SYSTEMS AND METHODS FOR TRACKING RESPONSES ON AN ONLINE SOCIAL NETWORK
Disclosed are systems, apparatus, methods, and computer readable media for performing actions in response to information updates provided in an information feed such as a news feed capable of being displayed on a display device. In one implementation, an information update to be displayed in the information feed is received. The information update may be stored in a feed table for inclusion in the information feed. In some implementations, an indication of activation of a response request rule is received. The response request rule may be configured to create a response request related to an identified information update to request information from one or more recipients. The response request may be stored, accessed and presented in association with the identified information update in an information feed.
A portion of the disclosure of this patent document contains material, which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
PRIORITY DATAThis application is a continuation of and claims priority to co-pending and commonly assigned U.S. patent application Ser. No. 13/309,435, titled “Systems and Methods for Tracking Responses on an Online Social Network,” by Dunn, et al., filed Dec. 1, 2011 (Attorney Docket No. SLFCP022X1/628US), which is a continuation-in-part of U.S. patent application Ser. No. 13/162,270, titled “Triggering Actions in an Information Feed System,” by Kemp, et al., filed on Jun. 16, 2011 (Attorney Docket No. SLFCP022/480US1), which claims priority to U.S. Provisional Patent Application No. 61/474,546, titled “Systems and Methods for Triggering Events Over a Social Network”, by Kemp, et al., filed on Apr. 12, 2011 (Attorney Docket No. 624PROV), U.S. Provisional Patent Application No. 61/406,524, titled “Performing Scheduling and Providing Auto-responses via an Enterprise Business Network Feed”, by Kevin Schraith, filed on Oct. 25, 2010 (Attorney Docket No. SLFCP022P/480PROV), and U.S. Provisional Patent Application No. 61/416,204, titled “Chatter Keywords”, by Sopko et al., filed on Nov. 22, 2010 (Attorney Docket No. 483PROV), all of which are hereby incorporated by reference in their entirety and for all purposes.
TECHNICAL FIELDThe present application relates generally to providing information updates in an information feed system and, more specifically, to techniques for requesting and tracking responses to information updates.
BACKGROUND“Cloud computing” services provide shared resources, software, and information to computers and other devices upon request. In cloud computing environments, software can be accessible over the Internet rather than installed locally on in-house computer systems. Cloud computing typically involves over-the-Internet provision of dynamically scalable and often virtualized resources. Technological details can be abstracted from the users, who no longer have need for expertise in, or control over, the technology infrastructure “in the cloud” that supports them.
Database resources can be provided in a cloud computing context. However, using conventional database management techniques, it is difficult to know about the activity of other users of a database system in the cloud or other network. For example, the actions of a particular user, such as a salesperson, on a database resource may be important to the user's boss. The user can create a report about what the user has done and send it to the boss, but such reports may be inefficient, not timely, and incomplete. Also, it may be difficult to identify other users who might benefit from the information in the report.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and process operations for the disclosed inventive systems, apparatus, and methods for tracking responses on an online social network. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed implementations.
Examples of systems, apparatus, and methods according to the disclosed implementations are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed implementations. It will thus be apparent to one skilled in the art that implementations may be practiced without some or all of these specific details. In other instances, certain process/method operations, also referred to herein as “blocks,” have not been described in detail in order to avoid unnecessarily obscuring implementations. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific implementations. Although these implementations are described in sufficient detail to enable one skilled in the art to practice the disclosed implementations, it is understood that these examples are not limiting, such that other implementations may be used and changes may be made without departing from their spirit and scope. For example, the blocks of methods shown and described herein are not necessarily performed in the order indicated. It should also be understood that the methods may include more or fewer blocks than are indicated. In some implementations, blocks described herein as separate blocks may be combined. Conversely, what may be described herein as a single block may be implemented in multiple blocks.
Various implementations described or referenced herein are directed to different methods, apparatus, systems, and computer program products for requesting and tracking responses to information updates on an online social network, also referred to herein as a social networking system. The online social network may include an information feed, which may include information updates stored in an on-demand database service environment. In some implementations, the disclosed methods, apparatus, systems, and computer program products may be configured or designed for use in a multi-tenant database environment.
In some implementations, an online social network may allow a user to follow data objects in the form of records such as cases, accounts, or opportunities, in addition to following individual users and groups of users. One example of such an online social network is Chatter®, provided by salesforce.com of San Francisco, Calif.
The “following” of a record stored in a database, as described in greater detail below, allows a user to track the progress of that record. Updates to the record, also referred to herein as changes to the record, can occur and be noted on an information feed such as the record feed or the news feed of a user subscribed to the record. With the disclosed implementations, such record updates are often presented as an item or entry in the feed. Such a feed item can include a single update or a collection of individual updates. Information updates presented as feed items in an information feed can include updates to a record, as well as other types of updates such as user actions and events, as described herein. Examples of record updates include field changes in the record, as well as the creation of the record itself. Examples of other types of information updates, which may or may not be linked with a particular record depending on the specific use of the information update, include posts such as explicit text or characters submitted by a user, multimedia data sent between or among users, status updates such as updates to a user's status or updates to the status of a record, uploaded files, indications of a user's personal preferences such as “likes and “dislikes,” and links to other data or records. Information updates can also be group-related, e.g., a change to group status information for a group of which the user is one of possibly additional members. A user following, e.g., subscribed to, the record is capable of viewing record updates on the user's news feed. Any number of users can follow a record and thus view record updates in this fashion. Some records are publicly accessible, such that any user can follow the record, while other records are private, for which appropriate security clearance/permissions are a prerequisite to a user following the record.
Social networks are increasingly becoming a common way to facilitate communication between individuals and groups of individuals, any of whom can be recognized as “users” of a social networking system. In many social networks, individuals may establish connections with one other, which may be referred to as “friending” one another. By establishing such a connection, one user may be able to see information generated by or associated with another user. For instance, a first user may be able to see information posted by a second user to the first user's personal social network page. One implementation of such a personal social network page is a user's profile page, for example, in the form of a web page representing the user's profile. For example, a post submitted by the second user about the first user can be presented on the first user's profile feed, also referred to herein as the user's “wall,” which can be displayed on the first user's profile page.
In some implementations, an information feed in the context of a social network may be a collection of information selected from the social network for presentation in a user interface. The information presented in the information feed may include entries posted to a user's wall or any other type of information accessible within the social network. For example, a user's news feed may include text inputs such as comments (e.g, statements, questions, emotional expressions), responses to comments (e.g., answers, reactionary emotional expressions), indications of personal preferences, status updates, and hyperlinks. As another example, a news feed may include file uploads, such as presentations, documents, multimedia files, and the like.
In some implementations, a news feed may be specific to an individual user, a group of users, or a data object. For instance, a group of users on a social network may publish a news feed. Members of the group and the larger social network may view and post to the group news feed in accordance with a permissions configuration for the news feed and the group.
In some implementations, when data such as comments input from one or more users are published to an information feed for a particular user, group, object, or other construct within a social network, an e-mail notification or other type of notification may be transmitted to all users following the user, group, or object in addition to the posting of the published data as a feed item in one or more feeds, such as a news feed or a record feed. In many social networks, the occurrence of such a notification may be limited to the first instance of a published input, which may form part of a larger conversation. For instance, a notification may be transmitted for an initial comment, but neither for responses to the comment nor for follow-up comments related to the initial comment. As a result, a following user may be made aware of initial input published to a news feed for a particular conversation, but subsequent related activity may be unknown to the user unless the user navigates to a particular location where the initial input and the entire conversation are published.
Various implementations described or referenced herein are directed to different methods, apparatus, systems, and computer program products for requesting information and collecting responses associated with an information update presented in an information feed. In some implementations, the request for information may include one or more of the following: a request for feedback, a request for a selection from a list of options, a request for performance of an action, and/or a request for other information related to an information update. In some implementations, collecting responses may include generating a new or appended information update including the content of the recipient's response, and storing the response on a suitable storage medium in a databases system.
Social networking and business networking feeds are types of information feeds that have become popular ways for users and friends to connect, collaborate, and disseminate information. While a user may communicate in an information feed by posting information updates that include comments, files, status information and other types of information, a typical user may not be able to confirm whether such disseminated content has been received and viewed by one or more intended recipients. Using implementations of the disclosed techniques, a user may often request an acknowledgment of receipt of an information update or immediate feedback from multiple recipients to collect their inputs on an issue. In some implementations, techniques described herein allow users to request information and track recipients' responses.
In some implementations, a response request rule can be created to generate a response request. The response request rule may designate one or more recipients from whom information is requested and one or more types of responses requested from the recipients. When the response request rule is activated, the response requests are sent to the recipients defined by the response request rule.
In some implementations, a recipient may be a user of an information feed system, a group of users, users in an organization, one or more teams in a corporate hierarchy, a user with a specific attribute based on the user's profile page, and the like. A single response request rule may designate one or more types of recipients. The recipients of a response request may be selected by a user, defined by custom computer programming language code, or created by the system.
In some implementations, the response request rule may designate a response type. The response type indicates the format for providing the requested information. The format may cause the recipient to provide a comment to a posted information update, to provide a selection from a list of potential responses, or to perform an action. The response type may be selected by a user, defined by custom programming language code, or created by the system.
In some implementations, the response request rule may designate priority information of a response request that may affect the display of the response request in an information feed. For example, the response request rule may flag a response request as high, medium or low priority. Generally, a system hosting an information feed posts an information update in chronological order such that the most recent update appears first. By designating a priority, the response request may appear outside of the chronological order. For instance, a high priority response request may appear as the first information update in an information feed. In another example, the priority information may cause an information update associated with a response request to be displayed in a bright and noticeable color, displayed with an insignia such as stars or tags, or use any other mechanism to draw attention to the posted information update. The priority information may be determined by a user, defined by custom programming language code, or created by the system.
In some implementations, users may create their own applications using a framework. For example, a user may create a class implemented in a computer programming language. The class may include methods that override abstract methods provided in the framework. By overriding these abstract methods, the user may define custom response request rules to create a response request.
In some implementations, an information feed system may be configured to request information and collect responses as defined by a response request rule. For example, a response request rule may be activated to request an acknowledgment of receipt of an information update. When an acknowledgment is provided, the system may generate a new update indicating the recipient's acknowledgment. In another example, a response request rule may be activated to request the completion of a survey. When the survey is completed, the system may aggregate the survey responses to produce a report summarizing the recipients' responses.
In one example, a sales manager may want his direct reports to read an article concerning the launch of a new product prior to an upcoming meeting. The sales manager may post an information update including the article. However, prior to the meeting, the sales manager may not know which of his direct reports have or have not read the article. In such a scenario, the sales manager may activate a predefined response request rule by selecting a graphical user interface (GUI) button associated with the information update. Upon selecting the button, the system automatically configures the update to include a selection box. The selection box allows the direct reports to indicate whether they have read the article. When a direct report makes a selection, the system posts a new update notifying the manager that a particular direct report has read the article.
In another example, an accounts department of an organization may want to keep track of employees who have completed their weekly time sheets. Instead of manually creating a weekly reminder, a response request rule may be created to automatically generate a weekly post reminding employees to complete their time cards. For instance, the system may automatically generate an information update every Monday reminding employees to fill out their timesheets. Then, the system may monitor and create a database record of an event indicating that an employee has completed his timecard.
In some implementations, a response request rule may be created to set up an approval workflow process. Such a rule may be especially useful in a corporate environment where multiple departments' approvals or inputs are requested on a project. For example, a quality assurance team's, a finance team's and a legal team's approval may be requested prior to the distribution of a software package. The response request rule may customize the response request such that each team approval is requested on a separate aspect of the project. For instance, the quality assurance team may be requested to provide approval upon determining the software package is free of software bugs. The finance team may be requested to approve the budget for the software package, and the legal team may be requested to approve the software package upon ensuring all of the legal notices are included in the package. As such, the response request rule provides a mechanism to obtain parallel approvals without creating a bottleneck in a workflow process.
These and other implementations may be embodied in various types of hardware, software, firmware, and combinations thereof. For example, some techniques disclosed herein may be implemented, at least in part, by machine-readable media that include program instructions, state information, etc., for performing various services and operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by a computing device such as a server or other data processing apparatus using an interpreter. Examples of machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and hardware devices that are specially configured to store program instructions, such as read-only memory devices (“ROM”) and random access memory (“RAM”). These and other features of the disclosed implementations will be described in more detail below with reference to the associated drawings.
The term “multi-tenant database system” can refer to those systems in which various elements of hardware and software of a database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers. The term “query plan” generally refers to one or more operations used to access information in a database system.
A “user profile” or “user's profile” is generally configured to store and maintain data about the user of the database system. The data can include general information, such as title, phone number, a photo, a biographical summary, and a status (e.g., text describing what the user is currently doing). As mentioned below, the data can include messages created by other users. Where there are multiple tenants, a user is typically associated with a particular tenant. For example, a user could be a salesperson of a company, which is a tenant of the database system that provides a database service.
The term “record” generally refers to a data entity, such as an instance of a data object created by a user of the database service, for example, about a particular (actual or potential) business relationship or project. The data object can have a data structure defined by the database service (a standard object) or defined by a subscriber (custom object). For example, a record can be for a business partner or potential business partner (e.g., a client, vendor, distributor, etc.) of the user, and can include an entire company, subsidiaries, or contacts at the company. As another example, a record can be a project that the user is working on, such as an opportunity (e.g., a possible sale) with an existing partner, or a project that the user is trying to get. In one implementation of a multi-tenant database, each record for the tenants has a unique identifier stored in a common table. A record has data fields that are defined by the structure of the object (e.g., fields of certain data types and purposes). A record can also have custom fields defined by a user. A field can be another record or include links thereto, thereby providing a parent-child relationship between the records.
The terms “information feed” and “feed” are used interchangeably herein and generally refer to a combination (e.g., a list) of feed items or entries with various types of information and data. Such feed items can be stored and maintained in one or more database tables, e.g., as rows in the table(s), that can be accessed to retrieve relevant information to be presented as part of a displayed feed. The term “feed item” (or feed element) refers to an item of information, which can be presented in the feed such as a post published by a user. Feed items of information about a user can be presented in a user's profile feed of the database, while feed items of information about a record can be presented in a record feed in the database, by way of example. A profile feed and a record feed are examples of different information feeds. A second user following a first user or record can receive the feed items associated with the first user and the record for display in the second user's news feed, which is another type of information feed. In some implementations, the feed items from any number of followed users and records can be combined into a single information feed of a particular user.
As examples, a feed item can be a message, such as a user-generated post of text data, and a feed tracked update to a record or profile, such as a change to a field of the record. A feed can be a combination of messages and feed tracked updates. Messages include text created by a user, and may include other data as well. Examples of messages include posts, user status updates, and comments. Messages can be created for a user's profile or for a record. Posts can be created by various users, potentially any user, although some restrictions can be applied. As an example, posts can be made to a wall section of a user's profile page (which can include a number of recent posts) or a section of a record that includes multiple posts. The posts can be organized in chronological order when displayed in a graphical user interface (GUI), for instance, on the user's profile page, as part of the user's profile feed. In contrast to a post, a user status update changes a status of a user and can be made by that user or an administrator. Other similar sections of a user's profile can also include an “About” section. A record can also have a status, the update of which can be provided by an owner of the record or other users having suitable write access permissions to the record. The owner can be a single user, multiple users, or a group. In one implementation, there is only one status for a record.
In one implementation, a comment can be made on any feed item. In another implementation, comments are organized as a list explicitly tied to a particular feed tracked update, post, or status update. In this implementation, comments may not be listed in the first layer (in a hierarchal sense) of feed items, but listed as a second layer branching from a particular first layer feed item.
A “feed tracked update,” also referred to herein as a “feed update,” is one type of information update and generally refers to data representing an event. A feed tracked update can include text generated by the database system in response to the event, to be provided as one or more feed items for possible inclusion in one or more feeds. In one implementation, the data can initially be stored, and then the database system can later use the data to create text for describing the event. Both the data and/or the text can be a feed tracked update, as used herein. In various implementations, an event can be an update of a record and/or can be triggered by a specific action by a user. Which actions trigger an event can be configurable. Which events have feed tracked updates created and which feed updates are sent to which users can also be configurable. Messages and feed updates can be stored as a field or child object of the record. For example, the feed can be stored as a child object of the record.
A “group” is generally a collection of users. In some implementations, the group may be defined as users with a same or similar attribute, or by membership. In one implementation, a “group feed” includes any feed item about any user in a group. In another implementation, the group feed includes feed items that are about the group as a whole. In one implementation, the feed items for a group are only posts and comments.
An “entity feed” or “record feed” generally refers to a feed of feed items about a particular record in the database, such as feed tracked updates about changes to the record and posts made by users about the record. An entity feed can be composed of any type of feed item. Such a feed can be displayed on a page such as a web page associated with the record, e.g., a home page of the record. As used herein, a “profile feed” is a feed of feed items about a particular user. In one implementation, the feed items for a profile feed are posts and comments that other users make about or send to the particular user, and status updates made by the particular user. Such a profile feed can be displayed on a page associated with the particular user. In another implementation, feed items in a profile feed could include posts made by the particular user and feed tracked updates initiated based on actions of the particular user.
I. General Overview
Systems, apparatus, and methods are provided for implementing enterprise level social and business information networking. Such implementations can provide more efficient use of a database system. For instance, a user of a database system may not easily know when important information in the database has changed, e.g., about a project or client. Implementations can provide feed tracked updates about such changes and other events, thereby keeping users informed.
By way of example, a user can update a record (e.g., an opportunity such as a possible sale of 1000 computers). Once the record update has been made, a feed tracked update about the record update can then automatically be sent (e.g., in a feed) to anyone subscribing to the opportunity or to the user. Thus, the user does not need to contact a manager regarding the change in the opportunity, since the feed tracked update about the update is sent via a feed right to the manager's feed page (or other page).
Next, mechanisms and methods for providing systems implementing enterprise level social and business information networking will be described with reference to example implementations. First, an overview of an example database system is described, and then examples of tracking events for a record, actions of a user, and messages about a user or record are described. Various implementations about the data structure of feeds, customizing feeds, user selection of records and users to follow, generating feeds, and displaying feeds are also described.
II. System Overview
Environment 10 is an environment in which an on-demand database service exists. User system 12 may be any machine or system that is used by a user to access a database system 16. For example, any of user systems 12 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated in
An on-demand database service, such as system 16, is a database system that is made available to outside users, who do not need to necessarily be concerned with building and/or maintaining the database system. Instead, the database system may be available for their use when the users need the database system, i.e., on the demand of the users. Some on-demand database services may store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). A database image may include one or more database objects. A relational database management system (RDBMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 18 may be a framework that allows the applications of system 16 to run, such as the hardware and/or software, e.g., the operating system. In some implementations, application platform 18 enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12, or third party application developers accessing the on-demand database service via user systems 12.
The users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 12 to interact with system 16, that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 16, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level, also called authorization.
Network 14 is any network or combination of networks of devices that communicate with one another. For example, network 14 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. Network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I.” The Internet will be used in many of the examples herein. However, it should be understood that the networks that the present implementations might use are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 12 might communicate with system 16 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 12 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP signals to and from an HTTP server at system 16. Such an HTTP server might be implemented as the sole network interface 20 between system 16 and network 14, but other techniques might be used as well or instead. In some implementations, the network interface 20 between system 16 and network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least for users accessing system 16, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In one implementation, system 16, shown in
One arrangement for elements of system 16 is shown in
Several elements in the system shown in
According to one implementation, each user system 12 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 16 (and additional instances of an MTS, where more than one is present) and all of its components might be operator configurable using application(s) including computer code to run using processor system 17, which may be implemented to include a central processing unit, which may include an Intel Pentium® processor or the like, and/or multiple processor units. A computer program product implementation includes a non-transitory machine-readable storage medium (media) having instructions stored thereon/in, which can be used to program a computer to perform any of the processes/methods of the implementations described herein. Computer program code 26 for operating and configuring system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein is preferably downloadable and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for the disclosed implementations can be realized in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™ JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
According to some implementations, each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computing device or system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database objects described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 12, network 14, system 16, tenant data storage 22, and system data storage 24 were discussed above in
Application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 104 managed by tenant management process 110 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 32. A detailed description of some PL/SOQL language implementations is discussed in commonly owned U.S. Provisional Patent Application 60/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006, which is hereby incorporated by reference in its entirety and for all purposes. Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 116 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 100 may be communicably coupled to database systems, e.g., having access to system data 25 and tenant data 23, via a different network connection. For example, one application server 1001 might be coupled via the network 14 (e.g., the Internet), another application server 100N-1 might be coupled via a direct network link, and another application server 100N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 100 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain implementations, each application server 100 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 100. In one implementation, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 100 and the user systems 12 to distribute requests to the application servers 100. In one implementation, the load balancer uses a least connections algorithm to route user requests to the application servers 100. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain implementations, three consecutive requests from the same user could hit three different application servers 100, and three requests from different users could hit the same application server 100. In this manner, by way of example, system 16 is multi-tenant, wherein system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 16 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 22). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 16 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant-specific data, system 16 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain implementations, user systems 12 (which may be client systems) communicate with application servers 100 to request and update system-level and tenant-level data from system 16 that may require sending one or more queries to tenant data storage 22 and/or system data storage 24. System 16 (e.g., an application server 100 in system 16) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 24 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. Pat. No. 7,779,039 by Weissman et al., filed Apr. 2, 2004, entitled “Custom Entities and Fields in a Multi-Tenant Database System”, and which is hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
As shown in
Moreover, one or more of the devices in the on-demand service environment 200 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.
The cloud 204 is intended to refer to a data network or plurality of data networks, often including the Internet. Client machines located in the cloud 204 may communicate with the on-demand service environment to access services provided by the on-demand service environment. For example, client machines may access the on-demand service environment to retrieve, store, edit, and/or process information.
In some implementations, the edge routers 208 and 212 route packets between the cloud 204 and other components of the on-demand service environment 200. The edge routers 208 and 212 may employ the Border Gateway Protocol (BGP). The BGP is the core routing protocol of the Internet. The edge routers 208 and 212 may maintain a table of IP networks or ‘prefixes’, which designate network reachability among autonomous systems on the Internet.
In one or more implementations, the firewall 216 may protect the inner components of the on-demand service environment 200 from Internet traffic. The firewall 216 may block, permit, or deny access to the inner components of the on-demand service environment 200 based upon a set of rules and other criteria. The firewall 216 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
In some implementations, the core switches 220 and 224 are high-capacity switches that transfer packets within the on-demand service environment 200. The core switches 220 and 224 may be configured as network bridges that quickly route data between different components within the on-demand service environment. In some implementations, the use of two or more core switches 220 and 224 may provide redundancy and/or reduced latency.
In some implementations, the pods 240 and 244 may perform the core data processing and service functions provided by the on-demand service environment. Each pod may include various types of hardware and/or software computing resources. An example of the pod architecture is discussed in greater detail with reference to
In some implementations, communication between the pods 240 and 244 may be conducted via the pod switches 232 and 236. The pod switches 232 and 236 may facilitate communication between the pods 240 and 244 and client machines located in the cloud 204, for example via core switches 220 and 224. Also, the pod switches 232 and 236 may facilitate communication between the pods 240 and 244 and the database storage 256.
In some implementations, the load balancer 228 may distribute workload between the pods 240 and 244. Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead. The load balancer 228 may include multilayer switches to analyze and forward traffic.
In some implementations, access to the database storage 256 may be guarded by a database firewall 248. The database firewall 248 may act as a computer application firewall operating at the database application layer of a protocol stack. The database firewall 248 may protect the database storage 256 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.
