BEAD DISPENSER

An apparatus for storing and dispensing beads is provided. The apparatus includes a turn table located in a loading chamber and on which the beads are kept for dispensing, wherein the turn table includes a central opening and a plurality of protrusions that enable an agitation and a guidance of the beads towards the central opening during a spinning of the turn table, a wheel rotationally mounted in the housing that includes a cavity formed at a circumferential edge. The apparatus further includes an actuator for manually triggering a vertical rotation of the wheel so as to move the cavity from a first alignment position with the transition channel to a second alignment position with a dispensing hole to dispense there through one of the items stored in the cavity, and for triggering the spinning of the turn table to agitate and dispense the beads through the central opening.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
REFERENCE TO RELATED APPLICATIONS

This application claims the benefit and priority from U.S. Provisional Patent Application No. 61/840,274, filed on Jun. 27, 2013, the disclosure of which is incorporated herein by reference in its entirety

BACKGROUND

A typical bead dispenser includes a plunger housed in a chamber that has a lower exit opening that is horizontally misaligned relative to an upper feed hole into the chamber. The plunger has a receptacle hole for receiving a bead that is aligned with the upper feed hole in a non-actuated position of the plunger. A manual actuation of the plunger horizontally displaces the plunger within the chamber such that a bead carried in the plunger receptacle hole is carried to and over the lower exit opening in the chamber whereby the bead can drop out of the dispenser device.

A conventional pill dispenser includes a threaded neck and a central funnel portion by which pills can be directed to an opening. At the bottom of the opening is a slide having a stop portion which prevents the pills from being discharged from the pill dispenser. When the slide is depressed, the stop is moved and the pill is discharged from the opening. However, as one of ordinary skill in the art would know, the funnel may become blocked or bridged by several pills.

Another conventional pill dispenser includes a dispenser mechanism having a sliding plate disposed between a reservoir and a base plate. The sliding plate, reservoir and base plate all have corresponding holes therein, and the sliding plate is biased by a spring. When the sliding plate is moved, all of the holes between the sliding plate, reservoir and base are aligned within one another so as to allow several pills to be simultaneously discharged from the dispenser. However, it appears that the pills may block the holes of the sliding plate such that the pills cannot be properly dispensed therefrom.

Moreover, many prior art devices require complex mechanizations, the use of two hands and/or a manual strength to dispense the beads. This can be particularly difficult for the elderly, infirm, or handicapped individuals who cannot assert the necessary pressure.

Accordingly, there is a need for a bead dispensing device that is capable of ensuring that beads do not block or otherwise bridge a bead receiving channel, which would otherwise result in a flawed bead distribution, and can be operated single-handedly with a slight amount of pressure.

SUMMARY

Disclosed herein is an apparatus for dispensing beads that enables a user to quickly fill and dispense beads effortlessly.

In one embodiment of the present disclosure, the apparatus for storing and dispensing items includes a loading chamber situated at an upper end of a housing of the apparatus and used for storing the items to be dispensed, a turn table located in the loading chamber and on which the loaded items are kept for dispensing, wherein the turn table includes a central opening and a plurality of protrusions that enable an agitation and a guidance of the loaded items towards the central opening during a spinning of the turn table, and a wheel rotationally mounted in the housing near a lower end of the housing, wherein the wheel includes a cavity formed at a circumferential edge of the wheel for storing one of the items received from the turn table through a transition channel, and wherein the wheel includes a shaft that extends centrally in opposite directions from each side of the wheel. The apparatus further includes an actuator for manually triggering a vertical rotation of the wheel so as to move the cavity from a first alignment position with the transition channel to a second alignment position with a dispensing hole to dispense there through one of the items stored in the cavity, and for triggering the spinning of the turn table to agitate and dispense the loaded items through the central opening.

In an additional embodiment, the turn table includes a hollow cylindrical protrusion extending from a bottom surface and having vertical teeth extending radially and outwardly, wherein the shaft includes a cylindrical protrusion having horizontal teeth extending radially and outwardly, and wherein the actuator includes a vertical body having at an upper end a set of vertical teeth facing sideways and configured to engage with the vertical teeth of the turn table teeth, and at a lower end a set of horizontal teeth facing downwards and configured to engage with the horizontal teeth of the wheel.

In an additional embodiment, the apparatus further includes a tube element that fits within the central opening, wherein the tube element includes a top part that includes two diametrically opposed openings formed by two vertical walls and a cover that is connected to top ends of the two vertical walls.

