that, because the different host computing systems may be required to transfer address values for such direct memory accesses either within the same host system or different systems, different names are used for different functions based on the connection destination of the particular message.
Referring to
In the embodiment shown in
Within each partition 504a-c, a pair of queues 510a-b is instantiated for each interconnection to another partition, thereby providing bidirectional communication of virtual and/or physical addresses required to provide for direct memory access operations between partitions. This pair of queues 510a-b is associated with an application 512 at each partition, and performs message send and receive operations for all transfers between two applications 512, and reflect work requests from the sending application. In each pair of queues 510a-b, a first queue 510a is a send queue that includes the work request. The application 512 in that associated partition 504 transmits a DMA/RDMA request to the queue 510a, and receives data from the queue (received from far end queue 510 in another partition to which connection is made. A second queue 510b is a completion queue, and tracks completion status of DMA/RDMA requests.
Interconnect firmware 514 resides between the pairs of queues 510a-b of interconnected partitions (e.g., partitions 504a/504c, or 504b/504c). The interconnect firmware 514 maintains a registration of memory, and performs virtual address and physical address translations as needed for translation/connection tables 506a-c. Additionally, drivers 516 included in each partition 504a-c supported by the service partition 502 allow for translation of the work requests to a format useable by the interconnect firmware 514, by providing transforms of requests as needed. In addition, interconnect firmware 514 provides security features that may be required for communication of data between host systems. For example, for data transmitted to a remote host system, the interconnect firmware 514 can selectively apply encryption and/or data splitting operations to that data to improve its resiliency and security during transmission.
In addition, in the embodiment shown one or more IC cards 518 can be associated with the host system 500, and can be used to interconnect to an external system, such as a disk, network card, or other component not allocated to the partitions 504a-c.
In comparison to
In this embodiment, host systems 500a-b are communicatively connected by IC cards 518, which provide a communicative interconnection between memory systems of the host systems 500a-b. Accordingly the queue pairs 510a-b of each partition can be interconnected across IC cards 518 and any associated routing equipment (e.g., switch 602 or other routing equipment) used to interconnect host systems. In this arrangement, each queue pair 510a-b can be associated with a particular port, such that a partition having access to a particular IC card 518 can communicate with other partitions via a port exposed by that IC card 518. Additional IC cards 518 can also be used as discussed above, for example for connection to external systems such as a disk, network card, or other computing system not allocated to a partition of the para-virtualization system discussed herein.
In general, and referring to the systems of
As discussed below, the messages included in queue pairs 510a-b can correspond to verbs, defining commands to be performed relative to DMA/RDMA operations across partitions. In accordance with the present disclosure, memory addresses used in the verbs are first registered, allowing the interconnect firmware and drivers to ‘pin’ the memory pages and create any translate tables needed by the hardware. Therefore the process of registering a memory segment (and de-registering) may take a large amount of time and should be done by the application during initialization and teardown of that partition, if possible. It is noted that, in embodiments where the operating system associated with a particular partition 504 limits the number of pages that may be ‘pinned’, the application 512 in that partition may see better performance by copying data buffers in an un-registered memory region to a registered memory region rather than doing a register/de-register of the new memory block.
It is noted that, in the comparison of
Furthermore, although in each of
III. API for Low-Latency Interconnect Among Partitions, Partition Management
Now referring to
An interconnection initialization operation 606 initializes an interconnect firmware that exposes an interconnect API to application software resident within the instantiated partitions. The interconnection initialization operation 606 can correspond for example, to distribution and installation of drivers at each partition, as well as instantiation of queue pairs for each anticipated partition interconnection associated with that partition. The interconnection initialization operation 606 can further include tracking memory addresses and other resource information in connection tables associated with a supporting service partition on the host computing system affiliated with the partition being instantiated and registered.
A connection completion operation 608 corresponds to completed initialization of the partitions and API (and associated firmware) used for inter-partition communication that avoids use of kernel calls or otherwise avoids use of additional interconnect layers (e.g., bypassing sockets as illustrated in
Referring now to
The work entry can take any of a number of forms. For example, the work entry could be a request for data, could be a data fulfillment work entry, or could be a notification of some system or application event or error. If the work entry included in a queue of a requesting partition is a request, the work entry in the partition fulfilling the work entry would be a data response. Accordingly, although queues are typically dedicated to a particular port and associated far-end partition, each partition could track its fulfillment of each work entry in its own queues independently of the paired partition. It is noted that send and DMA/RDMA transfers use the same verb to start the operation and require about the same number of instructions to setup the work entry. The main difference is that the receive side, for a send operation, is required to post a receive buffer for the transfer to take place. For a RDMA transfer, the receive side does not use a receive buffer (unless there is immediate data that is also transferred). It is up to the requesting application to determine the size of any receive buffers that are posted and the use of DMA/RDMA transfers versus send transfers. Note that on the receive side of a DMA/RDMA write, because no receive buffers are used that would generate a completion entry, the receiver will need some other way of being informed that the transfer has completed (poll memory, send message, other).