In some implementations, the database firewall 248 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. The database firewall 248 may inspect the contents of database traffic and block certain content or database requests. The database firewall 248 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
In some implementations, communication with the database storage 256 may be conducted via the database switch 252. The multi-tenant database storage 256 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 252 may direct database queries transmitted by other components of the on-demand service environment (e.g., the pods 240 and 244) to the correct components within the database storage 256.
In some implementations, the database storage 256 is an on-demand database system shared by many different organizations. The on-demand database system may employ a multi-tenant approach, a virtualized approach, or any other type of database approach. An on-demand database system is discussed in greater detail with reference to
In some implementations, the application servers 288 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand service environment 200 via the pod 244. Some such procedures may include operations for providing the services described herein, such as performing the methods/processes described below with reference to
The content batch servers 264 may requests internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 264 may handle requests related to log mining, cleanup work, and maintenance tasks.
The content search servers 268 may provide query and indexer functions. For example, the functions provided by the content search servers 268 may allow users to search through content stored in the on-demand service environment.
The file force servers 286 may manage requests information stored in the Fileforce storage 278. The Fileforce storage 278 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the file force servers 286, the image footprint on the database may be reduced.
The query servers 282 may be used to retrieve information from one or more file systems. For example, the query system 282 may receive requests for information from the app servers 288 and then transmit information queries to the NFS 296 located outside the pod.
The pod 244 may share a database instance 290 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 244 may require various hardware and/or software resources. In some implementations, the ACS servers 280 may control access to data, hardware resources, or software resources.
In some implementations, the batch servers 284 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 284 may transmit instructions to other servers, such as the app servers 288, to trigger the batch jobs.
In some implementations, the QFS 292 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif. The QFS may serve as a rapid-access file system for storing and accessing information available within the pod 244. The QFS 292 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system may communicate with one or more content search servers 268 and/or indexers 294 to identify, retrieve, move, and/or update data stored in the network file systems 296 and/or other storage systems.
In some implementations, one or more query servers 282 may communicate with the NFS 296 to retrieve and/or update information stored outside of the pod 244. The NFS 296 may allow servers located in the pod 244 to access information to access files over a network in a manner similar to how local storage is accessed.
In some implementations, queries from the query servers 222 may be transmitted to the NFS 296 via the load balancer 228, which may distribute resource requests over various resources available in the on-demand service environment. The NFS 296 may also communicate with the QFS 292 to update the information stored on the NFS 296 and/or to provide information to the QFS 292 for use by servers located within the pod 244.
In some implementations, the pod may include one or more database instances 290. The database instance 290 may transmit information to the QFS 292. When information is transmitted to the QFS, it may be available for use by servers within the pod 244 without requiring an additional database call.
In some implementations, database information may be transmitted to the indexer 294. Indexer 294 may provide an index of information available in the database 290 and/or QFS 292. The index information may be provided to file force servers 286 and/or the QFS 292.
III. Tracking Updates to a Record Stored in a Database
As multiple users might be able to change the data of a record, it can be useful for certain users to be notified when a record is updated. Also, even if a user does not have authority to change a record, the user still might want to know when there is an update to the record. For example, a vendor may negotiate a new price with a salesperson of company X, where the salesperson is a user associated with tenant Y. As part of creating a new invoice or for accounting purposes, the salesperson can change the price saved in the database. It may be important for co-workers to know that the price has changed. The salesperson could send an e-mail to certain people, but this is onerous and the salesperson might not e-mail all of the people who need to know or want to know. Accordingly, some implementations of the disclosed techniques can inform others (e.g., co-workers) who want to know about an update to a record automatically.
In block 310, the database system receives a request to update a first record. In one implementation, the request is received from a first user. For example, a user may be accessing a page associated with the first record, and may change a displayed field and hit save. In another implementation, the database system can automatically create the request. For instance, the database system can create the request in response to another event, e.g., a request to change a field could be sent periodically at a particular date and/or time of day, or a change to another field or object. The database system can obtain a new value based on other fields of a record and/or based on parameters in the system.
The request for the update of a field of a record is an example of an event associated with the first record for which a feed tracked update may be created. In other implementations, the database system can identify other events besides updates to fields of a record. For example, an event can be a submission of approval to change a field. Such an event can also have an associated field (e.g., a field showing a status of whether a change has been submitted). Other examples of events can include creation of a record, deletion of a record, converting a record from one type to another (e.g., converting a lead to an opportunity), closing a record (e.g., a case type record), and potentially any other state change of a record—any of which could include a field change associated with the state change. Any of these events update the record whether by changing a field of the record, a state of the record, or some other characteristic or property of the record. In one implementation, a list of supported events for creating a feed tracked update can be maintained within the database system, e.g., at a server or in a database.
In block 320, the database system writes new data to the first record. In one implementation, the new data may include a new value that replaces old data. For example, a field is updated with a new value. In another implementation, the new data can be a value for a field that did not contain data before. In yet another implementation, the new data could be a flag, e.g., for a status of the record, which can be stored as a field of the record.
In some implementations, a “field” can also include records, which are child objects of the first record in a parent-child hierarchy. A field can alternatively include a pointer to a child record. A child object itself can include further fields. Thus, if a field of a child object is updated with a new value, the parent record also can be considered to have a field changed. In one example, a field could be a list of related child objects, also called a related list.
In block 330, a feed tracked update is generated about the update to the record. In one implementation, the feed tracked update is created in parts for assembling later into a display version. For example, event entries can be created and tracked in one table, and changed field entries can be tracked in another table that is cross-referenced with the first table. More specifics of such implementations are provided later, e.g., with respect to
In one implementation, a tenant (e.g., through an administrator) can configure the database system to create (enable) feed tracked updates only for certain types of records. For example, an administrator can specify that records of designated types such as accounts and opportunities are enabled. When an update (or other event) is received for the enabled record type, then a feed tracked update would be generated. In another implementation, a tenant can also specify the fields of a record whose changes are to be tracked, and for which feed tracked updates are created. In one aspect, a maximum number of fields can be specified for tracking, and may include custom fields. In one implementation, the type of change can also be specified, for example, that the value change of a field is required to be larger than a threshold (e.g., an absolute amount or a percentage change). In yet another implementation, a tenant can specify which events are to cause a generation of a feed tracked update. Also, in one implementation, individual users can specify configurations specific to them, which can create custom feeds as described in more detail below.
In one implementation, changes to fields of a child object are not tracked to create feed tracked updates for the parent record. In another implementation, the changes to fields of a child object can be tracked to create feed tracked updates for the parent record. For example, a child object of the parent type can be specified for tracking, and certain fields of the child object can be specified for tracking. As another example, if the child object is of a type specified for tracking, then a tracked change for the child object is propagated to parent records of the child object.
In block 340, the feed tracked update is added to a feed for the first record. In one implementation, adding the feed tracked update to a feed can include adding events to a table (which may be specific to a record or be for all or a group of objects), where a display version of a feed tracked update can be generated dynamically and presented as an information update when a user requests a feed for the first record. In another implementation, a display version of a feed tracked update can be added when a record feed is stored and maintained for a record. As mentioned above, a feed may be maintained for only certain records. In one implementation, the feed of a record can be stored in the database associated with the record. For example, the feed can be stored as a field (e.g., as a child object) of the record. Such a field can store a pointer to the text to be displayed for the feed tracked update.
In some implementations, only the current feed tracked update (or other current feed item) may be kept or temporarily stored, e.g., in some temporary memory structure. For example, a feed tracked update for only a most recent change to any particular field is kept. In other implementations, many previous feed tracked updates may be kept in the feed. A time and/or date for each feed tracked update can be tracked. Herein, a feed of a record is also referred to as an entity feed, as a record is an instance of a particular entity object of the database.
In block 350, followers of the first record can be identified. A follower is a user following the first record, such as a subscriber to the feed of the first record. In one implementation, when a user requests a feed of a particular record, such an identification of block 350 can be omitted. In another implementation where a record feed is pushed to a user (e.g., as part of a news feed), then the user can be identified as a follower of the first record. Accordingly, this block can include the identification of records and other objects being followed by a particular user.
In one implementation, the database system can store a list of the followers for a particular record. In various implementations, the list can be stored with the first record or associated with the record using an identifier (e.g., a pointer) to retrieve the list. For example, the list can be stored in a field of the first record. In another implementation, a list of the records that a user is following is used. In one implementation, the database system can have a routine that runs for each user, where the routine polls the records in the list to determine if a new feed tracked update has been added to a feed of the record. In another implementation, the routine for the user can be running at least partially on a user device, which contacts the database to perform the polling.
In block 360, in one implementation, the feed tracked update can be stored in a table, as described in greater detail below. When the user opens a feed, an appropriate query is sent to one or more tables to retrieve updates to records, also described in greater detail below. In some implementations, the feed shows feed tracked updates in reverse chronological order. In one implementation, the feed tracked update is pushed to the feed of a user, e.g., by a routine that determines the followers for the record from a list associated with the record. In another implementation, the feed tracked update is pulled to a feed, e.g., by a user device. This pulling may occur when a user requests the feed, as occurs in block 370. Thus, these actions may occur in a different order. The creation of the feed for a pull may be a dynamic creation that identifies records being followed by the requesting user, generates the display version of relevant feed tracked updates from stored information (e.g., event and field change), and adds the feed tracked updates into the feed. A feed of feed tracked updates of records and other objects that a user is following is also generally referred to herein as a news feed, which can be a subset of a larger information feed in which other types of information updates appear, such as postings.
In yet another implementation, the feed tracked update could be sent as an e-mail to the follower, instead of in a feed. In one implementation, e-mail alerts for events can enable people to be e-mailed when certain events occur. In another implementation, e-mails can be sent when there are posts on a user profile and posts on entities to which the user subscribes. In one implementation, a user can turn on/off email alerts for all or some events. In an implementation, a user can specify what kind of feed tracked updates to receive about a record that the user is following. For example, a user can choose to only receive feed tracked updates about certain fields of a record that the user is following, and potentially about what kind of update was performed (e.g., a new value input into a specified field, or the creation of a new field).
In block 370, a follower can access his/her news feed to see the feed tracked update. In one implementation, the user has just one news feed for all of the records that the user is following. In one aspect, a user can access his/her own feed by selecting a particular tab or other object on a page of an interface to the database system. Once selected the feed can be provided as a list, e.g., with an identifier (e.g., a time) or including some or all of the text of the feed tracked update. In another implementation, the user can specify how the feed tracked updates are to be displayed and/or sent to the user. For example, a user can specify a font for the text, a location of where the feed can be selected and displayed, amount of text to be displayed, and other text or symbols to be displayed (e.g., importance flags).
A first user 405 sends a request 1 to update record 425 in database system 416. Although an update request is described, other events that are being tracked are equally applicable. In various implementations, the request 1 can be sent via a user interface (e.g., 30 of
Processor 417 can determine an identifier for record 425, and send commands with the new data 2 of the request to record database 412 to update record 425. In one implementation, record database 412 is where tenant data 112 of
Processor 417 can also analyze request 1 to determine whether a feed tracked update is to be created, which at this point may include determining whether the event (e.g., a change to a particular field) is to be tracked. This determination can be based on an interaction (i.e., an exchange of data) with record database 412 and/or other databases, or based on information stored locally (e.g., in cache or RAM) at processor 417. In one implementation, a list of record types that are being tracked can be stored. The list may be different for each tenant, e.g., as each tenant may configure the database system to its own specifications. Thus, if the record 425 is of a type not being tracked, then the determination of whether to create a feed tracked update can stop there.
The same list or a second list (which can be stored in a same location or a different location) can also include the fields and/or events that are tracked for the record types in the first list. This list can be searched to determine if the event is being tracked. A list may also contain information having the granularity of listing specific records that are to be tracked (e.g., if a tenant can specify the particular records to be tracked, as opposed to just type).
As an example, processor 417 may obtain an identifier associated with record 425 (e.g., obtained from request 1 or database 412), potentially along with a tenant identifier, and cross-reference the identifier with a list of records for which feed tracked updates are to be created. Specifically, the record identifier can be used to determine the record type and a list of tracked types can be searched for a match. The specific record may also be checked if such individual record tracking was enabled. The name of the field to be changed can also be used to search a list of tracking-enabled fields. Other criteria besides field and events can be used to determine whether a feed tracked update is created, e.g., type of change in the field. If a feed tracked update is to be generated, processor 417 can then generate the feed tracked update.
In some implementations, a feed tracked update is created dynamically when a feed (e.g., the entity feed of record 425) is requested. Thus, in one implementation, a feed tracked update can be created when a user requests the entity feed for record 425. In this implementation, the feed tracked update may be created (e.g., assembled), including re-created, each time the entity feed is to be displayed to any user. In one implementation, one or more hifeed tracked update tables can keep track of previous events so that the feed tracked update can be re-created.
In another implementation, a feed tracked update can be created at the time the event occurs, and the feed tracked update can be added to a list of feed items. The list of feed items may be specific to record 425, or may be an aggregate of feed items including feed items for many records. Such an aggregate list can include a record identifier so that the feed items for the entity feed of record 425 can be easily retrieved. For example, after the feed tracked update has been generated, processor 417 can add the new feed tracked update 3 to a feed of record 425. As mentioned above, in one implementation, the feed can be stored in a field (e.g., as a child object) of record 425. In another implementation, the feed can be stored in another location or in another database, but with a link (e.g., a connecting identifier) to record 425. The feed can be organized in various ways, e.g., as a linked list, an array, or other data structure.
A second user 430 can access the new feed tracked update 3 in various ways. In one implementation, second user 430 can send a request 4 for the record feed. For example, second user 430 can access a home page (detail page) of the record 425 (e.g., with a query or by browsing), and the feed can be obtained through a tab, button, or other activation object on the page. The feed can be displayed on the screen or downloaded.
In another implementation, processor 417 can add the new feed tracked update 5 to a feed (e.g., a news feed) of a user that is following record 425. In one implementation, processor 417 can determine each of the followers of record 425 by accessing a list of the users that have been registered as followers. This determination can be done for each new event (e.g., update 1). In another implementation, processor 417 can poll (e.g., with a query) the records that second user 430 is following to determine when new feed tracked updates (or other feed items) are available. Processor 417 can use a follower profile 435 of second user 430 that can contain a list of the records that the second user 430 is following. Such a list can be contained in other parts of the database as well. Second user 430 can then send a request 6 to his/her profile 435 to obtain a feed, which contains the new feed tracked update. The user's profile 435 can be stored in a profile database 414, which can be the same or different than database 412.
In some implementations, a user can define a news feed to include new feed tracked updates from various records, which may be limited to a maximum number. In one implementation, each user has one news feed. In another implementation, the follower profile 435 can include the specifications of each of the records to be followed (with the criteria for what feed tracked updates are to be provided and how they are displayed), as well as the feed.
Some implementations can provide various types of record (entity) feeds. Entity Feeds can exist for record types like account, opportunity, case, and contact. An entity feed can tell a user about the actions that people have taken on that particular record or on one its related records. The entity feed can include who made the action, which field was changed, and the old and new values. In one implementation, entity feeds can exist on all supported records as a list that is linked to the specific record. For example, a feed could be stored in a field that allows lists (e.g., linked lists) or as a child object.
IV. Tracking Actions of a User
In addition to knowing about events associated with a particular record, it can be helpful for a user to know what a particular user is doing. In particular, it might be nice to know what the user is doing without the user having to generate the feed tracked update (e.g., a user submitting a synopsis of what the user has done). Accordingly, implementations can automatically track actions of a user that trigger events, and feed tracked updates can be generated for certain events.
In block 510, a database system (e.g., 16 of
In block 520, it is determined whether the event qualifies for a feed tracked update. In one implementation, a predefined list of events (e.g., as mentioned herein) can be created so that only certain actions are identified. In one implementation, an administrator (or other user) of a tenant can specify the type of actions (events) for which a feed tracked update is to be generated. This block may also be performed for method 300.
In block 530, a feed tracked update is generated about the action. In an example where the action is an update of a record, the feed tracked update can be similar or the same as the feed tracked update created for the record. The description can be altered though to focus on the user as opposed to the record. For example, “John D. has closed a new opportunity for account XYZ” as opposed to “an opportunity has been closed for account XYZ.”
In block 540, the feed tracked update is added to a profile feed of the first user when, e.g., the user clicks on a tab to open a page in a browser program displaying the feed. In one implementation, a feed for a particular user can be accessed on a page of the user's profile, in a similar manner as a record feed can be accessed on a detail page of the record. In another implementation, the first user may not have a profile feed and the feed tracked update may just be stored temporarily before proceeding. A profile feed of a user can be stored associated with the user's profile. This profile feed can be added to a news feed of another user.
In block 550, followers of the first user are identified. In one implementation, a user can specify which type of actions other users can follow. Similarly, in one implementation, a follower can select what actions by a user the follower wants to follow. In an implementation where different followers follow different types of actions, which users are followers of that user and the particular action can be identified, e.g., using various lists that track what actions and criteria are being followed by a particular user. In various implementations, the followers of the first user can be identified in a similar manner as followers of a record, as described above for block 350.
In block 560, the feed tracked update is added to a news feed of each follower of the first user when, e.g., the follower clicks on a tab to open a page displaying the news feed. The feed tracked update can be added in a similar manner as the feed items for a record feed. The news feed can contain feed tracked updates both about users and records. In another implementation, a user can specify what kind of feed tracked updates to receive about a user that the user is following. For example, a user could specify feed tracked updates with particular keywords, of certain types of records, of records owned or created by certain users, particular fields, and other criteria as mentioned herein.
In block 570, a follower accesses the news feed and sees the feed tracked update. In one implementation, the user has just one news feed for all of the records that the user is following. In another implementation, a user can access his/her own feed (i.e. feed about his/her own actions) by selecting a particular tab or other object on a page of an interface to the database system. Thus, a feed can include feed tracked updates about what other users are doing in the database system. When a user becomes aware of a relevant action of another user, the user can contact the co-worker, thereby fostering teamwork.
V. Generation of a Feed Tracked Update
As described above, some implementations can generate text describing events (e.g., updates) that have occurred for a record and actions by a user that trigger an event. A database system can be configured to generate the feed tracked updates for various events in various ways.
A. Which Events to Generate a Feed Tracked Update
In a database system, there are various events that can be detected. However, the operator of the database system and/or a tenant may not want to detect every possible event as this could be costly with regards to performance. Accordingly, the operator and/or the tenant can configure the database system to only detect certain events. For example, an update of a record may be an event that is to be detected.
Out of the events that are detected, a tenant (including a specific user of the tenant) may not want a feed tracked update about each detected event. For example, all updates to a record may be identified at a first level. Then, based on specifications of an administrator and/or a specific user of a tenant, another level of inquiry can be made as to whether a feed tracked update is to be generated about the detected event. For example, the events that qualify for a feed tracked update can be restricted to changes for only certain fields of the record, and can differ depending on which user is receiving the feed. In one implementation, a database system can track whether an event qualifies for a feed tracked update for any user, and once the feed tracked update is generated, it can be determined who is to receive the feed tracked update.
Supported events (events for which a feed tracked update is generated) can include actions for standard fields, custom fields, and standard related lists. Regarding standard fields, for the entity feed and the profile feed, a standard field update can trigger a feed tracked update to be published to that feed. In one implementation, which standard field can create a feed tracked update can be set by an administrator to be the same for every user. In another implementation, a user can set which standard fields create a feed tracked update for that user's news feed. Custom fields can be treated the same or differently than standard fields.
The generation of a feed item can also depend on a relationship of an object to other objects (e.g., parent-child relationships). For example, if a child object is updated, a feed tracked update may be written to a feed of a parent of the child object. The level of relationship can be configured, e.g., only 1 level of separation (i.e. no grandparent-grandchild relationship). Also, in one implementation, a feed tracked update is generated only for objects above the objects being updated, i.e., a feed tracked update is not written for a child when the parent is updated.
In some implementations, for related lists of a record, a feed tracked update is written to its parent record (1 level only) when the related list item is added, and not when the list item is changed or deleted. For example: user A added a new opportunity XYZ for account ABC. In this manner, entity feeds can be controlled so as not to be cluttered with feed tracked updates about changes to their related items. Any changes to the related list item can be tracked on their own entity feed, if that related list item has a feed on it. In this implementation, if a user wants to see a feed of the related list item then the user can subscribe to it. Such a subscription might be when a user cares about a specific opportunity related to a specific account. A user can also browse to that object's entity feed. Other implementations can create a feed tracked update when a related entity is changed or deleted.
In one implementation, an administrator (of the system or of a specific tenant) can define which events of which related objects are to have feed tracked updates written about them in a parent record. In another implementation, a user can define which related object events to show. In one implementation, there are two types of related lists of related objects: first class lookup and second class lookup. Each of the records in the related lists can have a different rule for whether a feed tracked update is generated for a parent record. Each of these related lists can be composed as custom related lists. In various implementations, a custom related list can be composed of custom objects; the lists can contain a variety of records or items (e.g., not restricted to a particular type of record or item), and can be displayed in a customized manner.
In one implementation, a first class lookup contains records of a child record that can exist by itself. For example, the contacts on an account exist as a separate record and also as a child record of the account. In another implementation, a record in a first class lookup can have its own feed, which can be displayed on its detail page.
In one implementation, a second class lookup can have line items existing only in the context of their parent record (e.g., activities on an opportunity, contact roles on opportunity/contact). In one implementation, the line items are not objects themselves, and thus there is no detail page, and no place to put a feed. In another implementation, a change in a second class lookup can be reported on the feed of the parent.
Some implementations can also create feed tracked updates for dependent field changes. A dependent field change is a field that changes value when another field changes, and thus the field has a value that is dependent on the value of the other field. For example, a dependent field might be a sum (or other formula) that totals values in other fields, and thus the dependent field would change when one of the fields being summed changes. Accordingly, in one implementation, a change in one field could create feed tracked updates for multiple fields. In other implementations, feed tracked updates are not created for dependent fields.
B. How the Feed Tracked Update is Generated
After it is determined that a feed tracked update is going to be generated, some implementations can also determine how the feed tracked update is generated. In one implementation, different methods can be used for different events, e.g., in a similar fashion as for the configurability of which events feed tracked updates are generated. A feed tracked update can also include a description of multiple events (e.g., john changed the account status and amount).
In one implementation, the feed tracked update is a grammatical sentence, thereby being easily understandable by a person. In another implementation, the feed tracked update provides detailed information about the update. In various examples, an old value and new value for a field may be included in the feed tracked update, an action for the update may be provided (e.g., submitted for approval), and the names of particular users that are responsible for replying or acting on the feed tracked update may be also provided. The feed tracked update can also have a level of importance based on settings chosen by the administrator, a particular user requesting an update, or by a following user who is to receive the feed tracked update, which fields is updated, a percentage of the change in a field, the type of event, or any combination of these factors.
The system may have a set of heuristics for creating a feed tracked update from the event (e.g., a request to update). For example, the subject may be the user, the record, or a field being added or changed. The verb can be based on the action requested by the user, which can be selected from a list of verbs (which may be provided as defaults or input by an administrator of a tenant). In one implementation, feed tracked updates can be generic containers with formatting restrictions,
As an example of a feed tracked update for a creation of a new record, “Mark Abramowitz created a new Opportunity for IBM—20,000 laptops with Amount as $3.5M and Sam Palmisano as Decision Maker.” This event can be posted to the profile feed for Mark Abramowitz and the entity feed for record of Opportunity for IBM—20,000 laptops. The pattern can be given by (AgentFullName) created a new (ObjectName)(RecordName) with [(FieldName) as (FieldValue) [, / and] ]*[[added/changed/removed] (RelatedListRecordName) [as/to/as] (RelatedListRecordValue) [, / and]]*. Similar patterns can be formed for a changed field (standard or custom) and an added child record to a related list.