In yet another embodiment, the transition channel is configured to provide a pathway for the beads between the central opening of the turn table and the cavity of the wheel, and is shaped as a cylindrical tube that is sized and shaped to contain a single line of beads.

Additional features, advantages, and embodiments of the present disclosure may be set forth or apparent from consideration of the following attached detailed description and drawings. Moreover, it is to be understood that both the foregoing summary of the present disclosure and the following detailed description of figures are exemplary and intended to provide further explanation without limiting the scope of the present disclosure as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an elevated perspective view of one exemplary embodiment of a bead dispensing device of the present disclosure.

FIGS. 2A-2B are schematic diagrams illustrating two different elevated perspective views of the bead dispensing device of FIG. 1;

FIG. 3 is illustrates an elevated perspective view of two separated halves of bead dispensing device of FIG. 1 and its internal active components;

FIGS. 4A-4B are schematic diagrams illustrating top and side perspective views, respectively, of an exemplary embodiment of a turn table of the bead dispensing device of FIG. 1;

FIGS. 5A-5B are schematic diagrams illustrating two different elevated side perspective views of a tube that can fit in a central opening of the turn table of FIGS. 4A-4B;

FIGS. 5C-5D are schematic diagrams illustrating top and bottom perspective views, respectively, of the tube of FIGS. 5A and 5B;

FIGS. 6A-6B are two schematic diagrams illustrating top and side perspective views, respectively, of an exemplary embodiment of a dispensing wheel of the bead dispensing device of FIG. 1;

FIGS. 7A-7C are schematic diagrams illustrating three different elevated side perspective views of an exemplary embodiment of an actuator of the bead dispensing device of FIG. 1;

FIG. 8 is an elevated perspective view of the bead dispensing device of FIG. 1 with the actuator in an un-pressed state; and

FIG. 9 is an elevated perspective view of the bead dispensing device of FIG. 1 with the actuator in a pressed state.

These drawings illustrate embodiments of the present disclosure and together with the detailed description serve to explain the principles of the disclosure. No attempt is made to show structural details of the present disclosure in more detail than may be necessary for a fundamental understanding of the disclosure and the various ways in which it may be practiced.

DETAILED DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and detailed in the following attached description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the present disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the present disclosure may be practiced and to further enable those of ordinary skills in the art to practice the embodiments of the present disclosure. Accordingly, the examples and embodiments herein should not be construed as limiting the scope of the present disclosure, which is defined solely by the appended claims and applicable law. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.

FIGS. 1-9 are directed to an exemplary embodiment of a bead dispensing device, which is sized and shaped to be held in one hand of a user, for use in dispensing beads onto a surface. Now referring to FIGS. 1-3, an exemplary embodiment of a bead dispensing device 100 is shown. Bead dispensing device 100 is configured to hold beads that are desired to be dropped on or affixed to a surface. For example, the beads may be Perler Beads® used in crafting.

As shown in FIGS. 1-3, bead dispensing device 100 includes a loading end 101, and a dispensing end 103. Loading end 101 includes a loading chamber 102 that includes therein a turn table 104, to be described in detail hereafter, which is configured during a bead dispensing activity triggered by a pressing/pushing on an actuator 106, hereafter referred to as a push button, by the user to agitate and/or stir the loaded beads so as to facilitate moving loose beads into a tube element 108 that facilitates a dropping of the beads along an appropriate spatial orientation into a transition channel 110 that channels the beads to a cavity 114 of a dispensing wheel 112, which feeds beads via cavity 114 to a dispensing opening/hole 113 that is located at dispensing end 103.

As shown, in one exemplary embodiment bead dispensing device 100 includes a cap 116 that defines internally loading chamber 102. Cap 116 includes a cap opening 118 through which the beads can be loaded. The beads can be loaded by scooping bead dispensing device 100 into a container of beads, holding cap opening 118 under a bulk dispensing device or funnel, and the like.

As shown, cap 116 may engage a top end of the main body of bead dispensing device 100 by screwing on, snapping on, utilizing a friction fit and the like. Cap 116 may include a rotatable cover 120 to seal/close cap opening 118, thereby preventing the loaded beads from spilling out. Alternatively, cap 118 may be sealed or closed by a slidable flap, a hinged flap, and the like. In one embodiment, bead dispensing device 100 may not have a cap, leaving the main body with an uncovered loading end 101 thereby permitting a loading and unloading of beads at any time without opening or removing a cap.