In addition to data send/receive requests, a number of other types of verbs are exposed by the interconnect API and can be used in such work entries. For example:
Initialization Verbs: One or more initialization verbs can be used, including those required to open an access layer and allow allocation of resources and tables for a partition, retrieve error strings, query an access layer, or set various debug parameters. Further verbs could be used to read performance monitor counters associated with an instantiated queue pair to monitor data communication statistics. Still further verbs can be used to query a partition name, query local ports visible to a partition and remote ports allowed to connect to the partition (e.g., used interconnection ports for interconnection of host systems, such as at I/O cards 518), register memory associated with a particular partition for use with DMA/RDMA accesses via a queue pair, or create queue pairs for a particular partition, or associated with a particular local port. Other verbs could be used to register such queue pairs for use, indicating that the queue pair is available for use by an application. Still further verbs could be used to inform a remote queue pair that a named queue pair is available and ready to accept messages.
Data Flow Verbs: One or more data flow verbs could also be provided by the interconnect API, for example to initiate data transfers among partitions. A post send verb posts a message or DMA/RDMA request to a queue pair to be performed. A post receive verb can be used to provide receive buffers to receive data to be provided in response to a request. A poll completion queue verb allows for polling of the completion queue (e.g., queue 510b) to obtain one or more entries from that queue.
Tear Down Verbs: One or more verbs could be used to deallocate various queues and connections among partitions, for example, a deregister memory region verb would deregister a memory region from a domain, thereby ensuring that DMA/RDMA operations are not performed on that memory region. A destroy completion queue verb removes a completion queue and frees those resources for use by other portions of a partition. Similarly, a destroy queue pair verb would destroy both the completion queue and the request queue (e.g., queues 510a-b). A deallocate protection domain verb would release a protection domain, once registered memory regions and queue pairs associated with that protection domain are removed. A close access layer verb could also be used to terminate open links to remote connections, and informs remote connections that the links are terminated. A port reset verb could reset a local port, clearing queue pairs, protection domains, and memory registrations associated with a particular port.
Structure: One or more structures could be implemented and monitored to create or destroy various structures used in connection with the interconnection firmware. A port information structure contains port information required to create queue pairs associated with a local link. An interconnection information structure includes information associated with available remote queue pairs that are registered and available to the querying partition. A queue pair settings structure maintains settings required to create a queue pair, such as queue depth and ordering. A work request status structure can be used to contain data to be retrieved from a completion queue, and determines whether a particular work order (e.g., based on a data request) has been completed. A work request type structure monitors types of work requests, which can include, for example, a write send, DMA/RDMA write, DMA/RDMA read, write receive, or other types of work requests. A still further structure maintains an enumeration of possible work order statuses, such as success, local error, remote access or remote operation errors, or bad response error indications. A work request structure can include a work request identifier and type, as well as data and a pointer to data describing a length and structure of an RDMA transfer. A corresponding work request structure could be used for a receive operation, indicating receipt of a particular work request (e.g., by work request identifier).
In addition to the above, additional structures can include a data segment entry structure describing the memory address and length of a block of memory to be transferred by a work order. A flags structure indicates options that can be used in a send request (e.g., immediate, signaled). Performance monitor structures, as well as structures about a remote port (e.g., the remote handle used to create a queue pair) are instantiated as well.
Callback Routines: A set of callback routines can also be defined, and allow an application to handle asynchronous events without requiring polling. This may include, for example, operations such as determining whether something has been added to a completion queue, or other types of events, such as rarer changes to configurations. The callback routines can include a completion queue callback which notifies when something is added to a completion queue, a doorbell callback, a destroy callback (used to confirm when queues or other structures are destroyed), or link pair request or acceptance callbacks. In general callbacks include a pointer to a structure associated with the callback, as well as the user-supplied callback.
It is noted that the verbs and structure described herein are managed as an interface between a particular partition and any data external to that partition; in other words, a workload in a partition may issue a data request in the form of a memory access external to that partition (either on the same host system or a different host system). Drivers that are included with the partition when setting up the API and its associated interconnect instantiation structures (e.g., queues, connection tables, etc.) receive such data requests and route the requests in a manner transparent to the partition, such that the request, from the perspective of the partition, is treated the same regardless of where within the overall partitioned system the data request is issued.