VI. Tracking Commentary from or about a User
Some implementations can also have a user submit text, instead of the database system generating a feed tracked update. As the text is submitted by users, the text (also referred to generally as messages) can be about any topic. Thus, more information than just actions of a user and events of a record can be conveyed. In one implementation, the messages can be used to ask a question about a particular record, and users following the record can provide comments and responses.
In block 610, the database system receives a message (e.g., a post or status update) associated with a first user. The message (e.g., a post or status update) can contain text or multimedia content submitted by another user or by the first user. In one implementation, a post is for a section of the first user's profile page where any user can add a post, and where multiple posts can exist. Thus, a post can appear on the first user's profile page and can be viewed when the first user's profile is visited. For a message about a record, the post can appear on a detail page of a record. Note the message can appear in other feeds as well. In another implementation, a status update about the first user can only be added by the first user. In one implementation, a user can only have one status message.
In block 620, the message is added to a table, as described in greater detail below. When the feed is opened, a query filters one or more tables to identify the first user, identify other persons that the user is following, and retrieve the message. Messages and record updates are presented in a combined list as the feed. In this way, in one implementation, the message can be added to a profile feed of the first user, which is associated (e.g., as a related list) with the first user's profile. In one implementation, the posts are listed indefinitely. In another implementation, only the most recent posts (e.g., last 50) are kept in the profile feed. Such implementations can also be employed with feed tracked updates. In yet another implementation, the message can be added to a profile of the user adding the message.
In block 630, the database system identifies followers of the first user. In one implementation, the database system can identify the followers as described above for method 500. In various implementations, a follower can select to follow a feed about the actions of the first user, messages about the first user, or both (potentially in a same feed).
In block 640, the message is added to a news feed of each follower. In one implementation, the message is only added to a news feed of a particular follower if the message matches some criteria, e.g., the message includes a particular keyword or other criteria. In another implementation, a message can be deleted by the user who created the message. In one implementation, once deleted by the author, the message is deleted from all feeds to which the message had been added.
In block 650, the follower accesses a news feed and sees the message. For example, the follower can access a news feed on the follower's own profile page. As another example, the follower can have a news feed sent to his/her own desktop without having to first go to a home page.
In block 660, the database system receives a comment about the message. The database system can add the comment to a feed of the same first user, much as the original message was added. In one implementation, the comment can also be added to a feed of a second user who added the comment. In one implementation, users can also reply to the comment. In another implementation, users can add comments to a feed tracked update, and further comments can be associated with the feed tracked update. In yet another implementation, making a comment or message is not an action to which a feed tracked update is created. Thus, the message may be the only feed item created from such an action.
In one implementation, if a feed tracked update (or post) is deleted, its corresponding comments are deleted as well. In another implementation, new comments on a feed tracked update (or post) do not update the feed tracked update timestamp. Also, the feed tracked update or post can continue to be shown in a feed (profile feed, record feed, or news feed) if it has had a comment within a specified timeframe (e.g., within the last week). Otherwise, the feed tracked update (post) can be removed in an implementation.
In some implementations, all or most feed tracked updates can be commented on. In other implementations, feed tracked updates for certain records (e.g., cases or ideas) are not commentable. In various implementations, comments can be made for any one or more records of opportunities, accounts, contacts, leads, and custom objects.
In block 670, the comment is added to a news feed of each follower. In one implementation, a user can make the comment within the user's news feed. Such a comment can propagate to the appropriate profile feed or record feed, and then to the news feeds of the following users. Thus, feeds can include what people are saying, as well as what they are doing. In one aspect, feeds are a way to stay up-to-date (e.g., on users, opportunities, etc.) as well as an opportunity to reach out to co-workers/partners and engage them around common goals.
In some implementations, users can rate feed tracked updates or messages (including comments). A user can choose to prioritize a display of a feed so that higher rated feed items show up higher on a display. For example, in an implementation where comments are answers to a specific question, users can rate the different status posts so that a best answer can be identified. As another example, users are able to quickly identify feed items that are most important as those feed items can be displayed at a top of a list. The order of the feed items can be based on an importance level (which can be determined by the database system using various factors, some of which are mentioned herein) and based on a rating from users. In one implementation, the rating is on a scale that includes at least 3 values. In another implementation, the rating is based on a binary scale.
Besides a profile for a user, a group can also be created. In various implementations, the group can be created based on certain criteria that are common to the users, can be created by inviting users, or can be created by receiving requests to join from a user. In one implementation, a group feed can be created, with messages being added to the group feed when someone adds a message to the group as a whole. For example, a group page may have a section for posts. In another implementation, a message can be added to a group feed when a message is added about any one of the members. In yet another implementation, a group feed can include feed tracked updates about actions of the group as a whole (e.g., when an administrator changes data in a group profile or a record owned by the group), or about actions of an individual member.
VII. Infrastructure for a Feed
A. Tables Used to Create a Feed
An event hifeed tracked update table 910 can provide a hifeed tracked update of events from which feed items are created. In one aspect, the events are for objects that are being tracked. Thus, table 910 can store and change hifeed tracked updates for feeds, and the changes can be persisted. In various implementations, event hifeed tracked update table 910 can have columns of event ID 911, object ID 912 (also called parent ID), and created by ID 913. The event ID 911 can uniquely identify a particular event and can start at 1 (or other number or value).
Each new event can be added chronologically with a new event ID, which may be incremented in order. An object ID 912 can be used to track which record or user's profile is being changed. For example, the object ID can correspond to the record whose field is being changed or the user whose feed is receiving a post. The created by ID 913 can track the user who is performing the action that results in the event, e.g., the user that is changing the field or that is posting a message to the profile of another user.
In some other implementations, event hifeed tracked update table 910 can have one or more of the following variables with certain attributes: ORGANIZATION_ID being CHAR(15 BYTE), FEEDS_ENTITY_HIFEED TRACKED UPDATE_ID being CHAR(15 BYTE), PARENT_ID being CHAR(15 BYTE), CREATED_BY being CHAR(15 BYTE), CREATED_DATE being a variable of type DATE, DIVISION being a NUMBER, KEY_PREFIX being CHAR(3 BYTE), and DELETED being CHAR(1 BYTE). The parent ID can provide an ID of a parent object in case the change is promulgated to the parent. The key prefix can provide a key that is unique to a group of records, e.g., custom records (objects). The deleted variable can indicate that the feed items for the event are deleted, and thus the feed items are not generated. In one implementation, the variables for each event entry or any entry in any of the tables may not be nullable. In another implementation, all entries in the event hifeed tracked update table 910 are used to create feed items for only one object, as specified by the object ID 912. For example, one feed tracked update cannot communicate updates on two records, such as updates of an account field and an opportunity field.
In one implementation, a name of an event can also be stored in table 910. In one implementation, a tenant can specify events that they want tracked. In an implementation, event hifeed tracked update table 910 can include the name of the field that changed (e.g., old and new values). In another implementation, the name of the field, and the values, are stored in a separate table. Other information about an event (e.g., text of comment, feed tracked update, post or status update) can be stored in event hifeed tracked update table 910, or in other tables, as is now described.
A field change table 920 can provide a hifeed tracked update of the changes to the fields. The columns of table 920 can include an event ID 921 (which correlates to the event ID 911), an old value 922 for the field, and the new value 923 for the field. In one implementation, if an event changes more than one field value, then there can be an entry for each field changed. As shown, event ID 921 has two entries for event E37.
In some other implementations, field change table 920 can have one or more of the following variables with certain attributes: ORGANIZATION_ID being CHAR(15 BYTE), FEEDS_ENTITY_HIFEED TRACKED UPDATE_FIELDS_ID being CHAR(15 BYTE) and identifying each entry, FEEDS_ENTITY_HIFEED TRACKED UPDATE_ID being CHAR(15 BYTE), FIELD_KEY being VARCHAR2(120 BYTE), DATA_TYPE being CHAR(1 BYTE), OLDVAL_STRING VARCHAR2 being (765 BYTE), NEWVAL_STRING being VARCHAR2(765 BYTE), OLDVAL_FIRST_NAME being VARCHAR2(765 BYTE), NEWVAL_FIRST_NAME being VARCHAR2(765 BYTE), OLDVAL_LAST_NAME being VARCHAR2(765 BYTE), NEWVAL_LAST_NAME being VARCHAR2(765 BYTE), OLDVAL_NUMBER being NUMBER, NEWVAL_NUMBER being NUMBER, OLDVAL_DATE being DATE, NEWVAL_DATE being DATE, and DELETED being CHAR(1 BYTE). In one implementation, one or more of the variables for each entry in any of the tables may be nullable.
In one implementation, the data type variable (and/or other variables) is a non-api-insertable field. In another implementation, variable values can be derived from the record whose field is being changed. Certain values can be transferred into typed columns old/new value string, old/new value number or old/new value date depending upon the derived values. In another implementation, there can exist a data type for capturing add/deletes for child objects. The child ID can be tracked in the foreign-key column of the record. In yet another implementation, if the field name is pointing to a field in the parent entity, a field level security (FLS) can be used when a user attempts to a view a relevant feed item. Herein, security levels for objects and fields are also called access checks and determinations of authorization. In one aspect, the access can be for create, read, write, update, or delete of objects.
In one implementation, the field name (or key) can be either a field name of the entity or one of the values in a separate list. For example, changes that do not involve the update of an existing field (e.g., a close or open) can have a field name specified in an enumerated list. This enumerated list can store “special” field name sentinel values for non-update actions that a tenant wants to track. In one aspect, the API just surfaces these values and the caller has to check the enumerated values to see if it is a special field name.
A comment table 930 can provide a hifeed tracked update of the comments made regarding an event, e.g., a comment on a post or a change of a field value. The columns of table 930 can include an event ID 921 (which correlates to the event ID 911), the comment column 932 that stores the text of the comment, and the time/date 933 of the comment. In one implementation, there can be multiple comments for each event. As shown, event ID 921 has two entries for event E37.
In some other implementations, comment table 930 can have one or more of the following variables with certain attributes: ORGANIZATION_ID being CHAR(15 BYTE), FEEDS_COMMENTS_ID being CHAR(15 BYTE) and uniquely identifying each comment, PARENT_ID being CHAR(15 BYTE), CREATED_BY being CHAR(15 BYTE), CREATED_DATE being DATE, COMMENTS being VARCHAR2(420 BYTE), and DELETED being CHAR(1 BYTE).
A user subscription table 940 can provide a list of the objects being followed (subscribed to) by a user. In one implementation, each entry has a user ID 941 of the user doing the following and one object ID 942 corresponding to the object being followed. In one implementation, the object being followed can be a record or a user. As shown, the user with ID U819 is following object IDs O615 and O489. If user U819 is following other objects, then additional entries may exist for user U819. Also as shown, user U719 is also following object O615. The user subscription table 940 can be updated when a user adds or deletes an object that is being followed.
In some other implementations, comment table 940 can be composed of two tables (one for records being followed and one for users being followed). One table can have one or more of the following variables with certain attributes: ORGANIZATION_ID being CHAR(15 BYTE), ENTITY_SUBSCRIPTION_ID being CHAR(15 BYTE), PARENT_ID being CHAR(15 BYTE), CREATED_BY being CHAR(15 BYTE), CREATED_DATE being DATE, and DELETED being CHAR(1 BYTE). Another table can have one or more of the following variables with certain attributes: ORGANIZATION_ID being CHAR(15 BYTE), USER_SUBSCRIPTIONS_ID being CHAR(15 BYTE), USER_ID being CHAR(15 BYTE), CREATED_BY being CHAR(15 BYTE), and CREATED_DATE being DATE.
In one implementation, regarding a profile feed and a news feed, these are read-only views on the event hifeed tracked update table 910 specialized for these feed types. Conceptually the news feed can be a semi-join between the entity subscriptions table 940 and the event hifeed tracked update table 910 on the object IDs 912 and 942 for the user. In one aspect, these entities can have polymorphic parents and can be subject to a number of restrictions detailed herein, e.g., to limit the cost of sharing checks.
In one implementation, entity feeds are modeled in the API as a feed associate entity (e.g., AccountFeed, CaseFeed, etc). A feed associate entity includes information composed of events (e.g., event IDs) for only one particular record type. Such a list can limit the query (and sharing checks) to a specific record type. In one aspect, this structuring of the entity feeds can make the query run faster. For example, a request for a feed of a particular account can include the record type of account. In one implementation, an account feed table can then be searched, where the table has account record IDs and corresponding event IDs or pointers to particular event entries in event hifeed tracked update table 910. Since the account feed table only contains some of the records (not all), the query can run faster.
In one implementation, there may be objects with no events listed in the event hifeed tracked update table 910, even though the record is being tracked. In this case, the database service can return a result indicating that no feed items exist.
In another implementation, tables can also exist for audit tracking, e.g., to examine that operations of the system (e.g., access checks) are performing accurately. In one implementation, audit change-hifeed tracked update tables can be persisted (e.g., in bulk) synchronously in the same transaction as feed events are added to event hifeed tracked update table 910. In another implementation, entries to the two sets of table can be persisted in asynchronous manner (e.g., by forking a bulk update into a separate java thread). In one aspect, some updates to any of the tables can get lost if the instance of the table goes down while the update has not yet finished. This asynchronous manner can limit an impact performance on save operations. In some implementations, a field “persistence type” (tri state: AUDIT, FEEDS or BOTH) can be added to capture user preferences, as opposed to being hard coded.
B. Feed Item
A feed item can represent an individual field change of a record, creation and deletion of a record, or other events being tracked for a record or a user. In one implementation, all of the feed items in a single transaction (event) can be grouped together and have the same event ID. A single transaction relates to the operations that can be performed in a single communication with the database. In another implementation where a feed is an object of the database, a feed item can be a child of a profile feed, news feed, or entity feed. If a feed item is added to multiple feeds, the feed item can be replicated as a child of each feed to which the feed item is added.
In one implementation, a feed item is visible only when its parent feed is visible, which can be the same as needing read access on the feed's parent (which can be by the type of record or by a specific record). The feed item's field may be only visible when allowed under field-level security (FLS). Unfortunately, this can mean that the parent feed may be visible, but the child may not be because of FLS. Such access rules are described in more detail below. In one implementation, a feed item can be read-only. In this implementation, after being created, the feed item cannot be changed.
In multi-currency organizations, a feed item can have an extra currency code field. This field can give the currency code for the currency value in this field. In one aspect, the value is undefined when the data type is anything other than currency.
C. Feed Comment
In some implementations, a comment exists as an item that depends from feed tracked updates, posts, status updates, and other items that are independent of each other. Thus, a feed comment object can exist as a child object of a feed item object. For example, comment table 930 can be considered a child table of event hifeed tracked update table 910. In one implementation, a feed comment can be a child of a profile feed, news feed, or entity feed that is separate from other feed items.
In various implementations, a feed comment can have various permissions for the following actions. For read permission, a feed comment can be visible if the parent feed is visible. For create permission, if a user has access to the feed (which can be tracked by the ID of the parent feed), the user can add a comment. For delete, only a user with modify all data permission or a user who added the comment can delete the comment. Also delete permission can require access on the parent feed. An update of a comment can be restricted, and thus not be allowed.
In one implementation, regarding a query restriction, a feed comment cannot be queried directly, but can be queried only via the parent feed. An example is “select id, parentid, (select . . . from feedcomment) from entityfeed”. In another implementation, a feed comment can be directly queries, e.g., by querying comment table 930. A query could include the text of a comment or any other column of the table.
In another implementation, regarding soft delete behavior, a feed comment table does not have a soft delete column. A soft delete allows an undelete action. In one implementation, a record can have a soft delete. Thus, when the record is deleted, the feed (and its children) can be soft deleted. Therefore, in one aspect, a feed comment cannot be retrieved via the “query” verb (which would retrieve only the comment), but can be retrieved via “queryAll” verb though. An example is queryAll (“select id, (select id, commentbody from feedcomments) from accountfeed where parentid=‘001x000xxx3MkADAA0’”); // where ‘001x000xxx3MkADAA0’ has been soft deleted. When a hard delete (a physical delete) happens, the comment can be hard deleted from the database.
In one implementation, regarding an implicit delete, feeds with comments are not deleted by a reaper (a routine that performs deletion). In another implementation, a user cannot delete a feed. In yet another implementation, upon lead convert (e.g., to an opportunity or contact), the feed items of the lead can be hard deleted. This implementation can be configured to perform such a deletion for any change in record type. In various implementations, only the comments are hard deleted upon a lead convert, other convert, or when the object is deleted (as mentioned above).
In one implementation, viewing a feed pulls up the most recent messages or feed tracked updates (e.g., 25) and searches the most recent (e.g., 4) comments for each feed item. The comments can be identified via the comment table 930. In one implementation, a user can request to see more comments, e.g., by selecting a see more link.
In some implementations, user feeds and/or entity feeds have a last comment date field. In various implementations, the last comment date field is stored as a field of a record or a user profile. For feeds with no comments, this can be the same as the created date. Whenever a new comment is created, the associated feed's last comment date can be updated with the created date of the comment. The last comment date is unchanged if a feed comment is deleted. A use case is to allow people to order their queries to see the feeds, which have been most recently commented on.
D. Creating Custom Feeds by Customizing the Event Hifeed Tracked Update Table
In some implementations, a tenant (e.g., through an administrator) or a specific user of a tenant can specify the types of events for which feed items are created. A user can add more events or remove events from a list of events that get added to the event hifeed tracked update table 910. In one implementation, a trigger can be added as a piece of code, rule, or item on a list for adding a custom event to the event hifeed tracked update table 910. These custom events can provide customers the ability to create their own custom feeds and custom feed items to augment or replace implicitly generated feeds via event hifeed tracked update table 910. Implicitly generated feed data can be created when feed-tracking is enabled for certain entities/field-names. In one implementation, in order to override implicit feeds, feed tracking can be turned off and then triggers can be defined by the user to add events to the event hifeed tracked update table 910. In other implementations, users are not allowed to override the default list of events that are added to table 910, and thus cannot define their own triggers for having events tracked.
For example, upon lead convert or case close, a default action to be taken by the system may be to add multiple events to event hifeed tracked update table 910. If a customer (e.g., a tenant or a specific user) does not want each of these events to show up as feed items, the customer can turn off tracking for the entities and generate custom feeds by defining customized triggers (e.g., by using an API) upon the events. As another example, although data is not changed, a customer may still want to track an action on a record (e.g., status changes if not already being tracked, views by certain people, retrieval of data, etc.).
In one implementation, if a user does not want a feed item to be generated upon every change on a given field, but only if the change exceeds a certain threshold or range, then such custom feeds can be conditionally generated with the customized triggers. In one implementation, the default tracking for the record or user may be turned off for this customization so that the events are only conditionally tracked. In another implementation, a trigger can be defined that deletes events that are not desired, so that default tracking can still be turned on for a particular object type. Such conditional tracking can be used for other events as well.
In some implementations, defining triggers to track certain events can be done as follows. A user can define an object type to track. This object type can be added to a list of objects that can be tracked for a particular tenant. The tenant can remove object types from this list as well. Custom objects and standard objects can be on the list, which may, for example, be stored in cache or RAM of a server or in the database. Generally only one such list exists for a tenant, and users do not have individual lists for themselves, although in some implementations, they may particularly when the number of users in a tenant is small.
In one implementation, a tenant can select which records of an object type are to be tracked. In another implementation, once an object type is added to the tracking list of object types, then all records of that type are tracked. The tenant can then specify the particulars of how the tracking is to be performed. For example, the tenant can specify triggers as described above, fields to be tracked, or any of the customizations mentioned herein.
In some implementations, when a feed is defined as an object in the database (e.g., as a child object of entity records that can be tracked), a particular instance of the feed object (e.g., for a particular record) can be create-able and delete-able. In one implementation, if a user has access to a record then the user can customize the feed for the record. In one implementation, a record may be locked to prevent customization of its feed.
One method of creating a custom feed for users of a database system according to implementations is now described. Any of the following blocks can be performed wholly or partially with the database system, and in particular by one or more processor of the database system.
In block A, one or more criteria specifying which events are to be tracked for possible inclusion into a feed to be displayed are received from a tenant. In block B, data indicative of an event is received. In block C, the event is analyzed to determine if the criteria are satisfied. In block D, if the criteria are satisfied, at least a portion of the data is added to a table (e.g., one or more of the tables in
E. Creating Custom Feeds with Filtering
After feed items have been generated, they can be filtered so that only certain feed items are displayed, which may be tailored to a specific tenant and/or user. In one implementation, a user can specify changes to a field that meet certain criteria for the feed item to show up in a feed displayed to the user, e.g., a news feed or even an entity feed displayed directly to the user. In one implementation, the criteria can be combined with other factors (e.g., number of feed items in the feed) to determine which feed items to display. For instance, if a small number of feed items exist (e.g., below a threshold), then all of the feed items may be displayed.
In one implementation, a user can specify the criteria via a query on the feed items in his/her new feed, and thus a feed may only return objects of a certain type, certain types of events, feed tracked updates about certain fields, and other criteria mentioned herein. Messages can also be filtered according to some criteria, which may be specified in a query. Such an added query can be added onto a standard query that is used to create the news feed for a user. A first user could specify the users and records that the first user is following in this manner, as well as identify the specific feed items that the first user wants to follow. The query could be created through a graphical interface or added by a user directly in a query language. Other criteria could include receiving only posts directed to a particular user or record, as opposed to other feed items.
In one implementation, the filters can be run by defining code triggers, which run when an event, specific or otherwise, occurs. The trigger could then run to perform the filtering at the time the event occurs or when a user (who has certain defined triggers, that is configured for a particular user) requests a display of the feed. A trigger could search for certain terms (e.g., vulgar language) and then remove such terms or not create the feed item. A trigger can also be used to send the feed item to a particular person (e.g., an administrator) who does not normally receive the feed item were it not for the feed item containing the flagged terms.
F. Access Checks
In one implementation, a user can access a feed of a record if the user can access the record. The security rules for determining whether a user has access to a record can be performed in a variety of ways, some of which are described in U.S. patent application Ser. No. 11/866,184 by Weissman et al., filed Oct. 2, 2007, titled “METHODS AND SYSTEMS FOR CONTROLLING ACCESS TO CUSTOM OBJECTS IN A DATABASE”, which is hereby incorporated by reference in its entirety and for all purposes. For example, a security level table can specify whether a user can see a particular type of record and/or particular records. In one implementation, a hierarchy of positions within a tenant is used. For example, a manager can inherit the access levels of employees that the manager supervises. Field level security (FLS) can also be used to determine whether a particular feed tracked update about an update to a field can be seen by the user. The field change table 920 can be used to identify a field name or field ID, and then whether the user has read access to that field can be determined from an FLS table. For example, if a user could not see a field of a social security number, the feed of the user provided to the user would not include any feed items related to the social security number field.
In one implementation, a user can edit a feed of a record if the user has access to the record, e.g., deleting or editing a feed item. In another implementation, a user (besides an administrator) cannot edit a feed item, except for performing an action from which a feed item can be created. In one implementation, a user is required to have access to a particular record and field for a feed item to be created based on an action of the user. In this case, an administrator can be considered to be a user with MODIFY-ALL-DATA security level. In yet another implementation, a user who created the record can edit the feed.