Now referring to FIGS. 3 and 4A-4B, turn table 104 is configured to have a slightly slanted top surface 401 from a circumference to a central opening 402 to facilitate the feeding/sliding of the beads into openings 109 of tube 108, which is configured to fit within central opening 402. Turn table 104 further includes a plurality of angularly distributed protrusions 404, each of which may have a triangular shape with angled sides oriented towards the center of turn table 104, thereby enhancing a sliding movement of the beads towards tube 108 during agitation of the beads generated by a spinning of turn table 104. Moreover, turn table 104 includes a plurality of radial protrusions 406 that also angularly distributed, each of which is positioned between two adjacent triangular protrusions 404. Alternatively, turn table 104 may include a plurality of angularly distributed radial grooves that have a narrowing shape from the outside circumference of turn table 104 to central opening 401 when getting closer to tube 108.

As shown in FIG. 4B, turn table 104 includes a hollow cylindrical extension 408 that extends from a lower surface 410 of turn table 104, is coaxial with central opening 402, and has a smaller diameter than that of turn table 104. Cylindrical extension 408 further includes a circumferentially serrated external surface that forms extension teeth 412, hereafter referred to as turn table teeth 412.

Turn table 104 can be placed on the top end of bead dispensing device 100, when cap 116 is not affixed to it, where it is rotationally supported by an internal circular flange or ridges. Turn table 104 and the device's circular flange may be made of a plastic having low friction properties, thereby permitting turn table 104 to spin easily within loading chamber 102.

Now referring to FIGS. 5A-5B, an exemplary embodiment of tube 108 is shown. Tube 108 includes a top part 502 and a bottom part 504 that are separated by a circumferential flange 506. As shown, top part 502 includes two openings 109 that face each other diametrically and are formed by two vertical walls 510 and a cover 512 that is connected to the top ends of vertical walls 510. Each of openings 109 is a bit taller and/or wider than a longest side of a bead to accept there through one bead at a time when moved towards central opening 402 during a spinning of turn table 104.

As shown in FIG. 5D, bottom part 504 includes four angularly distributed and radially extending protrusions 514, which are configured to fit into four vertical grooves (not shown) formed in central opening 402 of turn table 104. The fitting of tube protrusions 514 into the vertical grooves insures that tube 108 spins along with turn table 104 when the spinning of the latter is triggered by the user. Moreover, a diameter of circumferential flange 506 is smaller than that of a top end of central opening 402, so that flange 506 also enters central opening 402 when tube 108 is placed there within, and a bottom surface 516 can be supported by an internal protruding circular flange 403 of central opening 402. In addition, flange 506 has a thickness that enables a top surface 518 of flange 506 to not be higher than a central edge of turn table 104 when bottom part 504 of tube 108 is fitted within central opening 402.

Now referring to FIGS. 6A-6B, two schematic diagrams illustrate top and side perspective views, respectively, of an exemplary embodiment of dispensing wheel 112 of bead dispensing device 100. As shown, dispensing wheel 112 includes a substantially circular part/body 602 and a shaft 604 that extends centrally in opposite directions from each side of dispensing wheel 112. As stated above, dispensing wheel 112 includes cavity 114 that is formed at least partially at a circumferential location. Cavity 114, which can be cylindrical, is large enough to accept there within a single bead, and has preferably rounded edges at its top end to facilitate the sliding or falling of beads there within. In one embodiment, cavity 114 may be formed with a vertically positioned opening (not shown) facing away from dispensing wheel 112 to allow for visual confirmation of a presence of a bead there within. Alternatively, cavity 114 may include a glass-like see-through portion also facing away from dispensing wheel 112.

As shown, shaft 604 includes a multitude of circular flanges 606, each of which is located at one of its opposite ends. Shaft 604 further includes a cylindrical protrusion 608 formed with a circumferentially serrated external surface that forms extension teeth 610, hereafter referred to as dispensing wheel teeth 610.

To enable a rotation of dispensing wheel 112, dispensing device 100 includes a pair of bearings formed on its internal walls and on which opposite ends of shaft 604 can be mounted. In one embodiment, the bearings may be cylindrical to rotationally accept there within the ends of shaft 604. Alternatively, the bearings may be semicircular with grooves in which circular flanges 606 can be rotationally supported.

Now referring to FIGS. 7A-7C, three schematic diagrams illustrate three different elevated side perspective views of an exemplary embodiment of push button 106 of bead dispensing device 100. As shown, push button 106 includes a substantially vertical body 702 from which extends sideways a contact member 704 that the user presses to dispense beads. Moreover, vertical body 702 includes at an upper end 706 a set of vertical teeth 708 facing sideways and configured to engage with turn table teeth 412, and at a lower end 710 a set of horizontal teeth 712 facing downwards and configured to engage with dispensing wheel teeth 610. In addition, push button 106 includes a groove 714 in a vertical middle area, which in turn includes a notch 716 that extends from a rear end of groove 714. Notch 716 is configured to communicate with a spring (not shown) that is used to bias push button 106 to a resting position after the user stops pressing push button 106.