Referring back to
As illustrated in process 800, a client and server partition perform setup tasks 802, 804, respectively. Both the client and server partitions then call verbs to query ports and query remote ports (at operations 806, 808, respectively), thereby learning the ports that are available locally and remotely. The client saves its partition name and address at the server at operation 807, so the server knows that the client is seeking connection with the server. The server sets up a callback routing when a connection table changes at operation 810, and the client then creates a queue pair at operation 812.
In the embodiment shown, the client receives information about the queue pair at operation 814, and registers its connection at operation 816 and associated memory useable for DMA/RDMA transfers. The client updates a connection table at operation 818 to indicate that the client is capable of receiving connections from the server. This triggers the callback operation set up at operation 810. The server queries the connection, and creates a queue pair at operations 820, 822. The server performs a post receive operation 824, indicating that it is ready to receive requests. The server transmits its queue pair information to the client at operation 826, and the client accepts the connection from the server and transmits its acknowledgement at operation 828. Both the client and server can then post send requests, exchanging data at operations 830, 832, respectively.
It is noted that in
IV. Example Partition Arrangements
Referring to
As illustrated in
It is noted that, although a particular set of partition types are discussed in connection with the examples of
V. Example in-Memory Data Service Partition Across Hardware Resources
Referring now to
In particular,
Generally, and as illustrated in
In connection with
Referring now to
In
In contrast, in
In use, the arrangement of
In contrast, in
In connection with
Additionally, in some embodiments the data query partitions could generate a periodic snapshot of the database tables and data (e.g., every 5 minutes, or some other period). The data storage service partition(s) could then coordinate with database query partitions in the event a rollback or restore of the in-memory database maintained in the data partition 1650 would be required; such snapshots, whether stored to disk or otherwise captured, could be restored in the data partition 1605 by a data storage service partition.
Concurrently, one or more data storage service partitions could be used, and would manage storage of data using the control data 1657 to track locks of particular regions in memory to ensure that no conflicting storage tasks (e.g., overwriting or changing database structures) occurs. Such data storage service partitions would be used for a data restoration operation, and could be located locally to the data partition 1650, or elsewhere within an overall network of host computing systems. Furthermore, use of two or more data storage service partitions could allow for recovery of a database by restoring a recent snapshot of the database, and continuing operation with a queue of transactions associated with a non-failing partition.
In still further embodiments, it is noted that two or more data partitions 1650 could be established separately across different host computing systems 1601. In such cases, concurrent, up-to-date, duplicate copies of a particular database (or a portion thereof, such as key tables or indices) could be maintained to allow for failover in the case of data corruption. The duplicate data, as well as the co-executing data storage services or data query services partitions, could be located anywhere within a multi-host system. As such, it is recognized that the host computing systems 1601a-b can be located across different locations, and can be incorporated with additional host computing systems not shown; as such, the use of two host computing systems is intended as illustrative, rather than limiting.
In connection with
VI. Partition Instantiation and Management; Partition Zones
Referring now to
Referring now to
In the embodiment shown, a plurality of system platforms 1702 are depicted, each having an associated hardware platform 1704. The system platforms and associated hardware platforms can, in various embodiments, correspond to different host computing systems 104. Each of the system platforms 1702 includes a virtualization layer 1703 as well, such as the interconnect API discussed above.
In the embodiment shown, each platform hosts a plurality of partitions including one or more application workloads 1705 hosted on one or more operating systems 1706a-c. The system platform 1702 could also include, in various embodiments, partitions including a database 1708, file system 1710, operating system services 1712, and management services 1720 (e.g., a service partition as illustrated in
In the embodiment shown, at least one of the system platforms includes a system management server 1750. The system management server 1750 provides a web service accessible remotely from the para-virtualization system discussed herein, and provides a user interface allowing a remote user to view a listing of hardware resources and existing partitions as well as workloads executing thereon. The system management server 1750 also presents a web interface allowing the user to control workloads to be executed on other partitions or host systems, and allocation of aspects of those host systems (e.g., allocation of hardware resources, operation of the virtualization layer, partition interconnection permissions, etc.) Additionally, the system management server 1750 allows a user to view audit logs associated with the overall para-virtualization system, to see status of the overall system without requiring connection to the system by way of an API-enabled interconnect.