G. Posts
In one implementation, the text of posts are stored in a child table (post table 950), which can be cross-referenced with event hifeed tracked update table 910. Post table 950 can include event ID 951 (to cross-reference with event ID 911), post text 952 to store the text of the post, and time/date 953. An entry in post table 950 can be considered a feed post object. Posts for a record can also be subject to access checks. In one implementation, if a user can view a record then all of the posts can be seen, i.e. there is not an additional level of security check as there is for FLS. In another implementation, an additional security check could be done, e.g., by checking on whether certain keywords (or phrases) exist in the post. For instance, a post may not be not provided to specified users if a certain keyword exists, or only provided to specified users if a keyword exists. In another implementation, a table can exist for status updates.
VIII. Subscribing to Users and Records to Follow
As described above, a user can follow users, groups, and records. Implementations can provide mechanisms for a user to manage which users, groups, and records that the user is currently following. In one implementation, a user can be limited to the number of users and records (collectively or separately) that the user can follow. For example, a user may be restricted to only following 10 users and 15 records, or as another example, 25 total. Alternatively, the user may be permitted to follow more or less users.
In one implementation, a user can go to a page of a record and then select to follow that object (e.g., with a button marked “follow” or “join”). In another implementation, a user can search for a record and have the matching records show up in a list. The search can include criteria of records that the user might want to follow. Such criteria can include the owner, the creation date, last comment date, and numerical values of particular fields (e.g., an opportunity with a value of more than $10,000).
A follow button (or other activation object) can then reside next to each record in the resulting list, and the follow button can be selected to start following the record. Similarly, a user can go to a profile page of a user and select to follow the user, or a search for users can provide a list, where one or more users can be selected for following from the list. The selections of subscribing and unsubscribing can add and delete rows in table 920.
In some implementations, a subscription center acts as a centralized place in a database application (e.g., application platform 18) to manage which records a user subscribes to, and which field updates the user wants to see in feed tracked updates. The subscription center can use a subscription table to keep track of the subscriptions of various users. In one implementation, the subscription center shows a list of all the items (users and records) a user is subscribed to. In another implementation, a user can unsubscribe to subscribed objects from the subscription center.
A. Automatic Subscription
In one implementation, an automatic subscription feature can ensure that a user is receiving certain feeds. In this manner, a user does not have to actively select certain objects to follow. Also, a tenant can ensure that a user is following objects that the user needs to be following.
In various implementations for automatically following users, a default for small organizations can be to follow everyone. For big organizations, the default can be to follow a manager and peers. If a user is a manager, the default can be to follow the manager's supervisor, peers, and people that the manager supervises (subordinates). In other implementations for automatically following records, records that the user owns may be automatically followed and/or records recently viewed (or changed) may be automatically followed.
In one example, a new record is created. The owner (not necessarily the user who created the entity) is subscribed to the entity. If ownership is changed, the new owner may automatically be subscribed to follow the entity. Also, after a lead convert, the user doing the lead convert may be automatically subscribed to the new account, opportunity, or contact resulting from the lead convert. In one implementation, the auto subscription is controlled by user preference. That is a user or tenant can have the auto subscribe feature enabled or not. In one aspect, the default is to have the auto-subscribe turned on.
In block 901, one or more properties of an object stored in the database system are received. The properties can be received from administrators of the database system, or from users of the database system (which may be an administrator of a customer organization). The properties can be records or users, and can include any of the fields of the object that are stored in the database system. Examples of properties of a record include: an owner of the record, a user that converted the record from one record type to another record type, whether the first user has viewed the record, and a time the first user viewed the record. Examples of properties of a user include: which organization (tenant) the user is associated with, the second user's position in the same organization, and which other users the user had e-mailed or worked with on projects.
In block 902, the database system receives one or more criteria about which users are to automatically follow the object. The criteria can be received from administrators of the database system, or from one or more users of the database system. The users may be an administrator of a customer organization, which can set tenant-wide criteria or criteria for specific users (who may also set the criteria themselves). Examples of the criteria can include: an owner or creator of a record is to follow the record, subordinates of an owner or creator of a record are to follow the record, a user is to follow records recently viewed (potentially after a specific number of views), records that a user has changed values (potentially with a date requirement), records created by others in a same business group as the user. Examples of the criteria can also include: a user is to follow his/her manager, the user's peers, other users in the same business group as the user, and other users that the user has e-mailed or worked with on a project. The criteria can be specific to a user or group of users (e.g., users of a tenant).
In block 903, the database system determines whether the one or more properties of the object satisfy the one or more criteria for a first user. In one implementation, this determination can occur by first obtaining the criteria and then determining objects that satisfy the criteria. The determination can occur periodically, at time of creation of an object, or at other times. If different users have different criteria, then the criteria for a particular user or group could be searched at the same time. Since users of different tenants normally cannot view objects of another tenant, certain criteria does not have to be checked. In another implementation, this determination can occur by looking at certain properties and then identifying any criteria that are met. In yet another implementation, the criteria and properties can be used to find users that satisfy the criteria.
In block 904, if the criteria are satisfied, the object is associated with the first user. The association can be in a list that stores information as to what objects are being followed by the first user. User subscription table 940 is an example of such a list. In one implementation, the one or more criteria are satisfied if one property satisfies at least one criterion. Thus, if the criteria are that a user follows his/her manager and the object is the user's manager, then the first user will follow the object.
In one implementation, a user can also be automatically unsubscribed, e.g., if a certain action happens. The action could be a change in the user's position within the organization, e.g., a demotion or becoming a contractor. As another example, if a case gets closed, then users following the case may be automatically unsubscribed.
B. Feed and Subscription API
In one implementation, a feed and subscription center API can enable tenants to provide mechanisms for tracking and creating feed items, e.g., as described above for creating custom feeds by allowing users to add custom events for tracking. For example, after some initial feed items are created (e.g., by administrators of the database system), outside groups (e.g., tenants or software providers selling software to the tenants) can ‘enable objects’ for feeds through a standard API. The groups can then integrate into the subscription center and the feed tracked update feeds on their own. In one implementation, the feed and subscription center API can use a graphical user interface implemented for the default feed tracking. In one implementation, API examples include subscribing to an entity by creating a new entity subscription object for a particular user ID, or for all users of a tenant (e.g., user subscription table 940). In one implementation, obtaining all subscriptions for a given user can be performed by using a query, such as “select . . . from EntitySubscription where userid=‘ . . . ’ ”.
Some implementations have restriction on non-admin users, e.g., those without view all data permissions (VAD). One restriction can be a limit clause on entity subscription queries (e.g., queries on user subscription table 940), e.g., where the limit of the number of operations is less than 100. In one implementation, users are not required to specify an order-by, but if an order-by is specified they can only order on fields on the entity subscription entity. In one implementation, filters on entity subscription can likewise only specify fields on the entity subscription entity. In one aspect, the object ID being followed can be sorted or filtered, but not the object name.
In one implementation, one or more restrictions can also be placed on the identification of feed items in a feed that a user can access. For example, if a low-level user (i.e. user can access few objects) is attempting to see a profile feed of a high level user, a maximum number of checks (e.g., 500) for access rights may be allowed. Such a restriction can minimize a cost of a feed request. In some implementations, there are restriction on the type of queries (e.g., fields for filtering) allowed to construct on feeds (e.g., on tables in
C. Sharing
As mentioned above, users may be restricted from seeing records from other tenants, as well as certain records from the tenant to which the user belongs (e.g., the user's employer). Sharing rules can refer to the access rules that restrict a user from seeing records that the user is not authorized to see or access. Additionally, in one implementation, a user may be restricted to only seeing certain fields of a record, field-level security (FLS).
In an implementation, access rule checks are done upon subscription. For example, a user is not allowed to subscribe to a record or type of record that the user cannot access. In one aspect, this can minimize (but not necessarily eliminate) cases where a user subscribes to entities they cannot access. Such cases can slow down news feed queries, when an access check is performed (which can end up removing much of the feed items). Thus, a minimization of access checks can speed up operation. In another implementation, when feed items are created dynamically, access rule checks may be done dynamically at the time of subsequent access, and not upon subscription or in addition to at time of subscription.
An example case where access checks are still performed is when a first user follows a second user, but the second user performs some actions on records or is following records that the first user is not allowed to see. The first user may be allowed to follow the second user, and thus the subscription is valid even though the first user may not be able to see all of the feed items. Before a feed tracked update is provided to a news feed of the first user, a security check may be performed to validate whether the first user has access rights to the feed item. If not, the feed item is not displayed to the first user. In one implementation, users can be blocked from feed items that contain certain terms, symbols, account numbers, etc. In one implementation, any user can follow another user. In another implementation, users may be restricted as to which users, objects, and/or records he/she can follow.
Regarding viewing privileges of a feed, in one implementation, a user can always see all of his own subscriptions (even if he's lost read access to a record). For example, a user can become a contractor, and then the user may lose access to some records. But, the user may still see that he/she is following the object. This can help if there is a limit to the number of objects that can be followed. To unsubscribe a user may need to know what they are following so they can unsubscribe and subscribe to objects the user can see. In another implementation, for access to other people's subscriptions, a user can be required to need read-access on the record-id to see the subscription. In some implementations, users with authorization to modify all data can create/delete any subscription. In other implementations, a user can create/delete subscriptions only for that user, and not anyone else.
D. Configuration of which Field to Follow
There can be various feed settings for which feed items get added to profile and record feeds, and which get added to news feeds. In one implementation, for profile feeds and entity feeds, feed tracked updates can be written for all standard and custom fields on the supported objects. In one implementation, feed settings can be set to limit how many and which fields of a record are tracked for determining whether a feed tracked update is to be generated. For example, a user or administrator can choose specific fields to track and/or certain ones not to track. In another implementation, there is a separate limit for the number of trackable fields (e.g., 20) for a record. Thus, only certain changes may be tracked in an entity hifeed tracked update and show up in the feed. In yet another implementation, default fields may be chosen for tracking, where the defaults can be exposed in the subscriptions center.
IX. Adding Items to a Feed
As described above, a feed includes feed items, which include feed tracked updates and messages, as defined herein. Various feeds can be generated. For example, a feed can be generated about a record or about a user. Then, users can view these feeds. A user can separately view a feed of a record or user, e.g., by going to a home page for the user or the record. As described above, a user can also follow another user or record and receive the feed items of those feeds through a separate feed application (e.g., in a page or window), which is termed “chatter” in certain examples. The feed application can provide each of the feeds that a user is following and, in some examples, can combine various feeds in a single information feed.
A feed generator can refer to any software program running on a processor or a dedicated processor (or combination thereof) that can generate feed items (e.g., feed tracked updates or messages) and combine them into a feed. In one implementation, the feed generator can generate a feed item by receiving a feed tracked update or message, identifying what feeds the item should be added to, and adding the feed. Adding the feed can include adding additional information (metadata) to the feed tracked update or message (e.g., adding a document, sender of message, a determined importance, etc.). The feed generator can also check to make sure that no one sees feed tracked updates for data that they don't have access to see (e.g., according to sharing rules). A feed generator can run at various times to pre-compute feeds or to compute them dynamically, or combinations thereof.
In one implementation, the feed generator can de-dupe events (i.e. prevent duplicates) that may come in from numerous records (and users). For example, since a feed tracked update can be published to multiple feeds (e.g., John Choe changed the Starbucks Account Status) and a person can be subscribed to both the Starbucks account and John Choe, implementations can filter out duplicates before adding or displaying the items in a news feed. Thus, the Feed Generator can collapse events with multiple records and users for a single transaction into a single feed tracked update and ensure the right number of feed tracked updates for the particular feed. In some implementations, an action by a user does not create a feed item for that user (e.g., for a profile feed of that user), and it is only the feed of the object being acted upon (e.g., updated) for which a feed item is created. Thus, there should not be duplicates. For example, if someone updates the status of a record, the feed item is only for the record and not the user.
In one implementation, processor 417 in
A. Adding Items to a Pre-Computed Feed
In some implementations, a feed of feed items is created before a user requests the feed. Such an implementation can run fast, but have high overall costs for storage. In one implementation, once a profile feed or a record feed has been created, a feed item (messages and feed tracked updates) can be added to the feed. The feed can exist in the database system in a variety of ways, such as a related list. The feed can include mechanisms to remove items as well as add them.
As described above, a news feed can be an aggregated feed of all the record feeds and profile feeds to which a user has subscribed. The news feed can be provided on the home page of the subscribing user. Therefore, a news feed can be created by and exist for a particular user. For example, a user can subscribe to receive entity feeds of certain records that are of interest to the user, and to receive profile feeds of people that are of interest (e.g., people on a same team, that work for the user, are a boss of the user, etc.). A news feed can tell a user about all the actions across all the records (and people) whom have explicitly (or implicitly) been subscribed to via the subscriptions center (described above).
In one implementation, only one instance of each feed tracked update is shown on a user's news feed, even if the feed tracked update is published in multiple entities to which the user is subscribed. In one aspect, there may be delays in publishing news articles. For example, the delay may be due to queued up messages for asynchronous entity hifeed tracked update persistence. Different feeds may have different delays (e.g., delay for new feeds, but none of profile and entity feeds). In another implementation, certain feed tracked updates regarding a subscribed profile feed or an entity feed are not shown because the user is not allowed access, e.g., due to sharing rules (which restrict which users can see which data). Also, in one implementation, data of the record that has been updated (which includes creation) can be provided in the feed (e.g., a file or updated value of a feed can be added as a flash rendition).
Examples are provided below as how it can be determined which feed items to add to which news feeds. In one implementation, the addition of items to a news feed is driven by the following user. For example, the user's profile can be checked to determine objects the user is following, and the database may be queried to determine updates to these objects. In another implementation, the users and records being followed drive the addition of items to a news feed. Implementations can also combine these and other aspects. In one implementation, a database system can be follower-driven if the number of subscriptions (users and records the user is following) is small. For example, since the number subscriptions are small, then changes to a small number of objects need to be checked for the follower.
Regarding implementations that are follower-driven, one implementation can have a routine run for a particular user. The routine knows the users and records that the user is following. The routine can poll the database system for new feed tracked updates and messages about the users and records that are being followed. In one implementation, the polling can be implemented as queries. In one implementation, the routine can run at least partially (even wholly) on a user device.
Regarding implementations where a news feed is driven by the record (or user) being followed, processor 417 can identify followers of the record after a feed item is added to the record feed. Processor 417 can retrieve a list of the followers from the database system. The list can be associated with the record, and can be stored as a related list or other object that is a field or child of the record.
In one implementation, profile and record feeds can be updated immediately with a new feed item after an action is taken or an event occurs. A news feed can also be updated immediately. In another implementation, a news feed can be updated in batch jobs, which can run at periodic times.
B. Dynamically Generating Feeds
In some implementations, a feed generator can generate the feed items dynamically when a user requests to see a particular feed, e.g., a profile feed, entity feed, or the user's news feed. In one implementation, the most recent feed items (e.g., top 50) are generated first. In one aspect, the other feed items can be generated as a background process, e.g., not synchronously with the request to view the feed. However, since the background process is likely to complete before a user gets to the next 50 feed items, the feed generation may appear synchronous. In another aspect, the most recent feed items may or may not include comments, e.g., that are tied to feed tracked updates or posts.
In one implementation, the feed generator can query the appropriate subset of tables shown in
In one implementation, there can be two feed generators. For example, one generator can generate the record and profile feeds and another generator can generate news feeds. For the former, the feed generator can query identifiers of the record or the user profile. For the latter, the news feed generator can query the subscribed profile feeds and record feeds, e.g., user subscription table 940. In one implementation, the feed generator looks at a person's subscription center to decide which feeds to query for and return a list of feed items for the user. The list can be de-duped, e.g., by looking at the event number and values for the respective table, such as field name or ID, comment ID, or other information.
C. Adding Information to Feed Hifeed Tracked Update Tables
In block 1010, data indicative of an event is received. The data may have a particular identifier that specifies the event. For example, there may be a particular identifier for a field update. In another implementation, the transaction may be investigated for keywords identifying the event (e.g., terms in a query indicating a close, change field, or create operations).
In block 1020, it is determined whether the event is being tracked for inclusion into feed tables. The determination of what is being tracked can be based on a tenant's configuration as described above. In one aspect, the event has an actor (person performing an event), and an object of the event (e.g., record or user profile being changed).
In block 1030, the event is written to an event hifeed tracked update table (e.g., table 910). In one implementation, this feed tracking operation can be performed in the same transaction that performs a save operation for updating a record. In another implementation, a transaction includes at least two roundtrip database operations, with one roundtrip being the database save (write), and the second database operation being the saving of the update in the hifeed tracked update table. In one implementation, the event hifeed tracked update table is chronological. In another implementation, if user A posts on user B's profile, then user A is under the “created by” 913 and user B is under the object ID 912.
In block 1040, a field change table (e.g., field change table 920) can be updated with an entry having the event identifier and fields that were changed in the update. In one implementation, the field change table is a child table of the event hifeed tracked update table. This table can include information about each of the fields that are changed. For example, for an event that changes the name and balance for an account record, an entry can have the event identifier, the old and new name, and the old and new balance. Alternatively, each field change can be in a different row with the same event identifier. The field name or ID can also be included to determine which field the values are associated.
In block 1050, when the event is a post, a post table (e.g., post table 950) can be updated with an entry having the event identifier and text of the post. In one implementation, the field change table is a child table of the event hifeed tracked update table. In another implementation, the text can be identified in the transaction (e.g., a query command), stripped out, and put into the entry at the appropriate column. The various tables described herein can be combined or separated in various ways. For example, the post table and the field change table may be part of the same table or distinct tables, or may include overlapping portions of data.
In block 1060, a comment is received for an event and the comment is added to a comment table (e.g., comment table 930). The comment could be for a post or an update of a record, from which a feed tracked update can be generated for display. In one implementation, the text can be identified in the transaction (e.g., a query command), stripped out, and put into the entry at the appropriate column.
D. Reading Information from Feed Hifeed Tracked Update Tables
In block 1110, a query is received for an events history table (e.g., event hifeed tracked update table 910) for events related to a particular record. In one implementation, the query includes an identifier of the record for which the feed is being requested. In various implementations, the query may be initiated from a detail page of the record, a home page of a user requesting the record feed, or from a listing of different records (e.g., obtained from a search or from browsing).
In block 1120, the user's security level can be checked to determine if the user can view the record feed. Typically, a user can view a record feed, if the user can access the record. This security check can be performed in various ways. In one implementation, a first table is checked to see if the user has a classification (e.g., a security level that allows him to view records of the given type). In another implementation, a second table is checked to see if the user is allowed to see the specific record. The first table can be checked before the second table, and both tables can be different sections of a same table. If the user has requested the feed from the detail page of the record, one implementation can skip the security level check for the record since the check was already done when the user requested to view the detail page.
In one implementation, a security check is determined upon each request to view the record feed. Thus, whether or not a feed item is displayed to a user is determined based on access rights, e.g., when the user requests to see a feed of a record or a news feed of all the objects the user is following. In this manner, if a user's security changes, a feed automatically adapts to the user's security level when it is changed. In another implementation, a feed can be computed before being requested and a subsequent security check can be made to determine whether the person still has access right to view the feed items. The security (access) check may be at the field level, as well as at the record level.
In block 1130, if the user can access the record, a field level security table can be checked to determine whether the user can see particular fields. In one implementation, only those fields are displayed to the user. Alternatively, a subset of those the user has access to is displayed. The field level security check may optionally be performed at the same time and even using the same operation as the record level check. In addition, the record type check may also be performed at this time. If the user can only see certain fields, then any feed items related to those fields (e.g., as determined from field change table 920) can be removed from the feed being displayed.
In block 1140, the feed items that the user has access to are displayed. In one implementation, a predetermined number (e.g., 20) of feed items are displayed at a time. The method can display the first 20 feed items that are found to be readable, and then determine others while the user is viewing the first 20. In another implementation, the other feed items are not determined until the user requests to see them, e.g., by activating a see more link.
In block 1210, a query is directed to an event hifeed tracked update table (e.g., event hifeed tracked update table 910) for events having a first user as the actor of the event (e.g., creation of an account) or on which the event occurred (e.g., a post to the user's profile). In various implementations, the query may be initiated by a second user from the user's profile page, a home page of a user requesting the profile feed (e.g., from a list of users being followed), or from a listing of different users (e.g., obtained from a search or from browsing). Various mechanisms for determining aspects of events and obtaining information from tables can be the same across any of the methods described herein.
In block 1220, a security check may also be performed on whether the second user can see the first user's profile. In one implementation any user can see the profile of another user of the same tenant, and block 1220 is optional.
In block 1230, a security (access) check can be performed for the feed tracked updates based on record types, records, and/or fields, as well security checks for messages. In one implementation, only the feed tracked updates related to records that the person has updated are the ones that need security check as the feed items about the user are readable by any user of the same tenant. Users of other tenants are not navigable, and thus security can be enforced at a tenant level. In another implementation, messages can be checked for keywords or links to a record or field that the second user does not have access.
As users can have different security classifications, it is important that a user with a low-level security cannot see changes to records that have been performed by a user with high-level security. In one implementation, each feed item can be checked and then the viewable results displayed, but this can be inefficient. For example, such a security check may take a long time, and the second user would like to get some results sooner rather than later. The following blocks illustrate one implementation of how security might be checked for a first user that has a lot of feed items, but the second user cannot see most of them. This implementation can be used for all situations, but can be effective in the above situation.
In block 1231, a predetermined number of entries are retrieved from the event hifeed tracked update table (e.g., starting from the most recent, which may be determined from the event identifier). The retrieved entries may just be ones that match the user ID of the query. In one implementation, entries are checked to find the entries that are associated with the user and with a record (i.e. not just posts to the user account). In another implementation, those entries associated with the user are allowed to be viewed, e.g., because the second user can see the profile of the first user as determined in block 1220.
In block 1232, the record identifiers are organized by type and the type is checked on whether the second user can see the record types. Other checks such as whether a record was manually shared (e.g., by the owner) can also be performed. In one implementation, the queries for the different types can be done in parallel.
In block 1233, if a user can see the record type, then a check can be performed on the specific record. In one implementation, if a user can see a record type, then the user can see all of the records of that type, and so this block can be skipped. In another implementation, the sharing model can account for whether a user below the second user (e.g., the second user is a manager) can see the record. In such an implementation, the second user may see such a record. In one implementation, if a user cannot see a specific record, then comments on that record are also not viewable.
In block 1234, field level sharing rules can be used to determine whether the second user can see information about an update or value of certain fields. In one implementation, messages can be analyzed to determine if reference to a particular field name is made. If so, then field level security can be applied to the messages.
In block 1280, blocks 1231-1234 are repeated until a stopping criterion is met. In one implementation, the stopping criteria may be when a maximum number (e.g., 100) of entries that are viewable have been identified. In another implementation, the stopping criteria can be that a maximum number (e.g., 500) of entries from the entity hifeed tracked update table have been analyzed, regardless of whether the entries are viewable or not.
In one implementation, a news feed can be generated as a combination of the profile feeds and the entity feeds, e.g., as described above. In one implementation, a list of records and user profiles for the queries in blocks 1110 and 1210 can be obtained form user subscription table 940. In one implementation, there is a maximum number of objects that can be followed.
In various implementations, the entity hifeed tracked update table can be queried for any one or more of the following matching variables as part of determining items for a feed: CreatedDate, CreatedById, CreatedBy.FirstName, CreatedBy.LastName, ParentId, and Parent.Name. The child tables can also be queried for any one or more of the following matching variables as part of determining items for a feed: DataType, FieldName, OldValue, and NewValue. A query can also specify how the resulting feed items can be sorted for display, e.g., by event number, date, importance, etc. The query can also include a number of items to be returned, which can be enforced at the server.