As stated above, bead dispensing device 100 includes transition channel 110 positioned in a middle portion between a lower end of tube 108 and an opening of cavity 114 of dispending wheel 112, in which the beads can be arranged in a vertical line. As such, transition channel 110 provides a pathway for loading and storing beads in a particular orientation in order to provide an accurate and efficient dispensing of the beads. Transition channel 110 is preferably a cylindrical tube that is sized and shaped to contain a single line of beads having the same orientation. Alternatively, any other suitable size and shape may be used for transition channel 110.

During operation, the user will hold bead dispensing device 100 in one hand and remove or open cap 116. The user will then scoop bead dispensing device 100 into a container of beads, filling loading chamber 102 with a desired amount of beads. Once loading chamber 102 is loaded with a desirable amount of beads, the user will replace or close cap 116. To dispense the beads, the user holds dispensing end 103 of bead dispensing device 100 over a desired surface, such as a previously placed glue area, and presses push button 106 from a resting position, as shown in FIG. 8, to a fully-pressed position, as shown in FIG. 9. Pressing push button 106 causes bead dispensing device 100 to simultaneously agitate the beads in loading chamber 102 via a spinning of turn table 104, drop at least one bead in transition channel 110, and dispense one bead already stored in cavity 114 onto the surface.

When pressed by the user, push button 106 presses via notch 716 the above-discussed spring, which pushes back/biases push button 106 to its resting position after the user stops pressing push button 106. Then when push button 106 is biased back to its resting position, transition channel 110 is aligned again with cavity 114 thereby enabling a loading of another bead into cavity 114 if there was at least one bead in transition channel 110, thereby enabling a shift down by one bead length of the beads still in transition channel 110.

Moreover, during operation, when push button 106 is pressed into dispensing device 100 turn table 104 is configured to spin clockwise or counterclockwise horizontally, and dispensing wheel 112 is configured to spin vertically about 180 degrees to line up the opening of cavity 114 with an upper end of dispensing hole 113 to dispense a bead stored in cavity 114.

During the returning movement of push button 106 to its resting position, turn table 104 is configured to spin backward in a counterclockwise or clockwise manner, thereby agitating again beads remaining thereon to feed at least one of them into transition channel 112, and dispensing wheel 112 is also configured to spin backward to line up the opening of cavity 114 with the bottom end of transition channel 110.

In one exemplary embodiment, a series of partial pressings of push button 106 can enable a continuous filling of transition channel 110 without any dispensing of beads via dispensing wheel 112 because each partial pressing does not enable a line-up of cavity 114 with dispensing hole 113.

In an alternate exemplary embodiment of the present disclosure, in order to dispense more than one bead (for example three beads) during a single full pressing of push button 106, dispensing wheel 112 may include three cavities distributed within a particular arc along its circumference. Push button 106 is configured to have a longer sliding length within dispensing device 100 when pressed by the user and a wider teethed lower end so as to rotate dispensing wheel 112 more than 180 degrees when fully pressed by the user, thereby enabling a sequential alignment of the three cavities with dispensing hole 113. Moreover, the user may be able to release only one bead by pressing push button 106 into dispensing device 100 for a first length that is equal to about one third of its longer sliding length, or two beads by pressing push button 106 for a second length that is equal to about two thirds of its longer sliding length.

While the present disclosure has been described in terms of exemplary embodiments, those skilled in the art will recognize that the present disclosure can be practiced with modifications in the spirit and scope of the appended claims. For example, dispensing of the beads may be gravity based, spring based and the like. These examples given above are merely illustrative and are not meant to be an exhaustive list of all possible designs, embodiments, applications or modifications of the present disclosure.

A person of ordinary skill in the art would appreciate the features of the individual embodiments, and the possible combinations and variations of the components. A person of ordinary skill in the art would further appreciate that any of the examples could be provided in any combination with the other examples disclosed herein. Additionally, the terms “first,” “second,” “third,” and “fourth” as used herein are intended for illustrative purposes only and do not limit the embodiments in any way. Further, the term “plurality” as used herein indicates any number greater than one, either disjunctively or conjunctively, as necessary, up to an infinite number. Additionally, the word “including” as used herein is utilized in an open-ended manner.

While the foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings.

