SYSTEM AND METHOD FOR COOLING OF AN AFTERTREATMENT MODULE

A cooling system for an aftertreatment module located within an enclosure is provided. The cooling system includes an exhaust outlet line and a venturi arrangement provided in cooperation with the exhaust outlet line. The venturi arrangement is spaced from a downstream portion of the exhaust outlet line. Moreover, the venturi arrangement relative to the downstream portion of the exhaust outline line is configured to expel heated air from the enclosure.

Latest Caterpillar Global Mining Expanded Products Pty Ltd Patents:

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present disclosure relates to a cooling system, and more particularly to a system and method for cooling of an aftertreatment module located within an enclosure of a machine.

BACKGROUND

An aftertreatment module is installed on a variety of machines for meeting emission standard requirements. During operation, the aftertreatment module has a tendency to generate large amounts of heat energy. Moreover, the heat generated by the aftertreatment module may lead to an overall increase in temperature within an enclosure of the machine in which the aftertreatment module is housed. Other components, such as, for example, electronic controls present within the enclosure may need to be maintained below a specific temperature for proper functioning. Accordingly, a cooling system may be provided in association with the aftertreatment module in order to dissipate the heat generated by the aftertreatment module.

For example, U.S. Pat. No. 7,793,495 relates to an exhaust system for a motor vehicle engine including mixing vent flaps in the exhaust pipe which open responsive to exhaust temperature. The vent flap forms a portion of the exhaust pipe when closed and is pivotally attached along one edge to the exhaust pipe to open inwardly into the exhaust pipe to constrict and accelerate flow in the pipe to allow outside air to be drawn into the exhaust pipe. A magnetic catch latches the vent flap in its closed position and a magnetic release responsive to increased temperature of the exhaust stream releases the vent flap.

In association with certain machine designs such as underground mining machines, the overall machine footprint must be kept within a certain envelope to fit the machine in narrow mine shafts. This in turn affects the relative size of the engine enclosure which is severely compact and often slightly larger than the engine and aftertreatment module provided therein. The close proximity and high heat generated in such a confined space with little or no means to expel the heat can easily cause component failure, loss of engine performance and limited life of the engine and aftertreatment module and components in proximity thereof.

SUMMARY OF THE DISCLOSURE

In one aspect of the present disclosure, a cooling system for an aftertreatment module located within an enclosure is provided. The cooling system includes an exhaust outlet line and a venturi arrangement provided in cooperation with the exhaust outlet line. The venturi arrangement is spaced from a downstream portion of the exhaust outlet line. Moreover, the venturi arrangement relative to the downstream portion of the exhaust outline line is configured to expel heated air from the enclosure.

In another aspect, a method for cooling an aftertreatment module located within an enclosure is provided. The method provides a venturi arrangement in cooperation with an exhaust outlet line of the aftertreatment module. The venturi arrangement is spaced from a downstream portion of the exhaust outlet line. The method draws in heated air within the enclosure into the space between the venturi arrangement and the downstream portion of the exhaust outlet line. The method expels the heated air from the enclosure.

In yet another aspect, a machine is provided. The machine includes a power source and a frame. The machine also includes an aftertreatment module mounted within an enclosure located on the frame. Further, the machine includes a cooling system for the aftertreatment module. The cooling system includes an exhaust outlet line and a venturi arrangement provided in cooperation with the exhaust outlet line. The venturi arrangement is spaced from a downstream portion of the exhaust outlet line. Moreover, the venturi arrangement relative to the downstream portion of the exhaust outline line is configured to expel heated air from the enclosure.

Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an exemplary machine including an aftertreatment module, according to one aspect of the present disclosure;

FIG. 2 is a perspective view of a cooling system for the machine shown in FIG. 1;

FIG. 3 is a perspective view of a venturi arrangement of the cooling system; and

FIG. 4 is a flowchart of a method for cooling of the aftertreatment module present within an enclosure of the machine.