The two examples provided above can be done periodically to create the feeds ahead of time or done dynamically at the time the display of a feed is requested. Such a dynamic calculation can be computationally intensive for a news feed, particularly if many users and records are being followed, although there can be a low demand for storage. Accordingly, one implementation performs some calculations ahead of time and stores the results in order to create a news feed.
E. Partial Pre-Computing of Items for a Feed
In block 1310, data indicative of an event is received. The data may be the same and identified in the same way as described for block 1010. The event may be written to an event hifeed tracked update table (e.g., table 910).
In block 1320, the object(s) associated with the event are identified. In various implementations, the object may be identified by according to various criteria, such as the record being changed, the user changing the record, a user posting a message, and a user whose profile the message is being posted to.
In block 1330, the users following the event are determined. In one implementation, one or more objects that are associated with the event are used to determine the users following the event. In one implementation, a subscription table (e.g., table 940) can be used to find the identified objects. The entries of the identified objects can contain an identifier (e.g., user ID 941) of each the users following the object
In block 1340, the event and the source of the event, e.g., a record (for a record update) or a posting user (for a user-generated post) are written to a news feed table along with an event identifier. In one implementation, such information is added as a separate entry into the news feed table along with the event ID. In another implementation, each of the events for a user is added as a new column for the row of the user. In yet another implementation, more columns (e.g., columns from the other tables) can be added.
News feed table 960 shows an example of such a table with user ID 961 and event ID or pointer 962. The table can be organized in any manner. One difference from event hifeed tracked update table 910 is that one event can have multiple entries (one for each subscriber) in the news feed table 960. In one implementation, all of the entries for a same user are grouped together, e.g., as shown. The user U819 is shown as following events E37 and E90, and thus any of the individual feed items resulting from those events. In another implementation, any new entries are added at the end of the table. Thus, all of the followers for a new event can be added as a group. In such an implementation, the event IDs would generally be grouped together in the table. Of course, the table can be sorted in any suitable manner.
In an implementation, if the number of users is small, then the feed items in one or more of the tables may be written as part of the same write transaction. In one implementation, the determination of small depends on the number of updates performed for the event (e.g., a maximum number of update operations may be allowed), and if more operations are performed, then the addition of the feed items is performed. In one aspect, the number of operations can be counted by the number of rows to be updated, including the rows of the record (which depends on the update event), and the rows of the hifeed tracked update tables, which can depend on the number of followers. In another implementation, if the number of users is large, the rest of the feed items can be created by batch. In one implementation, the feed items are always written as part of a different transaction, i.e., by batch job.
In one implementation, security checks can be performed before an entry is added to the news feed table 960. In this manner, security checks can be performed during batch jobs and may not have to be performed at the time of requesting a news feed. In one implementation, the event can be analyzed and if access is not allowed to a feed item of the event, then an entry is not added. In one aspect, multiple feed items for a same user may not result from a same event (e.g., by how an event is defined in table 910), and thus there is no concern about a user missing a feed item that he/she should be able to view.
In block 1350, a request for a news feed is received from a user. In one implementation, the request is obtained when a user navigates to the user's home page. In another implementation, the user selects a table, link, or other page item that causes the request to be sent.
In block 1360, the news feed table and other tables are accessed to provide displayable feed items of the news feed. The news feed can then be displayed. In one implementation, the news feed table can then be joined with the event hifeed tracked update table to determine the feed items. For example, the news feed table 960 can be searched for entries with a particular user ID. These entries can be used to identify event entries in event hifeed tracked update table 910, and the proper information from any child tables can be retrieved. The feed items (e.g., feed tracked updates and messages) can then be generated for display.
In one implementation, the most recent feed items (e.g., 100 most recent) are determined first. The other feed items may then be determined in a batch process. Thus, the feed item that a user is most likely to view can come up first, and the user may not recognize that the other feed items are being done in batch. In one implementation, the most recent feed items can be gauged by the event identifiers. In another implementation, the feed items with a highest importance level can be displayed first. The highest importance being determined by one or more criteria, such as, who posted the feed item, how recently, how related to other feed items, etc.
In one implementation where the user subscription table 940 is used to dynamically create a news feed, the query would search the subscription table, and then use the object IDs to search the event hifeed tracked update table (one search for each object the user is following). Thus, the query for the news feed can be proportional to the number of objects that one was subscribing to. The news feed table allows the intermediate block of determining the object IDs to be done at an earlier stage so that the relevant events are already known. Thus, the determination of the feed is no longer proportional to the number of object being followed.
In some implementations, a news feed table can include a pointer (as opposed to an event identifier) to the event hifeed tracked update table for each event that is being followed by the user. In this manner, the event entries can immediately be retrieved without having to perform a search on the event hifeed tracked update table. Security checks can be made at this time, and the text for the feed tracked updates can be generated.
X. Display of a Feed
Feeds include messages and feed tracked updates and can show up in many places in an application interface with the database system. In one implementation, feeds can be scoped to the context of the page on which they are being displayed. For example, how a feed tracked update is presented can vary depending on which page it is being displayed (e.g., in news feeds, on a detail page of a record, and even based on how the user ended up at a particular page). In another implementation, only a finite number of feed items are displayed (e.g., 50). In one implementation, there can be a limit specifically on the number of feed tracked updates or messages displayed. Alternatively, the limit can be applied to particular types of feed tracked updates or messages. For example, only the most recent changes (e.g., 5 most recent) for a field may be displayed. Also, the number of fields for which changes are displayed can also be limited. Such limits can also be placed on profile feeds and news feeds. In one implementation, feed items may also be subject to certain filtering criteria before being displayed, e.g., as described below.
A. Sharing Rules for Feeds
As mentioned above, a user may not be allowed to see all of the records in the database, and not even all of the records of the organization to which the user belongs. A user can also be restricted from viewing certain fields of a record that the user is otherwise authorized to view. Accordingly, certain implementations use access rules (also called sharing rules and field-level security FLS) to ensure that a user does not view a feed tracked update or message that the user is not authorized to see. A feed of a record can be subject to the same access rules as the parent record.
In one implementation, access rules can be used to prevent subscription to a record that the user cannot see. In one implementation, a user can see a record, but only some of the fields. In such instances, only items about fields that the user can access may be displayed. In another implementation, sharing rules and FLS are applied before a feed item is being added to a feed. In another implementation, sharing rules and FLS are applied after a feed item has been added and when the feed is being displayed. When a restriction of display is mentioned, the enforcement of access rules may occur at any stage before display.
In some implementations, the access rules can be enforced when a query is provided to a record or a user's profile to obtain feed items for a news feed of a user. The access rules can be checked and cross-references with the feed items that are in the feed. Then, the query can only return feed items for which the user has access.
In other implementations, the access rules can be enforced when a user selects a specific profile feed or record feed. For example, when a user arrives on a home page (or selects a tab to see the record feed), the database system can check to see which feed items the user can see. In such an implementation, each feed item can be associated with metadata that identifies which field the feed item is about. Thus, in one implementation, a feed tracked update is not visible unless the associated record and/or field are visible to the user.
In one example, when a user accesses a feed of a record, an access check can be performed to identify whether the user can access the object type of the record. In one implementation, users are assigned a profile type, and the profile type is cross-referenced (e.g., by checking a table) to determine whether the profile type of the user can see the object type of the record.
In some implementations, access to specific records can be checked, e.g., after it has been determined that the user can access the record type. Rules can be used to determine the records viewable by a user. Such rules can determine the viewable records as a combination of those viewable by profile type, viewable due to a profile hierarchy (e.g., a boss can view records of profile types lower in the hierarchy), and viewable by manual sharing (e.g., as may be done by an owner of a record). In one implementation, the records viewable by a user can be determined beforehand and stored in a table. In one implementation, the table can be cross-referenced by user (or profile type of a user) to provide a list of the records that the user can see, and the list can be searched to determine if the record at issue is among the list. In another implementation, the table can be cross-referenced by record to determine a list of the profile types that can access the record, and the list can be searched to find out if the requesting user is in the list. In another implementation, the records viewable by a user can be determined dynamically at the time of the access check, e.g., by applying rules to data (such as user profile and hierarchy information) obtained from querying one or more tables.
In other implementations, checks can be made as to whether a user has access to certain fields of a record, e.g., after it has been determined that the user can access the record. In one aspect, the access check on fields can be performed on results already obtained from the database, to filter out fields that the user cannot see. In one implementation, the fields associated with retrieved feed items are determined, and these fields are cross-referenced with an access table that contains the fields accessible by the user (e.g., using the profile type of the user). Such an access table could also be a negative access table by specifying fields that the user cannot see, as can other access tables mentioned herein. In one implementation, the field level access table is stored in cache at a server.
In one implementation, a user can see the same fields across all records of a certain type (e.g., as long as the user can see the record). In one implementation, there is a field level access table for each object type. The access table can be cross-referenced by user (e.g., via profile type) or field. For example, a field can be identified along with the profile types that can see the field, and it can be determined whether the user's profile type is listed. In another example, the user can be found and the fields to which the user has access can be obtained. In another implementation, the accessible fields could be specified for each record.
Regarding profile feeds and news feeds, a first user may perform an action on a record, and a feed tracked update may be generated and added to the first user's profile feed. A second user who is allowed to follow the first user may not have access rights to the record. Thus, the feed tracked update can be excluded from a news feed of the second user, or when the second user views the first user's profile feed directly. In one implementation, if a user is already on the detail page, then another access check (at least at the record level) may optionally not be performed since a check was already done in order to view the detail page.
In some implementations, for profile feeds and news feeds, the feed items can be organized by object type. IT can then be determined whether the requesting user can access to those object types. Other access checks can be done independently or in conjunction with these access checks, as is described above.
B. API Implementation
Various implementations can implement the access rules in various ways. In one implementation, all recent feed items (or more generally events) are retrieved from a feed that is ready for display (e.g., after a feed generator performs formatting) or a table. Then, bulk sharing checks can be applied on the retrieved items. The viewable feed items of the most recent set can then be displayed.
In another implementation regarding a profile feed, for non-VAD (view all data) users, i.e. users who can see everything, certain functions can be overridden. In one implementation, a FROM clause in a query can be overridden to be a pipelined function, e.g., with different parts of the query being operated on at the same time, but with different operations of a pipeline. This pipeline function can be given a row limit and the maximum number of sharing checks to run. It can loop, selecting the next batch of rows, run sharing checks against them in bulk, and pipe back any IDs which are accessible. In one aspect, in nearly all cases, the user feed can contain accessible IDs so the sharing checks can pass on the first loop. However, it is possible the sharing may have changed such that this user's access is greatly reduced. In one worst case, implementations can run sharing checks on up to the maximum number of sharing check rows (e.g., a default 500) and then terminate the function with the IDs which passed so far, possibly zero. Such an example includes a low level person viewing profile feed of CEO.
In some implementations, if the user has a small number of subscriptions (e.g., <25), then implementations can first run sharing checks on those IDs and then drive the main query from those accessible IDs, as opposed to a semi-join against the subscription and running sharing checks on the resulting rows. In other implementations, FLS is enforced by building up a TABLE CAST of the accessible field IDs from the cached values. A main query can then join against this table to filter only accessible fields.
XI. Filtering and Searching Feeds
It can be possible that a user subscribes to many users and records, which can cause a user's news feed to be very long and include many feed items. In such instances, it can be difficult for the user to read every feed item, and thus some important or interesting feed items may not be read. In some implementations, filters may be used to determine which feed items are added to a feed or displayed in the feed, even though a user may be authorized to see more than what is displayed. Section VII.E also provides a description of filtering based on criteria.
In one implementation, an “interestingness” filter can function as a module for controlling/recommending which feed tracked updates make it to the news feed when the number of items that a user subscribes to is large. In one such implementation, a user can specify a filter, which is applied to a user's news feed or to record and profile feeds that the user requests. Different filters can be used for each. For example, processing can be done on the news feed to figure out which feed tracked updates are the most relevant to the user. One implementation can use an importance weight and level/ranking, as described herein. Other implementations can include a user specifying keywords for a message and specifying which records or users are most important.
In one implementation, a filter can be used that only allows certain feed items to be added to a feed and/or to be displayed as part of a feed. A filter can be used such that the removal or non-addition of certain feed items automatically occur for any new feed items after the filter criteria are entered. The filter criteria can also be added retroactively. The criteria of such a filter can be applied via a query mechanism as part of adding a feed item to a table or displaying a feed, as described in sections above. In various implementations, a user can directly write a query or create the query through a graphical user interface.
In block 1410, one or more criteria specifying which feed items are to be displayed to a first user are received from a tenant. In one implementation, the criteria specifies which items to add to the custom feed. For example, the criteria could specify to only include feed items for certain fields of a record, messages including certain keywords, and other criteria mentioned herein. In another implementation, the criteria specifies which items to remove from the custom feed. For example, the criteria could specify not to include feed items about certain fields or including certain keywords.
In block 1420, the database system identifies feed items of one or more selected objects that match the criteria. The feed items can be stored in the database, e.g., in one or more of the tables of
In block 1430, the feed items that match the criteria are displayed to the first user in the custom feed. The generation of text for a feed tracked update can occur after the identification of the feed items (e.g., data for a field change) and before the display of the final version of the feed item.
In one implementation, the criteria are received before a feed item is created. In another implementation, the criteria are received from the first user. In one aspect, the criteria may only used for determining feeds to display to the first user. In yet another implementation, the criteria are received from a first tenant and applies to all of the users of the first tenant. Also, in an implementation where a plurality of criteria are specified, the criteria may be satisfied for a feed item if one criterion is satisfied.
Some implementations can provide mechanisms to search for feed items of interest. For example, the feed items can be searched by keyword, e.g., as entered by a user. As another example, a tab (or other selection device) can show feed items about or from a particular user. In one implementation, only messages (or even just comments) from a particular user can be selected.
In another implementation, a user can enter search criteria so that the feed items currently displayed are searched and a new list of matching feed items is displayed. A search box can be used to enter keywords. Picklists, menus, or other mechanisms can be used to select search criteria. In yet another implementation, feed comments are text-indexed and searchable. Feed comments accessibility and visibility can apply on the search operation too.
In one implementation, when a user performs a search of feeds, there can be an implicit filter of the user (e.g., by user ID). This can restrict the search to only the news feed of the user, and thus to only record feeds and profile feeds that the user is subscribed. In another implementation, searches can also be done across feeds of users and records that are not being subscribed.
Besides searching for feed items that match a criteria, one also could search for a particular feed item. However, in one implementation, a user cannot directly query a feed item or feed comment. In such an implementation, a user can query to obtain a particular profile or record feed, and then navigate to the feed item (e.g., as child of the parent feed). In another implementation, the relationship from a feed to its parent entity (e.g., a record or user profile) is uni-directional. That is a user can navigate from the feed to the parent but not vice versa.
In one implementation, a user can directly query the child tables, e.g., comment table 930. Thus, a user could search for comments only that user has made, or comments that contain certain words. In another implementation, a user can search for a profile feed of only one user. In yet another implementation, a user can search for profile feeds of multiple users (e.g., by specifying multiple user names or IDs), which can be combined into a single feed.
XII. Maintaining Records for Follower's Feeds
If every feed item is stored and maintained on a follower's feed or even in the profile and/or record feeds, the amount of data to be stored could be massive, enough to cause storage issues in the system. In one implementation, the N (e.g., 50) most recent feed items for each feed are kept. However, there can be a need to keep certain older feed items. Thus, implementations can remove certain feed items, while keeping others. In other implementations, old feed tracked updates may be archived in a data store separate from where recent feed items are stored.
In some implementations, feeds are purged by a routine (also called a reaper) that can remove items deemed not worthy to keep (e.g., old items). Any underlying data structures from which feed items are created can also be purged. In one implementation, the reaper can remove certain items when new items are added (e.g., after every 5th item added). As another example, feed items may be deleted synchronously during the save operation itself. However, this may slow down each save operation. In one implementation, however, this may be better than incurring a larger cost when the items are removed at longer intervals. In another implementation, the reaper can run periodically as a batch process. Such routines can ensure that a table size does not become too large. In one aspect, a reaper routine can keep the event hifeed tracked update table relatively small so the sharing checks are not extremely expensive.
In various implementations, the reaper can maintain a minimum number (e.g., 50 or 100) of feed items per record, maintain a minimum number of records per user (e.g., per user ID), and not deleting feed items (or entire records), which have comments against it. Such implementations can ensure that the detail page and profile page have sufficient data to display in a feed. Note that the sharing checks for feed queries can cut down the number of records further for users with less access. Thus, the number of records finally displayed for specific users can be significantly less than a minimum number for a specific profile or record feed. In one implementation, a reaper deletes data that is older than a specified time (e.g., 6 months or a year).
In one implementation, the reaper can perform the deletion of feed items (purging) as a batch up deletion. This can avoid deletion of large number of records that may lead to locking issues. In another implementation, the reaper can be run often so that the table does not become difficult to manage (e.g., size-wise). In this way the reaper can work on a limited set of records. In one implementation, the reaper may have logic that deletes certain items (e.g., by an identification) from tables (e.g., those in
XIII. Performing Actions in Response to Information Updates Published on an Information Feed
Some implementations disclosed herein provide for trigger rules, described in greater detail below, that facilitate the performance of actions in response to conditions detected in information updates created in an information feed system. Such updates can include updates made to data records, updates posted on a personal wall or bulletin board associated with a user account, updates that include user comments, or any other type of updates.
In some implementations, each trigger rule may include one or more trigger conditions. When the trigger condition is detected, the trigger rule may be activated. The trigger condition may include any status or property associated with an information update. The trigger condition may be detected by analyzing an information update and any associated information. The trigger condition may be specified by a menu selection, by custom code, or by any other mechanism.
In some implementations, each trigger rule may include one or more trigger actions. The trigger action is performed when the trigger condition is detected. The trigger action may include any operation or activity within the feed system or within a larger computing services environment associated with the feed system. The trigger action may be specified by a menu selection, by custom code, or by any other mechanism.
At 1502, a trigger rule is created. In some implementations, a trigger rule may be implemented in an information feed system such as a social network. Creating the trigger rule may include designating one or more actions and one or more trigger conditions. When an information update satisfies the one or more trigger conditions, the one or more trigger actions are performed.
In some implementations, a trigger rule may be created based on instructions received from a user. Alternately, or additionally, a trigger rule may be created automatically by the system.
In some implementations, a trigger rule may be defined that causes one or more users to follow or stop following an object within the feed system. In this example, these actions may be triggered by a trigger condition such as the inclusion of a text string within an information update.
Returning to
In some implementations, a trigger rule may be defined to monitor a particular data record in a database for a status defined in the trigger condition. For example, the data record may represent a sales lead. The trigger rule may define the trigger condition as the status “actual sale.” When the system detects a data record status has changed to an “actual sale,” then the trigger condition is satisfied. In this example, the satisfaction of the trigger condition may cause the system to email a message to each of the associated team members about the actual sale.
In some implementations, a trigger rule may be defined to monitor keywords on an information feed to police content. For example, in a corporate setting, a team may be working on a top secret case called “order 66,” the discussion of which is forbidden by company policy. Anytime the system detects the words “order 66” on an information feed, the system may automatically generate an information update in response, transmit a message to a user account, or delete the offending information update. Such a rule may also be useful to police profane or otherwise unacceptable language in an information feed system.
In
Returning to
In some implementations, the trigger rule may be defined to escalate or draw attention to a data object associated with an information update. For example, an escalation trigger rule may be defined to detect the string “!911” in the text portion of an information update associated to a data record. When “!911” is detected in an information update, the system may escalate the priority of the associated data record in a data queue.
At 1504, an information update is monitored for a trigger condition. In some implementations, the information feed system may be configured to react to certain events or conditions as defined in a trigger rule. In some instances, the information feed system may monitor a batch of information updates for the presence of a trigger condition. The monitoring may be performed periodically, upon request, or according to some other schedule. Alternately, or additionally, the information feed system may compare a specific information update with a trigger condition. The monitoring may be performed when the information update is created or at some other time. The creation of an information update is discussed in additional detail with respect to the method 1600 shown in
At 1506, the trigger action is performed when the trigger condition is detected in the information update. In some implementations, various types of trigger actions may be associated with a trigger rule. For example, a trigger action may be defined as the creation or deletion of a data record in a database. In another example, the trigger action may be defined as updating or deleting a message from an information feed. In yet another example, a trigger action may be defined as allowing a user to “follow” or “unfollow” an object such as a data record. In yet another example, the trigger action may be defined as the performance of a combination of multiple events and/or actions.
In some implementations, a user interface may be provided for displaying configuration settings for one or more trigger rules. For example,
In some implementations, the method 1600 may be performed at least in part at a computing device configured to provide computing services associated with an information feed system such as a social networking system. The method 1600 may be initiated when a request to create a trigger rule is received at 1602.
At 1602, a request to create a trigger rule is received. In some implementations, the request may be generated at a client machine in communication with the computing device. For example, a user at the client machine may wish to create a user-defined trigger rule to detect a custom trigger condition and perform a custom trigger action.
In some implementations, the request to create the trigger rule may be generated from within the information feed system. For example, an automatic process may identify and make statistical associations between common conditions and common actions in response to those conditions. This process may determine that a trigger rule should be created to link the identified conditions and actions.
In some implementations, a trigger rule may be created at least in part with the use of a software package that includes a trigger rule framework. The software package may be accessible via an on-demand service environment available via a network. The trigger rule framework may be programmed in a programming language such as C++, Java, or Apex. The trigger rule framework may define core trigger classes to allow the user or the organization to create or customize a trigger rule. The user may implement or expand these classes in order to specify a trigger condition, a trigger action, a trigger scope, or other information related to a trigger rule.
In some implementations, a user may create the trigger rule at least in part with the use of a graphical user interface (GUI). The GUI may allow the user to define a trigger condition and/or a trigger action for a trigger rule. For example, the GUI may include a form that provides user interface components such as text boxes and drop down menus. Using these user interface components, the user may define a trigger condition, a trigger action, a trigger scope, or any other information related to the trigger rule. For instance, the GUI may provide a dropdown menu of predefined or user-defined trigger conditions or actions for the user to select. Alternately, or additionally, the user may provide or select a script containing computer programming language instructions to be performed.
At 1604, the scope of the trigger rule is determined. In some implementations, the scope may identify a type of information updates to which the trigger rule applies. For example, computing resources in an on-demand computing services environment may be shared by multiple entities. In this case, the scope of a trigger rule may be limited to a single entity to ensure that one entity's data is not affected by another entity's trigger rule. As another example, an information feed system may be shared by many different users. In this case, the scope of a trigger rule may be limited to a particular user account or group of user accounts to allow users to use trigger rules in an individualized fashion.
In some implementations, the scope of the trigger rule may be determined at least in part based on user input. For example, a user may indicate that the application of the trigger rule should be limited to a designated scope.
In some implementations, the scope of the trigger rule may be determined at least in part by the system. For instance, the system may automatically establish a default or minimum trigger rule scope based on the user account, an organization associated with the user account, a data record, some combination of parameters, or any other consideration.
In some implementation, the scope may be statically determined. For instance, the scope may be specified when the trigger rule is created. In this case, the scope may be specified via a GUI, via computer programming language instructions, or via any other mechanism.
In some implementations, the scope may be determined dynamically. For example, the system may analyze a user's account identify the user's team members. Based on this information, the system may select user accounts for inclusion in the scope of the trigger rule.