Management and security are also inherent to the system disclosed herein. In particular, system management server 1750 allows a user to define types of environments for each partition, and automates creation of such secure partitions. In example embodiments, partitions allocated within a particular zone could be deemed to be trusted partitions, allowed to access data within that zone as discussed herein. For example, partitions outside that zone may be required to include security features implemented for communication. By use of defined zones, a management service associated with the virtualization systems disclosed herein can provide a software definition of the areas or host systems that require a secure connection (e.g., due to being remotely located or in an unsecured location). Conversely, in some other arrangements, hosts or partitions within a particular zone may be deemed untrusted, thereby requiring those zones to have security features implemented between partitions throughout that zone.
As part of the resource allocations available by way of the system management server 1750, it is recognized that a remote (or local) user could define and manage one or more zones within the para-virtualization system. Referring back to
Guest partitions 24, 26, 28 are associated with the resource zones they require. Each host 10 is associated with the resource zones they provide. The operations service matches guests to hosts through the zones they have in common.
A partition of a network is referred to herein as a network zone. The zone is the unit of resource allocation to networks for communications (Ethernet), storage (SAN), power, etc. A logical network with zones for describing other resources may include, for example, monitor and firmware components that can be shared by all partitions. In the real world, however, it is necessary to describe which partitions should share a particular monitor or firmware implementation. Rather than define yet another mechanism, it is simpler and more powerful to apply logical network zones to these dimensions as well. The host 10 maps a logical firmware zone to a particular firmware implementation. Guest partitions 24, 26, 28 that specify a firmware channel that reference this zone will use this implementation. This allows arbitrarily complex component life cycle patterns to be modeled and yet scales down to trivial installations where only a single version of a single implementation is available.
A network zone is a collection of network gear (switches/routers/cables, such as network routing equipment 106 of
In accordance with the present disclosure, a network zone object defines an interconnected set of partitions. The control partition 14 can instantiate software Ethernet switches, routers and firewalls as necessary when partitions are activated. Hardware partitions can preload components needed to support all network zones identified by the hosted domains. A configuration with multiple host hardware partitions typically hosts different domains in different hardware partitions.
A partition configuration defines the limits of its configuration including available network channels that are associated with network zone objects. A virtual partition describes one or more configurations. Individual configurations can disable channels as necessary and override certain default configuration items. The host systems 10 are explicit in the object model. Furthermore, domains are associated with one or more host partitions, and assist in defining zones of resources. When multiple host partitions are associated with a domain, and partitions use SAN storage, policy determines the host 10 used to activate a partition.
Domain policies apply individually and collectively to the partitions in the domain. Key attributes are the importance of the partitions in the domain, maximum responsiveness requirements, as well as resource guarantees and limits of designated hosts that are divided by the partitions in the domain. Potential values for these attributes include:
Importance: (Mission Critical/Production/Test/Development):
Responsiveness: (Infrastructure, Interactive, Interactive Transactions, Batch Transactions, Batch); and
Host partitions: Available and preferred with associated resource guarantees and limits.
Domain policy is used by domain agents to prioritize resource utilization. Relative importance is of concern primarily when domains share a host hardware partition. For example, dedicating a host 10 to a development domain dedicates the host hardware to development partitions. This defines the various types of zones available in a host or grouping of host computing systems
The physical manifestation of some zone types is simply a software component, e.g. {Firmware, Monitor}. These zones allow host partitions to identify which firmware and monitor implementations are available, and guest partitions to identify component requirements or preferences. Some zone types have a physical manifestation: e.g. {Power, Processor, Memory}. These can be used to describe arbitrarily abstract available and desired capabilities of the host and guest partitions. Power zones allow guest partitions to specify specific host power sources. Processor and Memory zones allow data centers with a collection of non-uniform hosts to abstractly describe the processor and memory performance characteristics. This allows guests with the highest processor demands to be associated with the fastest host processors, and guests with greatest memory throughput demands to be associated with the hosts with fastest memory subsystems.
In connection with the present disclosure a further zone may relate to security, in particular for mission critical environments. For example, a partition's interconnect connections are stored in a partition ‘blueprint’ (along with other attributes of the partition) and a connection instance is created during the commissioning process at the same time as its other attributes. Thus the partition configuration and its visibility to other partitions via the control partition and interconnect API are ‘managed’ together. Lastly, the systems disclosed herein leverage benefits of built-in security features. For example, Fabric Interconnect ports, such as ports shown in
Relative to the zoning concept, all the partitions sharing a particular high speed interconnect configured to provide for High Availability could be grouped in one zone, whereas a partition with some combination—higher performance and density of platforms as well as tighter coupling between nodes would be appropriately identified as a Performance zone. This addresses the needs of users/workloads, which as yet are not defined or understood. Hence it will interpret and parse user requirements along with a set of SLA-driven attributes (provided by the user/workload) and position workloads in the most ‘desirable’ location (zone/node(s)) in the fabric.