DETAILED DESCRIPTION

Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or the like parts. FIG. 1 represents an exemplary machine 100, according to one embodiment of the present disclosure. More specifically, as shown in the illustrated embodiment, the machine 100 may embody an underground wheel loader. It should be understood that the machine 100 may alternatively include other mining, transportation, forestry or any other industrial, agricultural or construction machinery.

Referring to FIG. 1, the machine 100 may include a chassis and/or a frame 102. A powertrain or a drivetrain (not shown) may be provided on the machine 100 for the production and transmission of motive power. The powertrain may include a power source (not shown) and may be located within an enclosure 104 of the machine 100. The power source may include one or more engines, power plants or other power delivery systems like batteries, hybrid engines, and the like. It should be noted that the power source could also be external to the machine 100. A set of ground engaging members 106, such as wheels, may also be provided on the machine 100 for the purpose of mobility. The powertrain may further include a torque converter, transmission inclusive of gearing, drive shaft and other known drive links provided between the power source and the set of ground engaging members 106 for the transmission of motive power. Further, the machine 100 may include an operator cabin 108 which may house various controls for operating the machine 100.

As shown in FIG. 1, the machine 100 may have a linkage assembly 110 attached to the frame 102. The linkage assembly 110 may include a lift arm 112. An implement, such as a bucket 114, may be pivotally coupled to the lift arm 112. It may be noted that the linkage assembly 110 and the implement of the machine 100 may vary based on the type of machine 100, the type of operation or task required to be carried out by the machine 100. Further, the machine 100 may include an air induction system (not shown) and an exhaust system. The air induction system may be configured to direct air or an air/fuel mixture into the power source for subsequent combustion.

The exhaust system may treat and discharge byproducts of the combustion process to the atmosphere. The exhaust system may include components that condition and direct exhaust from cylinders of the power source to the atmosphere. For example, and is best seen in FIG. 2, an aftertreatment module 118 of the exhaust system is connected to receive and treat exhaust from the power source. The aftertreatment module 118 may treat, condition, and/or otherwise reduce constituents of the exhaust before the exhaust is discharged to the atmosphere.

Referring to FIG. 2, the aftertreatment module 118 may be located within the enclosure 104 present on the machine 100. As shown in the accompanying figures, the enclosure 104 may be provided on a side surface of the frame 102 of the machine 100. In one embodiment, a hooded structure 120 may be positioned on the frame 102 of the machine 100 and extend above the enclosure 104. The hooded structure 120 may include a plurality of openings 122 configured to allow airflow into and out of the enclosure 104.

The aftertreatment module 118 may include one or more components such as, for example, a diesel oxidation catalyst (DOC) chamber, a DEF injector and a selective catalyst reduction (SCR) device. Specifically, the aftertreatment module 118 may include two canisters 201 that are positioned within the compact engine enclosure 104. These canisters 201 may be required either for compliance with Tier 4 or machines subject to strict low emission standards. The canisters 201 may generate a significant amount of heat that, in turn, may increase the already high temperature within the enclosure 104. During operation, there may be a rise in a temperature of the aftertreatment module 118. This increase in temperature may be attributed to various reasons, for example, due to combustion processes taking place inside the auxiliary regeneration device (ARD) and the DOC chamber. Moreover, the rise in the temperature of the components of the aftertreatment module 118 may cause an overall increase in the temperature of the environment surrounding the aftertreatment module 118 placed within the enclosure 104.

The present disclosure relates to a cooling system for the aftertreatment module 118. The cooling system may be provided in association with an exhaust outlet line 202 of the aftertreatment module 118. The exhaust outlet line 202 may be configured to release exhaust gas discharged from the aftertreatment module 118 into the atmosphere. The exhaust outlet line 202 may have a hollow tube-like structure and may be made of any suitable heat resistant material like a metal, a polymer, and so on. Further, the exhaust outlet line 202 includes a first section 204 and a second section 206. In the illustrated embodiment, a first end 208 of the first section 204 of the exhaust outlet line 202 may be in fluid communication with an outlet port 210 of the aftertreatment module 118.