At 1606, an instruction for detecting a condition in an information update for triggering an action is determined. The trigger condition may be defined as a status or property of an information update or information included in the information update.
In some implementations, the trigger condition may be any type of status, condition, or information that may be associated with an information update. For example, the trigger condition may include a text string or keyword that may be present in a text portion of an information update. As another example, the trigger condition may include a status or condition of the information update or of a data record associated with an information update. As yet another example, the trigger condition may include information retrieved from the information feed system, from an on-demand computing services environment, or from any other location.
In some implementations, the trigger condition instruction may include computer programming language code for detecting the trigger condition. For example, the trigger condition instruction may include code that includes operations for analyzing a string in an information update and determine if the string matches the string defined in the trigger condition. These operations may include instructions for regular expression analysis. In another example, the trigger condition instruction may include code that includes operations for retrieving information from various locations, such as a data record associated with the information update or other locations in an on-demand computing services environment. These operations may include instructions for querying a database to determine information associated with database records.
In some implementations, computer programming language code for detecting the trigger condition may be provided via user input. For instance, a user may provide code that overrides abstract methods to implement a trigger rule.
In some implementations, computer programming language code for detecting the trigger condition may be generated at a server. For instance, a user may indicate that the trigger rule should have a trigger condition in which an information update is analyzed to determine whether the update includes a designated text string. In this case, the server may determine executable code to search an information update based on the text string indicated by the user.
At 1608, a trigger action instruction for defining an action to perform when the trigger condition is detected is determined. In some implementations, the trigger action instruction may include any type of instructions capable of being performed within the information feed system. These instructions may include, but are not limited to: causing user accounts to follow or stop following a data object, creating or deleting a data object such as a database record, modifying a data object, altering the status of a data record, changing an association between data records, generating or deleting an information update, transmitting a message, or some combination thereof.
In some implementations, computer programming language code for performing the trigger action may be provided via user input. For instance, a user may provide code that overrides abstract methods to implement a trigger rule.
In some implementations, computer programming language code for performing the trigger action may be generated at a server. For instance, a user may indicate that the trigger rule should have a trigger action in which a list of designated user accounts are made to follow a designated data record. In this case, the server may determine executable code to cause this action to occur based on the input provided by the user.
In some implementations, the instructions for detecting the trigger condition and/or defining the trigger action may include instructions for analyzing the content of the information update to select an appropriate action. For example, a trigger condition may include the presence of the text string “!translate,” the detection of which may result in translating the information update from one language to another language. In this case, the trigger rule instructions may facilitate the specification of the source and/or destination languages within the information update as well. For instance, the information update could include the text string “!translate from English to French”, indicating that the information update should be translated from English to French. As illustrated by this example, trigger rules can be flexibly configured to accomplish a variety of tasks. Thus, the scope of the trigger conditions and trigger actions may be limited only by the framework used to specify the trigger rule and the computing environment in which the trigger rule is implemented.
At 1610, the configured trigger rule is stored. In some implementations, the configured trigger rule may be stored at a storage device or on any type of storage medium. The stored trigger rule may include information identifying a scope of the trigger rule, instructions for identifying a trigger condition, instructions for identifying a trigger action, a name of the trigger rule, an owner of the trigger rule, and any other information related to the trigger rule. The configured trigger rule may be stored for later use and/or activated when it is created.
In some implementations, the method 1700 may be performed at various times and according to various types of scheduling information. For instance, the method 1700 may be activated on demand, periodically, or at scheduled times. As another example, the method 1700 may be activated when a triggering event such as the creation of a new information update is detected.
In some implementations, the dates and times of previous instances of the method 1700 may be stored. Identification information for scheduled instances of the method 1700 may also be stored to facilitate alteration of the schedule or cancelation of the method instance.
In some implementations, instances of trigger rule activation methods may be scheduled as part of a scheduled batch of programming code for the feed system and/or on-demand computing services environment. The scheduled batch of programming code may be run periodically or at designated times, such as every hour.
In some implementations, the method 1700 may execute a query on a feed table such as UserFeed. For instance, the method may filter out information updates made before the previous run of the process. For an information update, the process may call abstract methods that may be overridden by implementation classes to implement the trigger rule.
At 1702, a trigger rule is identified. In some implementations, the trigger rule may define a trigger action to perform when an information update satisfies a trigger condition. The trigger rule may be stored on a storage medium and configured in accordance with a configuration method as discussed with respect to
In some implementations, the trigger rule may be identified by the system. For example, the system may activate a trigger rule periodically or at scheduled times.
In some implementations, the trigger rule may be identified at least in part by a user. For example, the system may receive a request from a user to activate a particular trigger rule.
At 1704, a scope for the trigger rule is determined. In some implementations, the scope defines a type of information update to which the trigger rule applies. In some implementations, the scope may include one or more criteria for limiting the type of information updates that are selected for comparison with the trigger rule.
In some implementations, the scope may limit the application of the trigger rule to a particular entity or organization. For instance, two or more entities may access an information feed system provided via an on-demand computing service environment. These entities may have separate data but use shared computing resources for data processing. When a trigger rule is created for one of the entities, the trigger rule may be assigned an explicit or implicit scope that limits its application to the entity for which the trigger rule is created.
In some implementations, the scope may limit the application to information updates created in association with a designated user account or group of user accounts. For example, a user may create a personal trigger rule that only applies to updates created by the user. As another example, a trigger rule may be configured that applies to a designated group of users, such as developers, but that does not apply to users outside the group.
In some implementations, the scope may limit the application to designated data record or group of data records. For example, a trigger rule may be created that only applies to data records of the type “Account.” When an information update is created in association with an Account data record, the information update may be compared with the trigger condition associated with the trigger rule. However, information updates creased in association with data records having other data types may not be compared with the trigger condition.
At 1706, an information update within the scope is selected to monitor for the trigger condition. In some implementations, the information update may be selected by querying a feed table for information updates that meet the criteria associated with the scope.
At 1708, a determination is made as to whether the selected information update satisfies the trigger condition. The implementation of the determination 1708 may depend largely upon the configuration of the trigger rule. For example, if the trigger rule includes the presence of a designated text string within the information update as a trigger rule, then the determination 1708 may be made by comparing a text portion of the information update with the designated text string. As another example, if the trigger rule defines the trigger condition via custom computer programming language code, then the determination 1708 may be made by executing the custom computer programming language code.
At 1710, the trigger action is performed for the selected information update. In some implementations, performing the trigger action may involve implementing the action or actions defined in operation 1608 shown in
In some implementations, the performance of the trigger action 1710 may depend largely upon the configuration of the trigger rule. For example, if the trigger rule includes adding a designated pre-defined action as a trigger action, then the designated pre-defined action will be performed. As another example, if the trigger rule defines the trigger action via custom computer programming language code, then the trigger action may be performed at 1710 by executing the custom computer programming language code.
In some implementations, the trigger action may include making an update to a user's UserFeed table portion as specified in the trigger rule. If more than one user is specified as a recipient of a trigger action, then more than one user's UserFeed may be updated.
At 1712, a determination is made as to whether to continue monitoring information updates for application of the trigger rule. In some implementations, the determination may be based at least in part on whether any unprocessed information updates remain that fall within the scope of the trigger rule.
In some implementations, the first and second languages may be any one of various written languages. One or both of the first and second languages may be specified when the translate rule is configured. Alternately, or additionally, one or both of the first and second languages may be dynamically determined. For instance, either or both of the languages may be determined based on user-specified preferences.
At 1802, a translate rule is identified. In some implementations, the translate rule may be retrieved from a storage medium or database. The translate rule may be configured as described with respect to the method 1600 shown in
At 1804, an information update created in a feed system is identified. In some implementations, an information update may be identified at various times and in various ways. In a first example, the information update may be identified when it is created. For instance, the creation of an information update may trigger a process configured to determine whether the information update satisfies a trigger condition. In a second example, an information update may be identified upon demand. For instance, a user may instruct the system to analyze one or more information updates to determine whether any of them meet the trigger condition associated with a trigger rule. In a third example, an information update may be identified based on a schedule. For example, the system may periodically analyze information updates to determine whether any update satisfies the trigger condition.
In some implementations, a group of information updates may be identified and analyzed in succession. For instance, as discussed with respect to
At 1806, a determination is made as to whether the text portion of the information update includes a designated portion of text. The designated text portion may be associated with a translate rule trigger condition. For instance, the designated text portion may be the text string “!translate.”
In some implementations, the determination made at 1806 may be made at least in part by executing a string comparison function comparing a text portion of the information update and the designated text string. Alternately, or additionally, the system may execute custom computer code associated with the trigger condition instruction created during operation 1606 in
In some implementations, a different type of trigger condition may be used. In
At 1808, the information update is translated from the first language to the second language. In some implementations, the operations used to translate the information update may be strategically determined based on considerations such as the language that the information update is being translated from and the language that the information update is being translated to.
In some implementations, the system may use a computer program configured for language translation. For instance, the system may use the Google® Translate API available from Google, Inc. of Mountain View, Calif. Alternately, or additionally, the system may use the Microsoft® Translator program available from Microsoft, Inc. of Redmond, Wash.
In some implementation, the system may execute custom computer code associated with the trigger action instruction created during operation 1608 in
At 1810, the translated information update is stored. In some implementations, the translated information update may be stored on a storage medium or storage device. For instance, the translated information update may be stored in a database, such as a multitenant database accessible to a plurality of tenants.
In some implementations, the stored translation may be presented in an information feed, as shown for example in
At 1902, a request to create an automatic messaging rule is received. In some implementations, the rule may specify a trigger condition for automatically generating a message. The rule may also provide instructions for automatically generating a message. For instance, the rule may provide instructions for generating the subject and content of the message. The rule may also provide instructions identifying a recipient or destination of the message.
In some implementations, the request to create an automatic messaging rule may be in many respects similar to operation 1602 shown in
At 1904, a trigger condition for creating a message is identified. In some implementations, the identification of a trigger condition may be substantially similar to operation 1606 shown in
At 1906, a message type for the created message is determined. The message type may include any message capable of being generated and stored or transmitted by the system. For example, the message type may include an e-mail message, an information update posted on an information feed, a text message, or any other type of message. In some instances, more than one message type may be indicated. For example, when the presence of the trigger condition is detected in an information update, the system may generate an information update in response and may also send an e-mail to a user such as a system administrator.
At 1908, an indication of the content to include in the created message is received. In some implementations, at least a portion of the content may be fixed. For example, the system may be configured to automatically generate a fixed warning message when the trigger condition is detected. As another example, the message may include a fixed portion with designated locations at which dynamic content is inserted.
In some implementations, at least a portion of the content may be selected from the information update or determined based on the information update. For example, the message may quote a portion of the information update. As another example, the message may translate a portion of the information update from a first language to a second language for inclusion in the message. As yet another example, a portion of the message may be based on a status or quality of the information update, such as the length of a text portion of the information update, a posting time of the information update, a formatting of a text portion of the information update, or information in a data record with which the information update is associated.
In some implementations, the indication of the content may include a selection of a predetermined content choice. For example, the user may select a message template from a list of templates. As another example, the user may enter text to include in the message.
In some implementations, the indication of the content may include computer programming language instructions for determining the content. In some instances, the user may be provided with a choice of preconfigured computer programming instructions for generating the message based on the information update. Alternately, or additionally, the user may provide customized computer programming instructions for dynamically generating the content.
At 1910, a recipient of the created message is identified. In some implementations, the recipient of the created message may include one or more user accounts, groups of user accounts, e-mail addresses, mailing lists, or any other digital messaging destinations associated with a user or users. In this case, the recipient or recipients may be specified by any identifier capable of being used to transmit a message to the recipient. For example, an e-mail may be sent to a group of e-mail addresses. As another example, an information update may be posted in an information feed associated with a user account.
In some implementations, the recipient of the created message may include one or more data records, groups of data records, publication destinations, or other digital location not directly associated with a particular user. In this case, the recipient or recipients may be identified by network address or any other identifier capable of being used to transmit a message to the recipient. For example, an information update may be posted in an information feed associated with a particular data record. As another example, a message may be posted on a webpage or other network accessible publication location.
In some implementations, one or more recipients of the message may be fixed. Alternately, or additionally, one or more recipients of the message may be dynamically determined. For example, the message may be transmitted to one user if it is generated during the morning and a different user if it is generated during the evening. As another example, the message may be sent to users included in a list that may be periodically modified, such as a mailing list.
In some implementations, the indication of the recipients may include a selection of recipients from a list. For example, the user may select one or more recipients from a directory list or search query result.
In some implementations, the indication of the recipients may include computer programming language instructions for determining the recipients. In some instances, the user may be provided with a choice of preconfigured computer programming instructions for selecting the recipients. Alternately, or additionally, the user may provide customized computer programming instructions for dynamically selecting the message recipients.
At 1912, the automatic messaging rule is stored. In some implementations, the storing of the automatic messaging rule may be substantially similar to the storing of the configured trigger rule discussed with respect to operation 1610 shown in
In some implementations, configuration of an automatic messaging rule may include operations not shown in
In some implementations, the automatic creation of a data object in response to an information update based on a data object creation rule may provide for rapid, configurable, and automatic actions in an information feed system. For example, a user may decide that a new data record should be created to encapsulate a conversation conducted between different users via a series of information updates. The user may be able to easily create the data rule simply by including a trigger condition such as “!account” within an information update. As another example, the system may be configured to automatically create a “Case” database record representing a problem that needs to be addressed if the system detects certain criteria that are indicative of a problem. These criteria may include designated keywords (e.g., “problem” or “issue”), designated feed conditions (e.g., an information update thread containing three or more related comments, or a designated length of time between successive information updates), or designated information update conditions (e.g., a length of an information update or other content-based analysis).
Returning to
At 2004, a trigger condition for creating a data object based on an information update is identified. In some implementations, the identification of the trigger condition at operation 2004 may be substantially similar to operation 1606 discussed with respect to
In some implementations, various types of trigger conditions may be used. In one example, the trigger condition may include text. The text may identify the type of data object to create. For instance, the trigger condition may include the text “!case.” When an information update is detected that includes the text “!case”, a case data object may be created.
At 2006, a type of data object to create is identified. In some implementations, various types and numbers of data objects may be created in conjunction with a data object creation rule. The data objects may include any digital constructs that are capable of including or being associated with information. In a first example, a data record in a database may be created. In a second example, a file such as a text file, a comma separated value (CSV) file, a document file, or any other type of file may be created. In a third example, an existing file may be updated to include a new portion corresponding to the data object. In a fourth example, a dynamic object implemented in a computer programming language may be created within executing computer programming language code may be created.
In some implementations, a data object created in association with a data object creation rule may include a database record or collection of related database records accessible via an on-demand computing services environment. For instance, the database record may be a case, account, contact, or other database record used to on-demand computing services. These on-demand computing services may include sales organization services, customer relations management (CRM) services, or any other type of services.
In some implementations, portions of a data object creation rule may be specified in various ways. For instance, some portions of a data object creation rule, such as the trigger condition, may be selected from pre-configured options in a graphical user interface. As another example, other portions of a data object creation rule, such as a procedure for incorporating information related to an information update into the created data object, may be provided as custom computer programming code. The custom computer programming code may be configured to be executed when the data object creation rule is activated.
At 2008, a procedure for identifying content to include in the created data object is determined. In some implementations, the procedure may include one or more instructions directed to retrieving, determining, identifying, or selecting information to include in the data object. For instance, the data object may be a database record or collection of related database records stored in a database. In this case, the database record may have several fields for storing data. When the trigger rule is activated, some or all of these fields may be populated according to the procedure determined at operation 2008.
In some implementations, the content to include in the data record may be identified within the information update. For example, the information update may include the text “!Account ‘Acme’”. In this example, the name of the new Account data record may be set to “Acme.”
In some implementations, the content to include in the data record may be identified based on a previously existing data record. For example, the information update may be a comment posted for a previously-existing data record, such as an Account object. When a Case object is created based on the information update, the Case object may include a data field that has a reference to the Account object, creating a child-parent relationship between the Case object and the Account object.
In some implementations, the content to include in the data record may be identified based on related information updates. For example, related information updates, such as updates in the same conversation, may be checked to determine whether any of them mentions a name associated with a Contact database record. If so, the newly created Account data record may be associated with the Contact database record mentioned in the related information update. As another example, related information updates may be checked to determine whether any of them mentions an e-mail address. If so, the newly created Account data record may be associated with the e-mail address (e.g., by creating a new Contact data object). As yet another example, the system may examine timestamp information for related data objects to identify the earliest occurrence of a problem. This information may be included in the created object to identify when the problem first occurred, which may be useful for calculating compliance with a service level agreement (SLA) in a services management system.
In some implementations, the content to include in the data record may be retrieved from a network address, such as a Web service URL. For instance, a related information update may contain a link to a contact management service such as Jigsaw. The system may visit the link to retrieve a formatted set of data to include within the created data object or in association with the created data object.
In some implementations, the content to include in the data record may be retrieved from a related data record. For instance, Lead and Opportunity data records in a customer relations management (CRM) system may be linked to an account or to one another based on information included in the information update. Upon detecting a trigger condition in an information update posted on a Lead record, a new, associated Opportunity record may be created. The newly created data record may draw information from a linked data record.
At 2010, a procedure for associating the information update with the created data object is identified. In some implementations, the procedure may include one or more instructions directed to establishing any kind of connection between the information update and the created data object. For instance, the information update may be added as a comment to the data object. Associating the information update with the created data object may include adding an identifier associated with the information update as data within the data object.
In some implementations, other information updates may also be associated with the created data object. For instance, the information update in which the trigger condition is detected may be responding to one or more earlier-posted information updates in a conversation thread. In this case, the earlier-posted information updates may also be added as comments to the data object that is created.
In
In some implementations, the content of the information update may be specified by the scheduling rule. For example, in
Returning to
At 2104, the scheduling information for creating the scheduled information update rule is determined. In some implementations, the rule may specify a trigger condition for automatically scheduling an information update. For example, the rule may provide a date and time to generate the information update. As another example, the rule may specify recurrence information for periodically generating an information update. The recurrence information may indicate whether the information update is to be posted hourly, weekly, monthly, yearly, and the like.
In some implementations, the scheduling information may be dynamically determined. For example, the rule may refer to scheduling information that is dynamically determined based on a status of a database record, the content of a file, or other information.
At 2106, the recipients of the scheduled information update are identified. In some implementations, the recipients of the information update may include one or more user accounts or groups of user accounts. Alternately, or additionally, the recipients of the information update may include one or more data records, groups of data records, publication destinations, or other digital location not directly associated with a particular user. In some implementations, the identification of the recipients of the information update may be substantially similar to the operation 1910 discussed with respect to
At 2108, the content to include within the scheduled information update is determined. In some implementations, at least a portion of the content may be fixed. Alternately, or additionally, at least a portion of the content may be determined dynamically. In some implementations, the identification of the content to include in the information update may be substantially similar to the operation 1908 discussed with respect to
At 2110, the scheduled information update rule is stored. In some implementations, the storing of the automatic messaging rule may be substantially similar to the storing of the configured trigger rule discussed with respect to operation 1610 shown in
At 3702, keyword configuration information for a user account is identified. To distinguish the user account for which the keyword configuration information is identified from other user accounts within the system, the user account for which the keyword configuration information is identified is referred to herein as the keyword user account.
In some implementations, the keyword configuration information may include various types of information for use in monitoring information updates for the presence of one or more keywords. For example, the keyword configuration information may include an indication of one or more keywords for which to monitor, an indication of one or more data objects to follow upon detection of a keyword, an indication of termination information for terminating the following of one or more data objects, and any other information related to the monitoring of information updates for the presence of keywords.
At 3704, information updates are monitored for designated keywords included in the keyword configuration. In some implementations, the information updates may be monitored according to various types of monitoring schemes. For instance, an information update may be compared with the designated keywords when the information update is created. Alternately, or additionally, groups of information updates, such as recently created information updates, may be periodically monitored for the presence of the designated keywords.
At 3706, the keyword user account is caused to follow a data object associated with an information update when a designated keyword is detected in the information update. In some implementations, the data object may be any data object accessible within an information feed system. For instance, the data objet may be a different user account within the information feed system. Alternately, the data object may be a data record stored in a database. The data record may be accessible via an on-demand database service provided via a computer services environment.
In some implementations, when the keyword user account is caused to follow the data object, the keyword user account may receive future information updates related to the data object. For example, if the data object is a different user account, then the keyword user account may receive information updates created by the different user account. As another example, if the data object is a database record stored in a database, then the keyword user account may receive information updates that are created in association with the database record. An information update may be created in association with a database record by posting the information update on an information feed associated with the database record.
In some implementations, more than one data object may be followed. For example, the designated keyword may be detected in an information update posted by a posting user account in an information feed specific to a data record stored in a database. In this case, the user account for which keywords are configured may be made to follow both the posting user account and the data record stored in the database.
At 3708, the user account is caused to stop following the data object when a designated event has occurred. In some implementations, data objects that are followed by a user account as described with respect to operation 3706 may be monitored for the occurrence of a designated termination event provided in the configuration information for keyword monitoring. When the designated termination event occurs, the user account may be made to stop following the data object.
In some implementations, various types of events may trigger the system to cause the user account to stop following the data object. For example, the user account may be made to stop following the data object after a designated period of time has passed since the following of the data object. As another example, the user account may be made to stop following the data object after a designated period of time has passed since the most recent occurrence of the designated keyword in information updates associated with the data object. As yet another example, the user account may be made to stop following the data object when the number of objects followed by the user account has reached a designated threshold. Various trigger events, such as a designated period of time for stopping the a user from following a data record, may be configured by a user, for instance as discussed with respect to
In some implementations, the method 3800 may be run automatically when a user sets up a new profile. New users may have difficulty identifying other user accounts or data records to manually follow. By selecting keywords for monitoring topics of interest, a user may automatically follow other user accounts that tend to post topics of interest to the user.
In some implementations, the method 3800 may be run on demand. For example, a user may transmit a request to configure keywords for the user's account. The request may be transmitted to the system from a client machine associated with the user.
At 3802, a request is received to configure keyword monitoring for a user account. In some implementations, the request may be transmitted from a client machine to a server configured to provide information feed services. Alternately, or additionally, the request may be generated within the information feed system. For instance, the system may identify a keyword that is likely to be relevant to a particular user account and then automatically initiate the keyword configuration method 3800.
At 3804, a scope for monitoring information updates for a keyword rule is identified. In some implementations, the determination of the scope at operation 3804 may be substantially similar to the determination of scope discussed with respect to operation 1604 shown in
In some implementations, information in addition to information updates may be monitored for the presence of keywords. For example, the scope may exclude or include the names of files uploaded to a computing services environment or an information feed system. As another example, the scope may exclude or include information included within data objects such as database records (e.g., Case, Account, Contact) accessible via the on-demand computing services environment.
In some implementations, the scope may identify a range of time to monitor for the designated keyword. For example, the scope may identify a number of days in the past to search for the designated keyword. In this way, a user may be informed of pre-existing information updates that mention the designated keyword. As another example, the scope may identify a number of days that the keyword rule will remain active. In this way, the user may avoid automatically following data objects based on a keyword topic that the user is interested in only for a limited period of time.
At 3806, a keyword suggestion for the keyword rule is generated. In some implementations, the system may generate a suggested keyword based on user input. For instance, the system may auto-complete partially entered keywords based on a dictionary or based on a list of keywords commonly used within the information feed system.