Claims

1. An apparatus for storing and dispensing items comprising:

a loading chamber situated at an upper end of a housing of the apparatus and used for storing the items to be dispensed;
a turn table located in the loading chamber and on which the loaded items are kept for dispensing, wherein the turn table includes a central opening and a plurality of protrusions that enable an agitation and a guidance of the loaded items towards the central opening during a spinning of the turn table;
a wheel rotationally mounted in the housing near a lower end of the housing, wherein the wheel includes a cavity formed at a circumferential edge of the wheel for storing one of the items received from the turn table through a transition channel, and wherein the wheel includes a shaft that extends centrally in opposite directions from each side of the wheel; and
an actuator for manually triggering a vertical rotation of the wheel so as to move the cavity from a first alignment position with the transition channel to a second alignment position with a dispensing hole to dispense there through one of the items stored in the cavity, and for triggering the spinning of the turn table to agitate and dispense the loaded items through the central opening.

2. The apparatus of claim 1, wherein the housing further includes a cap that defines internally the loading chamber, and wherein the cap includes an opening through which the items can be loaded.

3. The apparatus of claim 2, wherein the cap includes a rotatable cover to close the cap opening thereby preventing the items from spilling out.

4. The apparatus of claim 2, wherein the cap includes a slidable flap or a hinged flap for closing the cap opening.

5. The apparatus of claim 1, wherein the turn table includes a hollow cylindrical protrusion extending from a bottom surface and having vertical teeth extending radially and outwardly, wherein the shaft includes a cylindrical protrusion having horizontal teeth extending radially and outwardly, and wherein the actuator includes a vertical body having at an upper end a set of vertical teeth facing sideways and configured to engage with the vertical teeth of the turn table teeth, and at a lower end a set of horizontal teeth facing downwards and configured to engage with the horizontal teeth of the wheel.

6. The apparatus of claim 1, wherein the actuator further includes a groove in a vertical middle area, which in turn includes a notch that extends from a rear end of the groove and is configured to communicate with a spring that biases the actuator to a resting position.

7. The apparatus of claim 1, further comprising:

a tube element that fits within the central opening, wherein the tube element includes a top part that includes two diametrically opposed openings formed by two vertical walls and a cover that is connected to top ends of the two vertical walls.

8. The apparatus of claim 7, wherein each of the two openings is a bit taller and/or wider than a longest side of the items so as to accept there through one of the items at a time when moved towards the central opening during a spinning of the turn table.

9. The apparatus of claim 1, wherein the transition channel, which provides a pathway for the items between the central opening of the turn table and the cavity of the wheel, is shaped as a cylindrical tube that is sized and shaped to contain a single line of items.

10. The apparatus of claim 1, wherein the turn table is configured to have a slightly slanted top surface from a circumference edge to the central opening to facilitate the sliding of the items into the central opening.

11. The apparatus of claim 1, wherein the plurality of protrusions are angularly distributed on the turn table, each of which may have a triangular shape with angled sides oriented towards the central opening.

12. The apparatus of claim 1, wherein the turn table further comprises an additional plurality of protrusions that are radially oriented and angularly distributed, and are configured to enhance the agitation and the guidance of the loaded items towards the central opening during a spinning of the turn table.

13. The apparatus of claim 1, wherein the cavity is large enough to accept there within one of the items, and has rounded edges at a top end to facilitate a sliding or falling of items there within.

14. The apparatus of claim 13, wherein the cavity is formed with a vertically positioned opening facing away from the wheel to allow for visual confirmation of a presence of one of the items there within.

15. The apparatus of claim 13, wherein the cavity includes a glass-like see-through portion facing away from the wheel to allow for visual confirmation of a presence of one of the items there within.

16. The apparatus of claim 1, wherein the turn table is rotationally supported by a circular flange extending from an internal circular wall of the housing.

17. The apparatus of claim 16, wherein the turn table and the circular flange are made of a plastic having low friction properties, thereby permitting the turn table to spin easily within the loading chamber.

18. The apparatus of claim 1, further comprising a pair of semi-circular bearings extending from opposing internal walls of the lower of the end of the housing, and on which opposite ends of the shaft can be rotationally mounted.

Patent History
Publication number: 20150001245
Type: Application
Filed: Jun 27, 2014
Publication Date: Jan 1, 2015
Inventors: Rebecca Kroll (Clifton, NJ), Heather Rohllf (Clifton, NJ), Matthew Sweeney (Clifton, NJ)
Application Number: 14/317,045
Classifications
Current U.S. Class: Rotary (221/277)
International Classification: B65D 83/04 (20060101);