A venturi arrangement 212 may be spaced from a downstream portion of the exhaust outlet line 202, hereinafter referred to as a second end 214 of the exhaust outlet line 202. The venturi arrangement 212 may be coupled to the first section 204 of the exhaust outlet line 202 using any known mechanical fastener means. For example, a snap ring, an ‘O’ ring, a bolted fitting or any other known snap and fit arrangement may be used to couple the venturi arrangement 212 to the second end 214 of the exhaust outlet line 202. In one embodiment, the venturi arrangement 212 may be integrated or molded with the second end 214 of the exhaust outlet line 202. More specifically, one end of the venturi arrangement 212 proximal to the first section 204 of the exhaust outlet line 202 may have a diameter substantially same as a diameter of the first section 204 of the exhaust outlet line 202. A distal end 216 of the venturi arrangement 212 may be provided in association with the second section 206 of the exhaust outlet line 202.

FIG. 3 illustrates an exploded perspective view of the venturi arrangement 212 and the second section 206 of the exhaust outlet line 202. The venturi arrangement 212 may include a hollow tube like structure made of any suitable material like a metal or a polymer. The distal end 216 of the venturi arrangement 212 may be located within the second section 206 of the exhaust outlet line 202. Accordingly, a diameter of the second section 206 of the exhaust outlet line 202 may be substantially larger than the diameter of the distal end 216 of the venturi arrangement 212. The venturi arrangement 212 may serve as transition piece for conveying the exhaust gas flow from the first section 204 to the second section 206 of the exhaust outlet line 202.

It should be noted that the venturi arrangement 212 may be provided in fluid communication with the second section 206 of the exhaust outlet line 202. Moreover, the venturi arrangement 212 may be in a concentric alignment with the second section 206 of the exhaust outlet line 202. In one embodiment, a plurality of support structures in the form of rods, arms, clips, or extension members may be provided in connection with the venturi arrangement 212 and the second section 206 of the exhaust outlet line 202 in order to maintain the concentric alignment of the venturi arrangement 212 with respect to the second section 206. For example, support arms may be coupled to a base plate 218 of the enclosure 104 and the venturi arrangement 212 in order to securely hold the venturi arrangement 212 in place.

A person of ordinary skill in the art will appreciate that the combination of the venturi arrangement 212 and the second section 206 of the exhaust outlet line 202 is configured to cause a substantial drop or decrease in pressure of the exhaust gas flow entering into the second section 206 of the exhaust outlet line 202. Thus, a suction may be created due to a venturi effect in an area proximate to a junction of the venturi arrangement 212 and the second section 206 of the exhaust outlet line 202. This suction may draw heated air present within the enclosure 104 into the second end 206 of the exhaust outlet line 202. Arrows shown in FIG. 2 are indicative of the direction of flow of the heated air present within the enclosure 104.

Further, the second section 206 of the exhaust outlet line 202 may have a hollow configuration and may be configured to receive the exhaust gas flow mixed with the heated air flow which is drawn into the second section 206 from within the enclosure 104. A vent 302 may be provided in fluid communication with the second section 206 of the exhaust outlet line 202. The vent 302 may be configured to allow the exhaust gas and heated air to be released or expelled from within the enclosure 104 into the atmosphere. The expulsion of the exhaust gas and the heated air is shown with the help of arrows in FIG. 2.

One of ordinary skill in the art will appreciate that the plurality of the openings 122 provided on the hooded structure 120 may be configured to facilitate airflow of relatively cool ambient air into the enclosure 104 in order to provide cooling circulation to the enclosure 104 and to avoid vacuum effect that may be created due to the drawing in of the heated air into the second section 206 of the exhaust outlet line 202. These openings 122 should be disposed within the enclosure 104 in relation to the venturi arrangement 212 in such a manner so as to prevent interference with the operation of the venturi arrangement 212. Alternatively, one or more apertures may be provided at suitable locations on walls of the enclosure 104 in order to provide the necessary airflow.