In some implementations, the system may generate a suggested keyword based on information associated with the user account. For example, the user account may indicate that the user is a Java® developer. In this case, the system may suggest keywords such as “Java”, “object oriented”, and “programming language” for keyword monitoring. As another example, the user account may already be monitoring various keywords, and the system may suggest other keywords similar to those already being monitored by the user account.
In some implementations, the system may provide a list of keywords already used by other user accounts in order of popularity. Alternately, or additionally, the system may identify relationships between keywords. For example, the system may indicate that users following one keyword also tend to follow, or not follow, certain other keywords. As another example, the system may identify groups of related keywords.
At 3808, a keyword is identified for monitoring. In some implementations, a keyword may be related to any topic relevant to the user's interests For instance, a keyword may include such as the name of a technology, a place, a software program, or a job task.
In some implementations, the keyword may be identified based on user input. For example, a user may transmit a keyword from a client machine to the server. As another example, a user may select a keyword from a list of available or suggested keywords displayed in a user interface component.
In some implementations, the keyword may be identified by the server. For instance, the server may automatically select a keyword generated as a suggestion at operation 3806.
In some implementations, more than one keyword may be provided. For example, keywords may be grouped together by logical operators such as AND, OR, and XOR. As another example, a single keyword may be a phrase that includes several words, such as “Java Runtime Environment”.
In some implementations, more than one keyword may be identified. For example, a keyword rule may identify information updates that include two or more of a list of designated keywords. As another example, a keyword rule may identify information updates that include the word “Apex” and the word “language” but not the phrase “Version 1.0.”
In some implementations, one or more exclusions may be identified along with the keyword. For instance, a data record or group of user accounts having the keyword in the name may be excluded from matching the keyword, or may be identified only once. In this way, the user may avoid receiving irrelevant, excessive, or extraneous information updates in the information feed associated with the keyword user account.
At 3810, a determination is made as to whether monitoring for the identified keyword is permitted. In some implementations, monitoring for some keywords may be disabled by the system or by a user such as an administrator. For example, monitoring for very common words such as articles and prepositions may be disallowed. Following these words may generate a large amount of work for the system due to a relatively large number of occurrences. Also, information updates containing such common words may be unlikely to be particularly relevant to a user's interests. As another example, monitoring for expletives or other words deemed undesirable in a social feed system may be disallowed. As yet another example, users may be limited to monitoring for certain designated keywords rather than being able to indicate any word for monitoring. Such a constraint may facilitate improved computing resource management within the information feed system.
In some implementations, users may not be permitted to monitor keywords that return too many results. For example, a user may not be permitted to monitor a keyword such as “Java”. If the user attempts to monitor such a keyword, the user may be presented with suggestions for more specific keywords. For example, a user requesting to monitor the keyword “Java” may be presented with a suggestion to monitor keywords such as “Java runtime environment” or “Java AND object oriented”.
At 3812, a data object is identified. The data object may be followed when the identified keyword is detected. In some implementations, the data object may be any data object associated with an information update in which a designated keyword is detected. For example, the data object may be a user account that generated the information update. As another example, the data object may be a database record with which the information update is associated. As yet another example, the data object may be a group of user accounts to which the information update is posted.
In some implementations, the data object may in some instances be defined in relation to the information update. Alternately, or additionally, the data object may be defined when the keyword monitoring rule is created.
In some implementations, the identification of the data object may include an indication of the scope of information to include in the keyword user account's information feed based on the keyword rule. For example, when the designated keyword is detected, the system may cause the keyword user account to automatically follow the user account that created the information update in which the keyword was detected and receive all information updates created by that user account. As another example, the system may cause the keyword user account to follow the user account that created the information update by to receive only information updates created by that user account related to the designated keyword. As yet another example, the system may cause the keyword user account to follow a group of user accounts to which the information update containing the designated keyword was posted. As yet another example, the system may cause the keyword user account to receive only the information update containing the keyword and other information updates in the same conversation, but not to actually follow a data record based on the keyword rule. As yet another example, the system may cause the keyword user account to receive only the information update containing the keyword, and the user may be given the choice as to whether to actively follow a data record. For instance, the information update may be presented in a user interface component with “follow” buttons that allow the user to choose to follow a data record.
At 3814, auto-follow termination information is identified for the identified keyword. In some implementations, the auto-follow termination information may be used to cause the keyword user account to stop following a data object that the keyword user account was made to follow based on a keyword rule. The auto-follow termination information may include any information specifying an event or condition that causes the keyword user account to stop following such a data object.
In some implementations, the auto-follow termination information may identify a time period. The types of time periods that may be identified may include, but are not limited to: a time period after the most recent occurrence of a keyword in an information update associated with the data object, a time period after the keyword user account was caused to follow the data object, a time period after the creation of the information update that caused the user account to follow the data object, and at time period after the most recent reply to the information update that caused the user account to follow the data object.
In some implementations, the auto-follow termination information may identify an event. When the identified event is detected, the following of the data object by the keyword user account as specified by the keyword rule may be terminated. The types of events that may be identified may include, but are not limited to: reaching a designated threshold of data objects followed by the keyword user account, reaching a designated threshold of automatically followed data objects followed by the user account, and reaching a designated threshold of automatically followed data objects followed by the user account based on the keyword monitoring rule.
At 3816, a determination is made as to whether to add additional keyword rules for monitoring. In some implementations, the determination may be based at least in part based on user input. For instance, a user interface component may present the opportunity for user input indicating whether to add additional keyword rules.
In some implementations, the determination may be made at least in part automatically. For instance, the system may determine whether any additional keyword suggestions may be generated for the keyword user account.
At 3818, the keyword monitoring configuration information is stored. In some implementations, the keyword monitoring configuration information may be stored on a storage device or storage medium accessible to the information feed system. For instance, the keyword monitoring configuration information may be stored in a database in association with information identifying the keyword user account, such as a database key.
In some implementations, not all of the operations shown in
In some implementations, the keyword display area 4102 may be displayed in a user's profile area or another user interface component presented in an information feed system. The keyword display area 4102 may display the keywords that are currently configured for the user account. In some implementations, the keywords displayed within the keyword display area 4102 may resize dynamically based on various factors such as the prevalence of the keyword as compared to other keywords, a designated importance ranking indicated by the user, a frequency of occurrence within the information feed system, or other such information. The user may edit the configuration of the keywords, add new keywords, or perform other keyword-related functions by activating the keyword configuration button 4104.
In some implementations, keywords may be ordered in various ways. For example, keywords may be ordered alphabetically. As another example, keywords may be ordered based on prevalence in the information feed system. As yet another example, keywords may be ordered based on user input. For instance, a user may separate keywords into categories, provide importance rankings for keywords, or drag and drop keywords into a desired ordering.
In some implementations, the method 3900 may be run on-demand. For example, the user may request to run the method 3900 via a user interface component provided in a web browser.
In some implementations, the method 3900 may be run automatically. For instance, the method 3900 may be run when keyword monitoring is first configured for the keyword user account or when keyword configuration information is changed for the keyword user account.
In some implementations, the method 3900 may be run periodically or at scheduled times. For instance, the method 3900 may be run once per day, once per week, several times per day, or at scheduled times.
In some implementations, such as when keyword monitoring uses a large amount of system resources, the method 3900 may be divided into batch jobs to spread the computing load over a period of time. The different batch jobs may include different sets of configured keyword rules or may be run for different sets of information updates.
At 3902, keyword monitoring configuration information for the keyword user account is retrieved. In some implementations, the keyword monitoring configuration information may include the information stored at operation 3818 discussed with respect to
In some implementations, the keyword monitoring configuration information may include one or more keyword rule. Each keyword rule may include various types of information, which may include, but is not limited to: one or more designated keywords to monitor, scope information identifying a scope of information updates to monitor for the designated keywords, an indication of a logical combination of the designated keywords, one or more data objects to follow when the designated keywords are detected, and auto-follow termination information for the designated keywords.
At 3904, an information update is selected from within a designated scope. In some implementations, the selection of the information update at 3904 may be substantially similar to the selection of the information update discussed with respect to operation 1706 shown in
In some implementations, the scope may define a type of information to which the keyword rule applies. For example, the scope may include or exclude information such as information updates, the names of files, the content of files, and the content of data records. As another example, the scope may include or exclude information updates published in relation to designated types of data records, designated user accounts or groups of user accounts, designated user account roles, or any other categorizations within an information feed system or computing services system.
In some implementations, the scope may define a range of information to which the keyword rule applies. For instance, the scope may include any information updates created in a set number of days (e.g., ten days) before the keyword rule was configured.
At 3906, a determination is made as to whether the selected information update includes a designated keyword. In some implementations, a keyword rule may include one or more keywords, which each may include one or more words as a phrase. Keywords may be combined using logical operators such as AND, OR, and XOR. The determination made at 3906 may involve performing one or more string comparison operations on data values, such as a text portion, associated with the selected information update. Further, the determination made at 3906 may involve performing computer programming language instructions related to evaluating a logical combination of keywords. The determination made at 3906 may also involve performing any other related instructions.
In some implementations, the selected information update may be monitored for text strings related to the keyword. For example, a common misspelling of a designated keyword may be treated as a match. As another example, synonyms of a designated keyword may be treated as a match. As yet another example, words commonly associated with a designated keyword may be treated as a match.
At 3908, a data record associated with the selected information update is identified. In some implementations, the data record may be identified in accordance with the information specified at operation 3812 discussed with respect to
In some implementations, as discussed with respect to operation 3812, the data object may be fixed. Alternately, the data record may be dynamically determined. For instance, the data record may be defined in relation to the information update. The types of data objects that may be identified may include, but are not limited to: a user account that created the information update, a database record with which the information update is linked, a group of user accounts to which the information update is posted, a file that includes the keyword within the file contents or file name, and a database record that includes the keyword within its fields.
In some implementations, as discussed with respect to operation 3808, matching of the keyword may be subject to one or more exclusions. For instance, a data record or group of user accounts having the keyword in the name may be excluded from matching the keyword, or may be identified only once. Data objects within such exclusions may not be identified at operation 3908 for following by the keyword user account.
At 3910, the user account is caused to follow the identified data record. In some implementations, causing the user account to follow the identified data record may include setting a data value to an indication that the first user account is following the data object such that updates related to the data object are capable of being stored as feed items in a feed table. In some cases, if more than one data record is identified at operation 3908, then more than one data record may be followed at operation 3910.
In some implementations, the following of the data record at 3910 may be substantially similar to the following of data records elsewhere within the information feed system. For instance, the keyword user account may be made to receive all information updates created in association with the followed data record, subject to any restrictions such as privacy controls or volume restrictions.
In some implementations, the following of the data record at 3910 may be in at least some ways different than the following of data records elsewhere within the information feed system. For example, information updates presented in the information feed associated with the keyword user account based on keyword rules may be presented in a different color or otherwise set off from other information updates to emphasize the fact that the keyword-based information updates result from keyword rules. As another example, the following of the data record at 3910 may result in only a limited number of information updates being displayed in the information feed associated with the keyword user account. For instance, the information updates displayed in the information feed may be limited to only the information update in which the keyword was detected, or to only a conversation that includes the information update in which the keyword was detected and other directly related information updates. As yet another example, the following of the data record at 3910 may result in information appearing in the information feed associated with the keyword user account such that the user associated with that account has the option to permanently follow data records associated with the information update. For instance, the information update that includes the keyword may be presented, and the user may be presented with the option to follow the user account that generated the information update or the data object to which the information update was posted.
At 3912, a determination is made as to whether to select additional information updates for keyword monitoring. In some implementations, as discussed with respect to operation 3904, information updates may be monitored for keywords when the information updates are created. Alternately, or additionally, groups of information updates may be monitored periodically or at scheduled times. For example, recently created information updates may be monitored once per day, once per week, several times per day, or according to some other schedule.
In some implementations, the keywords user interface component 4202 may be displayed on a page such as an information feed associated with the keyword user account. The keywords user interface component 4202 may display keyword rules configured for the keyword user account. In
In some implementations, the keyword name area 4204 lists the keywords that have been designated, which in
In some implementations, information presented in an information feed based on keyword rules may be displayed in a manner distinct from other information. For example, updates from automatically followed data objects may be flagged to indicate that the following of these objects is temporary and/or is the result of a keyword rule. As another example, updates from automatically followed data objects may be grouped together in a digest to avoid flooding an information feed with possibly irrelevant information. As yet another example, updates from automatically followed data objects may be ordered based on an ordering assigned to the keywords or keyword rules. As still another example, updates from automatically followed data objects may be selected based on an importance ranking or prevalence of the keywords.
At 4002, a request is received to monitor keyword-based following for termination. In some implementations, the request received at 4002 may be generated automatically by the system. For instance, the system may be configured to check automatically followed data records for a user account to determine whether a termination event has occurred for any of the data records. The system may be configured to perform such a check at scheduled times, periodically (e.g., once per day), or when a possible termination event is detected.
In some implementations, the request received at 4002 may be generated by a user. For example, a user may notice that he or she is automatically following a large number of data records an request the system to determine whether to stop following any of the data records. As another example, the method 4000 may be run when the keyword configuration information is altered for the keyword user account. As yet another example, a system administrator may request that the method 4000 be initiated.
At 4004, a data record is selected. The data record may be followed by a user account based on a keyword. In some implementations, the data record may be selected by sequentially analyzing every data record being automatically followed by the keyword user account. Alternately, the data record may be selected by choosing a data record likely to qualify for auto-follow termination.
In some implementations, the method 4000 may be periodically run so as to monitor all data records monitored by a user account. Alternately, or additionally, the method 4000 may be run for selected data records or designated keyword rules. For instance, the method 4000 may be run in order to monitor a particular keyword rule when an event is detected that may cause the termination of data objects automatically followed based on that keyword rule.
At 4006, auto-follow termination information is identified for the keyword. In some implementations, the auto-follow termination information may be selected based on the data record selected at operation 4004. For example, if the data record selected at operation 4004 was automatically followed due to a particular keyword rule, then the auto-follow termination information for that keyword rule may be retrieved.
In some implementations, the auto-follow termination information may include the information identified at operation 3814 shown in
At 4008, a decision is made as to whether to terminate the following of the data record. In some implementations, the decision may be made at least in part based on the auto-follow termination information identified at 4006. For instance, the auto-follow termination information may indicate that the keyword user account should stop following another user account if the other user account has not mentioned the designated keyword within the past ten days. In this case, the system may review the information updates posted by the other user account for the past ten days to determine whether any of the information updates includes the designated keyword.
At 4010, the user account is caused to stop following the selected data record. In some implementations, the user account may be made to stop following the designated data record by setting a data value to an indication that the first user account is not following the data object. For instance, the system may remove an indication of the data object from a feeds data table in a database that indicates the data objects followed by various user accounts.
In some implementations, when the user account is caused to stop following the data record, a change may be made to a user interface component displaying information related to the information feed system. For instance, a list of data records automatically followed by the keyword user account may be altered to remove a reference to the data record that is no longer followed.
At 4012, a determination is made as to whether to monitor additional data records. As discussed with respect to operation 4004, in some implementations the method 4000 may be periodically run for all data records monitored by a user account. Alternately, or additionally, the method 4000 may be run on demand or may be run upon detecting a designated event.
XIV. Requesting and Collecting Responses to Information Updates Published on an Information Feed
Some implementations disclosed herein provide for response request rules, described in greater detail below, that provide a mechanism to request and track feedback to information updates created in an information feed system. Such information updates can include changes made to data records, posts on a personal wall or bulletin board associated with a user account, updates that include user comments, and other types of information updates as disclosed herein.
In some implementations, each response request rule may define one or more recipients of a response request. A recipient may include any user, group, or any other recipient capable of providing feedback to a response request. The recipient may be specified by a mechanism such as a menu selection or custom code.
In some implementations, each response request rule may define the response type for providing the information requested. The response type may specify a format capable of allowing a user to provide feedback, such as a selection from a pick list, a text string typed in a text box, a data update operation in an on-demand database, and/or an action performed in response to receiving a response request. The response type may be specified by a menu selection or custom code, by way of example.
In some implementations, when a response request rule is activated, an information feed system may post an information update associated with a response request allowing a recipient to provide the requested information. The system may monitor responses for specific response types as defined by the response request rule. Once a response is detected, the system may record the response.
At 4302, a response request rule is created. In some implementations, a response request rule may be implemented in an information feed system such as a social network. Creating the response request rule may specify one or more recipients and one or more response types. The response type may indicate the form for providing the requested information. When a response request rule is activated, the one or more recipients receive a response request to provide the requested information in the specified format.
In some implementations, a response request rule may be created based on instructions received from a user. Alternately, or additionally, a response request rule may be created automatically by the system.
In some implementations, a response request rule may be defined to request an acknowledgment of receipt of an information update. Such a response request rule may be useful to confirm whether the content of an information update has been received and/or viewed. For example, a political campaign manager may want to notify his campaign team about a recent scandal published in the news about their presidential candidate nominee. In this example, an information update requesting an acknowledgment of receipt is posted on the crisis management team's information feed. When the system detects a mouse hover event over the information update, then the response type defined by the response request rule is detected. In this example, the detection of the defined response type may cause the system to create a new information update post to the campaign manager's information feed that a particular crisis team member has received and viewed the information update. The acknowledgement response request rule provides the campaign manager a mechanism to confirm that the crisis management team is aware of the scandal.
In some implementations, a response request rule may be defined to request a recipient to vote on an issue or complete a survey in order to gather information. For example, Chet, an employee at an organization, may configure a happy hour response request rule. The happy hour response request rule may define the recipients as all the employees in Chet's department. The rule provides radio buttons to allow the recipient of the happy hour request to cast a vote on the venue, such as the “Yard House,” “Pacific Coast Brewery,” and “The Trappist”. When the system detects an employee selecting a radio button, the system automatically tallies the employees' responses. Once the system receives all of the votes, the system emails Chet the results indicating that Pacific Coast Brewery received the majority votes and the Trappist received the least. In this example, the happy hour response request rule may define a 4:00 p.m. deadline to cast a vote such that the system will only tally votes received by the designated deadline.
In another example, a compliance officer may require employees of a corporation to complete a quarterly compliance survey to ensure that employees are not in violation of any outside regulatory requirements or internal corporate policies. Instead of manually reminding the employees to complete the survey, a survey response request rule may be configured to automatically cause the system to create a survey request every fiscal quarter. The survey response request rule may flag the survey response request as a high priority request such that an information update associated with the survey response request appears first on an employee's information feed. In this example, the information update remains as the first update until the survey is complete to serve as a reminder that the employee's action is required. When the system detects the completion of the survey, the system stores the survey responses in a data structure accessible by the compliance officer. Such a rule provides the compliance officer a mechanism to track which employees completed the survey. Additionally, the rule provides the compliance officer a mechanism to determine which employees are complaint with the internal and external policies and regulations, and which are not in order to take appropriate remedial actions.
In some implementations, the response request rule may be used to define an approval process. Such a response request rule may be especially useful in a collaborative environment where teams of users are diverse and globalized. For example, a user interface (UI) engineer may require design approvals from the team lead and other senior engineers prior to a launch of a new web page. A response request rule may be defined to post information updates of the prototype webpage with options for the recipients to accept or reject the design. When the system detects a recipient approving or rejecting the design, the system may automatically store the recipient's response in a data structure. In this example, the response request rule may further cause the system to post an information update including a results report indicating which of the recipients approved, rejected or have not provided any response regarding the web page design.
At 4304, an information update that refers to the response request rule is created. In some implementations, the information feed system may be configured to create an information update when a response request rule is activated. For example, a response request rule may be activated by a user account in an information feed system. While a user is composing content for an information update, the user may select a GUI button to activate a response request rule. In another example, an information update that refers to the response request rule may be created when a trigger condition, as described with reference to
At 4306, responses to the response request are monitored. In some implementations, the information feed system may be configured to monitor response requests associated with an information update for certain response types, events or actions as defined in a response request rule. For example, the information feed system may be configured to monitor for an acknowledgment from a recipient that the recipient received the response request. In this example, the system may be monitoring for a mouse click event associated with the recipient's information feed. In another example, the information feed system may be configured to monitor for an action to be performed by the recipient. For instance, the information feed may monitor a recipient filling out his time sheet or monitoring a recipient updating a data record in a database. The monitoring may be performed periodically, upon request, or according to some other schedule. The monitoring may be performed when the response request is created or at some other time.
At 4308, the response to the response request is processed. In some implementations, the response request rule may be configured to cause the system to report the responses to a user. For example, the system may post a new information update when a recipient provides the requested information. In another example, the system may cause the system to email a user the recipients' responses. In other implementations, the response request may be configured to cause the system to collect and store the responses. For instance, the responses may be stored as data objects in an on-demand database. In some implementations, the response request rule may include instructions for analyzing responses received from the recipients. For example, the system may automatically tally the recipients' votes and generate an information update indicating the majority vote. In another example, the system may be configured for complex data analysis such as determining trends, suggesting a conclusion from the responses and other data manipulation.
In some implementations, the method 4400 may be performed at least in part at a computing device configured to provide computing services associated with an information feed system such as a social networking system. The method 4400 may be initiated when a request to create a response request rule is received at 4402.
At 4402, a request to create a response request rule is received. In some implementations, the request may be generated at a client machine in communication with the computing device. For example, a user at the client machine may wish to create a custom response request rule to request feedback from a specific set of recipients in a specific response format.
In some implementations, the request to create the response request rule may be generated from within the information feed system. For example, an automatic process may identify and make statistical associations between common solicitations of information from common recipients. This process may determine that a response request rule should be created to link the identified information request and recipients.
In some implementations, a response request rule may be created at least in part with use of a software package that includes a response request rule framework. The software package may be accessible via an on-demand service environment available via a network. The response request rule framework may be programmed in a programming language such as C++, Java, Perl, or Apex. The response request rule framework may define core response request classes to allow the user or the organization to create or customize a response request rule. The user may implement or expand these classes in order to specify one or more recipients, one or more response types, or any other information related to a response request rule.
In some implementations, a user may configure the response request rule at least in part with the use of a GUI. The GUI may allow the user to define a recipient and a response type for a response request rule. For example, the GUI may include a form that provides user interface components such as text boxes and drop down menus. Using these user interface components, the user may define one or more recipients, the type of information requested, a response deadline, designate priority information, or any other information related to the response request rule. For instance, the GUI may provide a dropdown menu of predefined response types for the user to select. Alternately, or additionally, the user may provide or select a script containing computer programming language instructions to be performed.
At 4404, a trigger condition for triggering the response request rule is identified. In some implementations, a trigger condition may be identified to activate a response request rule when the trigger condition is detected. For example, a compliance officer may identify a trigger condition to request corporate employees to complete a survey. In this example, the trigger condition may include the presence of the text string such as “!RequestComplianceSurvey.” When the system detects the string “!RequestComplianceSurvey” in an information update, the system will generate information updates including a survey for the employees to complete as defined by the response request rule.
Various types of trigger conditions may be used to trigger a response request rule as discussed with respect to operation 1606 in
At 4406, an indication of content to include in the response request is identified. In some implementations, the response request may include a message to communicate information or instructions about the information requested. For example, a response request reminding an employee to fill out his weekly time sheet may include a message, such as “The end of the week is coming fast! Please post your timecard to the system before you go home for the weekend! Thanks, The Mgmt,” in the text portion of an information update.
In some implementations, the content to include in the response request may be automatically determined by the system based on the configuration data of the response request rule. For example, a lunch order response request rule may be configured to include deadline information such that the response request expires at 11:45 a.m. In this example, the system may automatically generate a message based on the deadline information such as “Please place your lunch order by 11:45 a.m. Thanks !”