As illustrated in
Once hardware and workloads are categorized, one or more domains can be defined based on the local grouping of computing resources, and which will be assigned as different types of zones. Operation 1808 associates the computing resources and domains with partitions intended to execute workloads targeted for those particular computing resources. Additionally, those partitions are then allocated to zones, for example based on importance, responsiveness, resiliency/redundancy, or other features.
It is noted that the zone-based allocation of resources can be performed using the system management server 1750 and associated web-based user interface described above in connection with
Referring now to
The host operating system 1904 operates within a secure partition 1906, which implements both interconnection to other host systems by way of the interconnect API, but also secure communication over ports 1910 and switches 1912, for example based on implementation of Stealth Data-in-Motion cryptographic data communication technologies provided by Unisys Corporation of Blue Bell, Pa. Chassis 1902b-d also implement secure partitioning software 1906, and implement specific processing systems, including a Java processor 1914 and I/O processor 1916 on chassis 1902b, 1903d and a NUSE processor 1918 and I/O processor 1916 on chassis 1902c, 1902e. In such an arrangement, the emulated system 1904 could offload processing tasks from the emulated execution core 1905 to special purpose Java and/or NUSE cores, thereby improving performance of the emulated software executing on chassis 1902a.
Referring to
Embodiments of the present invention, for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to embodiments of the invention. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
While certain embodiments of the invention have been described, other embodiments may exist. Furthermore, although embodiments of the present invention have been described as being associated with data stored in memory and other storage mediums, data can also be stored on or read from other types of computer-readable media, such as secondary storage devices, like hard disks, floppy disks, or a CD-ROM, a carrier wave from the Internet, or other forms of RAM or ROM. Further, the disclosed methods' stages may be modified in any manner, including by reordering stages and/or inserting or deleting stages, without departing from the invention.
In various embodiments, the types of networks used for communication between the computing devices that make up the present invention include, but are not limited to, an internet, an intranet, wide area networks (WAN), local area networks (LAN), and virtual private networks (VPN). In the present application, the networks include the enterprise network and the network through which the client computing device accesses the enterprise network (i.e., the client network). In one embodiment, the client network is part of the enterprise network. In another embodiment, the client network is a separate network accessing the enterprise network through externally available entry points, such as a gateway, a remote access protocol, or a public or private internet address.
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
Claims
1. A method of operation of a database in system memory within a virtual partition, the method comprising:
- instantiating a plurality of virtual partitions in one or more host computing systems, the plurality of virtual partitions including a client partition and a database partition, the database partition including system memory of one or more host computing systems, the database partition including an in-memory database maintained in the system memory;
- receiving, at the database partition, a data request from a client partition hosting a database application; and
- in response to the data request, copying data from the in-memory database into a portion of memory associated with a client partition.
2. The method of claim 14, wherein the data request is received at a database management system included in the database partition.
3. The method of claim 14, wherein copying data from the in-memory database comprises a direct memory transfer of data, thereby transferring data from the database partition to the client partition.
4. The method of claim 14, wherein copying data from the in-memory database into the portion of memory associated with the client partition includes passing a pointer to the data to the client partition to perform a direct memory access of the data.
5. The method of claim 14, wherein the database partition includes a runtime library of programming interfaces useable to address a file organization within the database partition.
6. A computer-readable storage medium comprising computer-executable instructions which, when executed on a computing system, perform a method of comprising:
- instantiating a plurality of virtual partitions in one or more host computing systems, the plurality of virtual partitions including a client partition and a database partition, the database partition including system memory of one or more host computing systems, the database partition including an in-memory database maintained in the system memory:
- receiving, at the database partition, a data request from a client partition hosting a database application, the database partition including a database manager, a data storage area, and a runtime library of programming interfaces useable to address a file organization within the database partition; and
- in response to the data request, copying data from the in-memory database into a portion of memory associated with a client partition, wherein copying data from the in-memory database comprises a direct memory transfer of data, thereby transferring data from the database partition to the client partition.
7. The computer-readable storage medium of claim 19, wherein the database partition further includes one or more execution cores.
Type: Application
Filed: Dec 19, 2013
Publication Date: Dec 4, 2014
Applicant: UNISYS CORPORATION (Blue Bell, PA)
Inventors: Stephen Guarrieri (Malvern, PA), James Hunter (Malvern, PA), John Landis (Malvern, PA), Richard Kelble (Malvern, PA)
Application Number: 14/133,808
International Classification: G06F 17/30 (20060101);