In one embodiment, one or more ports 304 may be provided on the venturi arrangement 212 to allow fluid communication with other exhaust gas outlets present in the system. Parameters related to the exhaust outlet line 202 and the venturi arrangement 212 such as the shape, dimensions, diameter, material used, and so on may vary based on the system requirements. In the illustrated embodiment, the first and second sections 204, 206 of the exhaust outlet line 202 and the venturi arrangement 212 have a substantially horizontal orientation within the enclosure 104. The orientation and positioning of the first and second sections 204, 206 of the exhaust outlet line 202 and the venturi arrangement 212 shown in the accompanying figures is exemplary and does not limit the scope of the present disclosure. Also, in one embodiment, a plurality of the above described venturi arrangements 212 may be provided in association with multiple exhaust outlets present in the system.

A method 400 for cooling the aftertreatment module 118 located within the enclosure 104 will be discussed in connection with FIG. 4.

INDUSTRIAL APPLICABILITY

The present disclosure relates to the cooling system for the aftertreatment module 118. FIG. 4 illustrates the method 400 for the cooling of the aftertreatment module 118. At step 402, the venturi arrangement 212 may be provided in cooperation with the exhaust outlet line 202 such that the venturi arrangement 212 is spaced from the downstream portion of the exhaust outlet line 202. It is envisioned that the venturi arrangement 212 and an associated exhaust receiving conduit may be configured and attached as a single unit and disposed within the exhaust outlet line 202 or in any other manner known to those with ordinary skill in the art. More specifically, the exhaust gas flow may exit through the outlet port 210 of the aftertreatment module 118 and flow into the first section 204 of the exhaust outlet line 202.

As discussed earlier, during operation, the aftertreatment module 118 and the surrounding environment within the enclosure 104 housing the aftertreatment module 118 is typically subject to extremely elevated temperature generated by the aftertreatment module 118. Hence, the compact enclosure 104 contains heated air that would otherwise stagnate and not provide cooling without the cooling structure of the present disclosure.

At step 404, the heated air from within the enclosure 104 may be drawn serially into the space between the venturi arrangement 212 and the downstream portion of the exhaust outlet line 202, and then into the second section 206 of the exhaust outlet line 202. It should be noted that the construction and positioning of the venturi arrangement 212 with respect to the second section 206 of the exhaust outlet line 202 may be provided in such a manner that the venturi effect may be created due to the reduction in the diameter of the venturi arrangement 212. The heated air may be drawn into the second section 206 of the exhaust outlet line 202 due to the venturi effect caused by the flow of exhaust gases exiting the venturi arrangement 212 and triggering the suction of heated enclosure air through the space between the reduced diameter venturi arrangement 212 and the dilated opening of the second section 206 of the exhaust outlet line 202.

At step 406, the heated air once combined with the exhaust gases may be expelled from the enclosure 104. In one embodiment, the heated air may be expelled via the vent 302 which is provided downstream of the second section 206 of the exhaust outlet line 202. The heated air being drawn into the venturi arrangement 212 then causes the cool ambient air to be drawn into the enclosure 104 from the plurality of openings 122 within the hooded structure 120. It will be appreciated that this circulatory movement which draws in cool air and expels the heated air otherwise trapped in the enclosure 104 is especially advantageous for compact enclosure constructs which are typically associated with certain machine types such as, for example, underground mining machines 100, where overall machine profile size limits engine enclosure capacity.

While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.

Claims

1. A cooling system for an aftertreatment module located within an enclosure, the cooling system comprising:

an exhaust outlet line; and
a venturi arrangement provided in cooperation with the exhaust outlet line, the venturi arrangement being spaced from a downstream portion of the exhaust outlet line, wherein the venturi arrangement relative to the downstream portion of the exhaust outline line is configured to expel heated air from the enclosure.

2. The cooling system of claim 1, wherein the exhaust outlet line further comprises a first section and a second section, the second section provided downstream of the first section, wherein the first section and the second section are in fluid communication via the venturi arrangement.