In some implementations, the indication of the content may include a selection of a predetermined content choice. For example, the user may select a message template from a list of templates. As another example, the user may enter text to include in the message.
In some implementations, the indication of the content may include computer programming language instructions for determining the content. In some instances, the user may be provided with a choice of preconfigured computer programming instructions for generating the message based on the information update. Alternately, or additionally, the user may provide customized computer programming instructions for dynamically generating the content.
At 4408, one or more recipients from whom a response is requested are identified. In some implementations, the recipient of the created response request may include one or more user accounts, groups of user accounts, e-mail addresses, mailing lists, or any other digital messaging destinations associated with a user or users. For example, an e-mail may be sent to a group of e-mail addresses. As another example, a response request related to an information update may be posted in an information feed associated with a user account.
In some implementations, one or more recipients of the response request may be fixed. Alternately, or additionally, one or more recipients of the response request may be dynamically determined. For example, the response request may be sent to users included in a list that may be periodically modified, such as a mailing list. In another example, the response request may be sent to a user or a group of users based on a hierarchical management structure within an organization such that the users within the structure may periodically change.
In some implementations, the indication of the recipients may include a selection of recipients from a list. For example, the user may select one or more recipients from a directory list or search query list.
In some implementations, the indication of recipients may include computer programming language instructions for determining the recipients. In some instances, the user may be provided with a choice of preconfigured computer programming instructions for selecting the recipients. Alternately, or additionally, the user may provide customized computer programming instructions for dynamically selecting recipients of the response request.
At 4410, one or more recipients from whom a response is required are identified. In some implementations, at least some of the one or more recipients may be required to provide a response. For example, a UI developer many need a design approval from his team lead and feedback from the senior engineers regarding the design of a new webpage design. In this example, the developer may designate the team lead as a required recipient because his response is required and designate the senior engineers as an optional recipient such that the senior engineers feedback is not required. Once the team leads provides his approval, the web page will be approved to publish on the Internet. As such, the response request rule provides a mechanism to designate different response requirements for different recipients.
In some implementations, one or more recipients of a response request may be dynamically identified as a required recipient. For example, the system may automatically identify a recipient as a required recipient based on the recipient's role in a hierarchical structure in an organization. In another example, the system may automatically identify a recipient as a required recipient based on information associated with the recipient's profile.
In some implementations, the required recipients may be designated based on a quantity of required responses. For instance, the required recipients may be designated as minimum or maximum number of responses. For example, multiple recipients may receive a response request to approve a purchase order. In this example, a single response is required for approval and the approval may be received from any one of the recipients. In another example, a candy company such as M&M® may want to poll their product fans for the next candy color. In this example, the color that receives a majority vote will be the new candy color.
In some implementations, the indication of the required recipients may include a selection of recipients from a list substantially similar to the selection of recipient discussed in operation 4408. In some implementations, the indication of the required recipients may include computer programming language instructions for determining the recipients substantially similar to the computer programming language instructions discussed in operation 4408.
At 4412, a deadline for responding to the response request is determined. The deadline information is used to establish a deadline for responding to the response request. In some implementations, a date and/or a time may be designated for responding to a response request. For example, a lunch order response request may expire after 12:00 p.m. such that the system may automatically delete the information update associated with the response request. In another example, an RSVP request to register for a corporate conference may expire after a specified date such that the recipient may no longer provide a response.
In some implementations, the deadline for responding to a response request may be event driven. For example, the deadline for a response may be dependent on the creating, updating or deleting of a data record in a database. In another example, the deadline may be dependent on updating or deleting a message from an information feed.
In some implementations, the deadline information may be provided by a user. For example, a user may select a date and/or time from a selection list. In another example, a user may select a date and/or time from GUI displaying a calendar. In yet another example, the user enters text specifying the response deadline.
In some implementations, the deadline information may be determined by computer language instructions. For example, the user may be provided with a choice of preconfigured computer programming instructions for determining the response deadline. Alternately, or additionally, the user may provide customized programming instructions for dynamically generating the deadline.
At 4414, a response type for responding to the response request is determined. The response type may be any format capable of allowing a recipient to provide feedback. For example, the response type may be a text string in order to solicit a comment from the recipient. In another example, the response type may be a selection from a selection list included in a response request such as a multiple choice list, a rating scale and the like. In some instances, the response type may be an event driven response. For example, the response type may be a response such as a mouse click, a touch screen gesture and the like associated with an information update including a response request. In another example, the response type may be the creation, deletion or update of a data record in an on-demand database.
In some instances, the response type may be an action performed by the recipient in an on-demand computing services environment. For example, the designated action may be a recipient completing his time card or a recipient signing and uploading a document. In some instances, more than one response type may be determined. For example, a response type may request a recipient to acknowledge receipt of a response request and request the recipient to make a selection from a selection list. In some instances, more than one response type may be determined for different groups of recipients of a response request. For example, an UI designer may request his team lead to approve a design by selecting Yes or No from a selection list and request his peers to provide comments.
At 4416, prioritization information for the response request is determined. The prioritization information may be any information capable of being used to affect presentation of the response request. In some implementations, a response request may be flagged as high, normal, or low importance response request. For example, a request to complete a compliance survey may be designated as a high priority request. In this example, the information update associated with the survey response request may be color coated red to draw the recipient's attention to the response request. In some instances, the priority flag of a response request may determine the order an information update is presented in an information feed. For example, an information update including a high priority response request may appear first in an information feed.
In some implementations, the prioritization information may be determined based on an attribute or a status from a user's profile. For example, a UI designer may request a response from his team lead to approve the webpage prototype and request comments from his peers. In this example, the response request may be determined to be a high priority request for the team lead because his approval or rejection is required to launch the new webpage. In contrast, the response requests to the peers may be determined to be a normal or a low priority request because the peers' comments are not required to launch the webpage.
In some instances, a response request priority may be based on the attribute of the user profile of the user creating a request. For example, if a response request is created by the CEO of a corporation, then the response request is determined to be a high priority request. In another example, if a response request is created by the human resources department, then the response request is determined to be a normal priority request.
In some implementations, the prioritization information may be determined based on the deadline information determined in operation 4412. For example, a response request may increase in priority as the deadline to respond approaches. In this example, the system may automatically reorder the information updates such that information updates associated with a response request appear in the order of the response deadline. In another example, a response request may change in priority after the occurrence of an event such a data record update in an on-demand database.
In some implementations, the prioritization information may be selected from a selection list by a user. For example, a user may select whether a response request is a high or low priority. As another example, the user may designate a rank to indicate the priority of a response request.
In some implementations, the prioritization information may be determined by computer code. In some instances, a user may be provided with a choice of preconfigured computer programming instruction for determining the priority of a response request. Alternately, or additionally, the user may provide customized computer programming instructions for dynamically determining the priority information for a response request.
At 4418, instructions for processing responses to the response request are determined. In some implementations, instructions may include any type of instructions capable of being performed within the information feed system. These instructions may include reporting a recipient's response to one or more user accounts, groups of user accounts, e-mail addresses, mailing lists, instant messaging accounts, or any other digital messaging destination. For instance, the instruction for processing responses may include instructions to post a new information update to a user's information feed when a recipient provides a response.
In another example, the instructions for processing responses may include instructions for storing responses associated to a data record in a database. In this example, the data record may represent a response request. When a recipient provides a response, the response is stored and associated with a response request data record in a database system. In this example, an information update may be generated to followers of the response request data record when the recipient's response is associated with the data record. In some instances, a GUI may be provided to allow a user to query the database for recipient's responses associated with response request data record.
In some implementations, computer programming language code for processing responses to the response request may be provided via user input. For instance, a user may provide code that overrides abstract methods to implement a response request rule.
In some implementations, computer programming language code for processing response may be generated at a server. For instance, a compliance officer may indicate that the response request rule should provide a results report aggregating the responses. For instance, a pie chart may be generated indicating which employees have completed the survey, which have viewed but not completed the survey, and which have not viewed the survey. In this case, the server may determine executable code to process the employees' responses and to generate the results report.
At 4420, the configured response request rule is stored. In some implementations, the storing of the response request rule may be stored at a storage device or any type of storage medium. The stored response request rule may include information identifying the recipients of the response request, instructions for identifying a response type, instructions for processing the responses, and any other information related to the response request rule. The configured response request rule may be stored for later use and/or activated when it is created.
In some implementations, the method 4500 may be performed at various times and according to various types of scheduling information. For instance, the method 4500 may be activated on demand. A user may request to run the method 4500 via a user interface component provided in a web browser. In another example, the method 4500 may be activated periodically or at scheduled times. In yet another example, the method 4500 may be activated after creating a response request rule. As another example, the method 4500 may be activated when a triggering event such as a trigger condition is detected.
At 4502, an information update in an information feed system is identified. In some implementations, an information update may be identified at various times and in various ways. In a first example, the information update may be identified when it is created. For instance, the creation of an information update may trigger a process configured to determine whether an information update satisfies a trigger condition as described in
At 4504, a determination is made whether a trigger condition associated with a response request rule is detected for the identified information update. The implementation of the determination 5404 may depend upon the configuration of the response request rule. In a first example, if the response request rule defines a trigger condition as a designated text string, then the determination 4504 may be made by comparing a text portion of the information update with the designated text string. For instance, the trigger condition may defined as the text string “!RequestWeeklyTimeSheet” to request the recipients to complete their weekly timesheets. In this scenario, the determination made at 4504 may be made at least in part by executing a string comparison function comparing a text portion of the information update for the text string “!RequestWeeklyTimeSheet.” In a second example, if the response request rule defines the trigger condition via custom computer programming language code, then the determination 4504 may be made by executing the custom computer programming language code.
If a determination is made that an information update satisfies a trigger condition, then method 4500 proceeds to operation 4506. On the other hand, if it is determined that an information update does not satisfy a trigger condition, then method 4500 ends. In some implementations, method 4500 may continue to monitor information updates in an information feed system for a trigger condition.
At 4506, the response request rule associated with the detected trigger condition is identified. In some implementations, the response request rule associated with the detected trigger condition may be retrieved from a storage medium or a database. For example, the trigger condition may serve as a search key to identify the response request rule in a database.
At 4508, a response request based on the identified response request rule is created. In some implementations, the response request may be created based on the response request rule configured in method 4400. For example, the response request may be created to request information from the recipients designated in the response request rule. Additionally, the response request may be created to include a text box and/or a selection list of responses based on the defined response types. Additionally, or alternatively, the created response request may include a message to the recipients as defined by the response request rule.
In some implementations, portions of the response request may be created in part by user input. For example, the response request rule may require the user to provide some information to create the response request. For instance, a user interface may be provided for the user to select recipients of the response request from a selection list. The user interface may allow the user to include a message, such as “Remember to complete the survey by December 10th.” In another example, the user interface may allow the user to attach a document to the response request.
In some implementations, computer programming language code for creating the response request based on a preconfigured response request rule may be generated at a server. For example, the response request rule may indicate to attach a picture of webpage prototype to the response request, the server may determine executable code associated with the response request rule which include instructions to locate and associate the image with the response request.
At 4510, the response request is associated with the identified information update. In some implementations, the response request associated with the identified information update may include operations to establish a connection between the information update and the created response request. For example, the response request may include an indication that the response request originated from a user account associated with the identified information update. This may be useful for a system to provide a recipient's response to the user account associated with the identified information update. In another example, the response request may include an indication that the response request originated from a data record associated with the identified information update. In this case, the recipient's response may be associated with the data record.
In some implementations, method 4600 may be activated after a response request is created as discussed with respect to the response request rule performance method 4500 shown in
At 4602, a request to display an information feed for a user account is received. In some implementations, the request to display an information feed may be received from a user logged in under a user account within the social networking system and/or a business feed system. For example, the user may navigate to a web page capable of displaying the information feed. As another example, the user may transmit a request to display an information feed from a mobile device.
At 4604, it is determined whether the user account is a recipient of an information update associated with a response request. In some implementations, the user account information such as the user name, roles, preferences and other personal information may be compared with the recipient information defined in a response request rule associated with the response request. For example, a server may execute computer code to make the determination by executing a string comparison function to compare the user's name with a list of recipients defined in the response request rule.
At 4606, the prioritization information for each response request is identified. In some implementations, the prioritization information identified at 4606 may include the prioritization information defined in operation 4416 as shown in
In some implementation, the prioritization information may be used to determine the display of the response request in an information feed. For instance, the prioritization information may be used to determine a ranking or weight for information updates associated with a response request. For example, updates associated with a high priority response request may be displayed more prominently than updates associated with a low priority response request.
At 4608, a presentation mode for each response request is determined. In some implementations, the presentation mode for each response request may be determined based on the prioritization information identified in operation 4606. For instance, the prioritization information may be used to arrange information updates in the identified information feed. For example, an information update associated with a high priority response request may be displayed as the first update in an information feed. As another example, information updates associated with high priority response request may be displayed with an emphasized visual presentation such as being shown in a bright color, a larger font, or surrounded by a border. As yet another example, information updates associated with lower priority response requests may be displayed with a deemphasized visual presentation, such as appearing in a lighter color or being hidden unless a user clicks on a button. In another example, the prioritization information may be used to weight and rank multiple response requests to determine the order of presentation. For instance, a response request from a compliance officer, a required response request and a response request with a response deadline may all be flagged as high priority. In this scenario, an algorithm may be executed to assign a different weight for each response request such that the update with the request from the compliance officer appears first and the updates associated with the required request and the deadline request appear second and third in a recipient's information feed.
In some implementations, the presentation of each response request may be determined based on other information. For instance, the presentation of the response request may depend on whether an information update is associated with a response request or not. A user interface may be configured to designate separate display areas for updates including a response request and other information updates. For example, the user interface may be configured to display parallel information feeds such that one feed is dedicated to display updates including response requests and the other feed is dedicated to displaying other updates. In another example, a user interface may be configured to designate a display area to display an information feed and designate another display area to display a task list including a list of response requests.
At 4610, each information update associated with a response request is generated for presentation within the information feed. In some implementations, the updates may be arranged in an information feed in accordance with the presentation determination in operation 4608.
In some implementations, the information updates associated with a response request may be generated on a user's news feed in accordance with the response request rule configured in method 4400 shown in
At 4612, the requested information feed is generated. In some implementations, the requested information feed may be transmitted from a server to a client machine such as a laptop computer, desktop computer, or mobile device. The information feed may be generated in a user interface on a display screen.
In some implementations, the method 4700 may be performed in order to collect responses received from a recipient of a response request. For example, the method 4700 may be used to generate one or more information updates including the recipient's response. In another example, the method 4700 may be used to store the recipient's response in a database system accessible by a user to view the recipients' responses.
At 4702, a response to a response request is received. The response may be received from a user account of an information feed system. The response may be a text string, a selection from a selection list and the like. In some instances, the response may be an action performed in an on-demand computing services environment. For example, the response may be an event such as a mouse-click or mouse hover event over an information update. In another example, the response may be the act of uploading a document to a server, opening or attaching a document to an email or an information update. In some other instances, a response may be a data update operation in an on-demand database.
At 4704, the response request rule associated with the response is identified. In some implementations, the response may include an identifier or metadata used to determine the response request rule. For example, the response may include a search key that may be used to determine the response request rule in a database system. In another example, the identifier may be a logical pointer to a memory location of the response request rule in a storage medium. In yet another example, the identifier may include text string of the name of the response request rule. The determination made at 4704 may be made at least in part by executing a string comparison function of the text string included in the identifier and the names of the response request rules.
In some implementations, computer programming language code for identifying the response request rule may be executed at a server. For example, the response may include an indication of the user account that provided the response. The user account may be used to determine whether the user account is a recipient of a response request associated with a response request rule.
In some implementations, the response request rule may be identified at least in part by a user. For example, a server may receive a request from a user to activate a particular response request rule.
At 4706, a determination is made whether the response deadline has passed. In some implementations, the determination 4706 may depend on the configuration of the response request rule. For instance, the determination 4706 may be based on the deadline information defined in operation 4412 as shown in
At 4708, a determination is made whether all required responses have been received. In some implementations, the determination 4708 may also depend on the configuration of the response request rule. The determination 4708 may be based on the required recipients identified in operation 4410 as shown in
If it is determined that all required responses have been received, then method 4700 proceeds to operation 4712 to process the received responses. Otherwise, method 4700 proceeds to operation 4710 to wait for additional responses.
In some implementations, method 4700 may make other determinations prior to processing a response. For instance, method 4700 may include a determination whether a response is provided in a proper format as defined by the response request rule.
At 4712, the received responses are processed based on the response request rule. In some implementations, the responses may be processed in accordance with the processing instructions defined in operation 4418 as described in
The specific details of the specific aspects of implementations disclosed herein may be combined in any suitable manner without departing from the spirit and scope of the disclosed implementations. However, other implementations may be directed to specific implementations relating to each individual aspect, or specific combinations of these individual aspects.
While the disclosed examples are often described herein with reference to an implementation in which an on-demand enterprise services environment is implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the present invention is not limited to multi-tenant databases nor deployment on application servers. Implementations may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the implementations claimed.
It should be understood that some of the disclosed implementations can be embodied in the form of control logic using hardware and/or using computer software in a modular or integrated manner. Other ways and/or methods are possible using hardware and a combination of hardware and software.
Any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions or commands on a computer readable medium for storage and/or transmission, suitable media include random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash memory, and the like. The computer readable medium may be any combination of such storage or transmission devices. Computer readable media encoded with the software/program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer readable medium may reside on or within a single computer program product (e.g., a hard drive or an entire computer system), and may be present on or within different computer program products within a system or network. A computer system, or other computing device, may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.
While various implementations have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the implementations described herein, but should be defined only in accordance with the following and later-submitted claims and their equivalents.
Claims
1. A computing system for sharing an electronic poll in an online social network, the computing system comprising:
- a database storing: social networking data of one or more feeds of an online social network, and user identifiers identifying users of the social network; and
- at least one processor operable to cause: providing data to enable display, in a user interface generated on a display of a user device, of a selection to request an electronic poll to be shared in the social network, the user interface configured to display the social networking data; providing data to enable display, in the user interface, of a plurality of components adapted to receive information for configuring the poll; providing the poll as a configurable data object to be stored as one of a plurality of data objects in the database, the poll configured based on configuration information received via the components in the user interface, the configuration information comprising: data referencing the user identifiers as recipients of the poll, a question, and a plurality of responses to the question; and providing, using the database, the poll in one or more feeds of the social network, the one or more feeds being accessible by user devices of the recipients for display of the poll on displays of the user devices.
2. The computing system of claim 1, wherein the poll is identified in association with a feed item, and the question requests information pertaining to the feed item.
3. The computing system of claim 1, wherein the configuration information provides a response type indicating a format for the responses to the question.
4. The computing system of claim 3, wherein the response type comprises one or more of: a textual string, an item in a list, a data update operation to a data object stored in the database, or a computing event in an on-demand computing services environment.
5. The computing system of claim 1, wherein the configuration information further identifies one or more of: a deadline for responding to the question, prioritization information affecting a location of the poll in a presentation of a feed, or an instruction for processing one or more responses to the question.
6. The computing system of claim 1, wherein the poll is automatically activated by a computer language process operating on a data object.
7. The computing system of claim 1, wherein the database is a multi-tenant database accessible to a plurality of tenants using an on-demand computing services environment.
8. A computer implemented method for sharing an electronic poll in a social networking system, the method comprising:
- receiving, via a user interface configured to display social networking data associated with one or more feeds of a social networking system, a request to share an electronic poll in the social networking system, the user interface generated on a display of a user device;
- providing data to cause to be displayed, in the user interface, a plurality of components adapted to receive information to configure the poll;
- receiving, via the components in the user interface, configuration information identifying: a plurality of users of the social networking system as recipients of the poll, a question, and a plurality of responses to the question;
- providing the poll as a configurable data object to be stored as one of a plurality of data objects in a database system associated with the social networking system, the poll configured based on the configuration information;
- causing, using the database system, publication of the poll on one or more feeds of the social networking system, the one or more feeds being accessible by the recipients using user devices; and
- receiving information indicating a selection with respect to the poll by one or more of the recipients.
9. The method of claim 8, wherein the poll is identified in association with a feed item, and the question requests information pertaining to the feed item.
10. The method of claim 9, further comprising:
- storing the poll in the database system in association with the feed item.
11. The method of claim 8, wherein the configuration information provides a response type indicating a format for the responses to the question.
12. The method of claim 11, wherein the response type comprises one or more of: a textual string, an item in a list, a data update operation to a data object stored in the database, or a computing event in an on-demand computing services environment.
13. The method of claim 8, wherein the request to share the poll is provided responsive to occurrence of a trigger condition in relation to a feed item.
14. The method of claim 8, wherein the configuration information further identifies one or more of: a deadline for responding to the question, prioritization information affecting a location of the poll in a presentation of a feed, or an instruction for processing one or more responses to the question.
15. The method of claim 8, wherein the poll is automatically activated by a computer language process operating on the configurable data object.
16. One or more servers for sharing an electronic poll in a social networking system, the one or more servers comprising:
- one or more processors operable to: send data to a user device, the data configured to be processed by the user device to: provide, in a user interface generated on a display of the user device, a selection to request an electronic poll to be shared on one or more feeds of a social networking system, and provide, in the user interface, a plurality of components adapted to receive information for configuring the poll; receive configuration information from the user device, the configuration information identifying: a plurality of users of the social networking system as recipients of the poll, a question, and a plurality of responses to the question; provide the poll as a configurable data object to be stored as one of a plurality of data objects in a database system associated with the social networking system, the poll configured based on the configuration information; provide, using the database system, the poll in one or more feeds of the social networking system, the one or more feeds being accessible by user devices of the recipients for display of the poll on displays of the user devices; and receive information indicating a selection with respect to the poll by one or more of the recipients.
17. The one or more servers of claim 16, wherein the configuration information further identifies one or more of: a deadline for responding to the question, prioritization information affecting a location of the poll in a presentation of a feed, or an instruction for processing one or more responses to the question.
18. The one or more servers of claim 16, wherein the poll is automatically activated by a computer language process operating on a data object.
19. A computer program product comprising computer-readable program code to be executed by one or more processors when retrieved from a non-transitory computer-readable medium, the program code comprising instructions configured to cause:
- providing data to enable display, in a user interface generated on a display of a user device, of a selection to request an electronic poll to be shared in an online social network, the user interface configured to display social networking data of the social network;
- providing data to enable display, in the user interface, of a plurality of components adapted to receive information for configuring the poll;
- providing the poll as a configurable data object to be stored as one of a plurality of data objects in a database associated with the social network, the poll configured based on configuration information received via the components in the user interface, the configuration information comprising: data referencing identifiers of users as recipients of the poll, a question, and a plurality of responses to the question; and
- providing, using the database, the poll in one or more feeds of the social network, the one or more feeds being accessible by user devices of the recipients for display of the poll on displays of the user devices.
20. The computer program product of claim 19, wherein the configuration information further identifies one or more of: a deadline for responding to the question, prioritization information affecting a location of the poll in a presentation of a feed, or an instruction for processing one or more responses to the question.
Type: Application
Filed: Oct 2, 2014
Publication Date: Jan 22, 2015
Inventors: Zachary J. Dunn (San Francisco, CA), Paul D. Luongo (San Francisco, CA), Christopher A. Kemp (Toronto)
Application Number: 14/505,206
International Classification: H04L 29/06 (20060101); G06F 3/0484 (20060101); G06F 17/30 (20060101); H04L 29/08 (20060101);