3. The cooling system of claim 2, wherein the first section is connected to an outlet port of the aftertreatment module.

4. The cooling system of claim 2, wherein the venturi arrangement is coupled to the first section using a mechanical fastener.

5. The cooling system of claim 2, wherein the first section and the second section are made of metal.

6. The cooling system of claim 1 further comprising a plurality of support structures provided in association with the venturi arrangement, the plurality of support structures configured to maintain a concentric alignment of the venturi arrangement with respect to the downstream portion of the exhaust outlet line.

7. The cooling system of claim 1 further comprising a hooded structure which at least partially defines the enclosure and having at least one opening disposed therein, whereby air is circulated through the enclosure through the at least one opening in response to the heated air being drawn into the space between the venturi arrangement and the downstream portion of the exhaust outlet line.

8. The cooling system of claim 1 further comprising a vent provided on the enclosure and in cooperation with the downstream portion of the exhaust outlet line, the vent being configured to release the heated air from the enclosure.

9. The cooling system of claim 1, wherein the venturi arrangement is made of metal.

10. A method for cooling an aftertreatment module located within an enclosure, the method comprising:

providing a venturi arrangement in cooperation with an exhaust outlet line of the aftertreatment module, the venturi arrangement being spaced from a downstream portion of the exhaust outlet line;
drawing in heated air within the enclosure into the space between the venturi arrangement and the downstream portion of the exhaust outlet line; and
expelling the heated air from the enclosure.

11. A machine comprising:

a power source;
a frame;
an aftertreatment module mounted within an enclosure located on the frame; and a cooling system for the aftertreatment module, the cooling system comprising: an exhaust outlet line; and a venturi arrangement provided in cooperation with the exhaust outlet line, the venturi arrangement being spaced from a downstream portion of the exhaust outlet line, wherein the venturi arrangement relative to the downstream portion of the exhaust outline line is configured to expel heated air from the enclosure.

12. The machine of claim 11, wherein the exhaust outlet line further comprises a first section and a second section, the second section provided downstream of the first section, wherein the first section and the second section are in fluid communication via the venturi arrangement.

13. The machine of claim 12, wherein the first section is connected to an outlet port of the aftertreatment module.

14. The machine of claim 12, wherein the venturi arrangement is coupled to the first section using a mechanical fastener.

15. The machine of claim 12, wherein the first section and the second section are made of metal.

16. The machine of claim 11 further comprising a plurality of support structures provided in association with the venturi arrangement, the plurality of support structures configured to maintain a concentric alignment of the venturi arrangement with respect to the downstream portion of the exhaust outlet line.

17. The machine of claim 11 further comprising a hooded structure which at least partially defines the enclosure and having at least one opening disposed therein, whereby air is circulated through the enclosure through the at least one opening in response to the heated air being drawn into the space between the venturi arrangement and the downstream portion of the exhaust outlet line.

18. The machine of claim 11 further comprising a vent provided on the enclosure and in cooperation with the downstream portion of the exhaust outlet line, the vent being configured to release the heated air from the enclosure.

19. The machine of claim 11, wherein the venturi arrangement is made of metal.

Patent History
Publication number: 20140360167
Type: Application
Filed: May 20, 2014
Publication Date: Dec 11, 2014
Applicant: Caterpillar Global Mining Expanded Products Pty Ltd (New South Wales)
Inventors: Rajesh Arani (Vasugi Nagar), Mohamed Ibrahim Sabibullah (Medavakkam), Venkatraman Podiyanagaswamy (Aurora, IL), Guillaume Bourgoin (Burnie), Jeffery Mohamed Othman (Naperville, IL)
Application Number: 14/282,845
Classifications
Current U.S. Class: Anti-pollution (60/274); Exhaust Gas Or Exhaust System Element Heated, Cooled, Or Used As A Heat Source (60/320)
International Classification: F01N 13/00 (20060101);