LATCH SYSTEM FOR A POWER SHOVEL DIPPER DOOR

A power shovel dipper door includes a hollow dipper body defining a first end and a second end opposite the first end, a plurality of dipper teeth coupled to the first end, a dipper door pivotally mounted at the second end, and a latch system for releasably securing the dipper door in a closed position. The latch system includes a latch bar and a latch keeper. At least one of the latch bar and latch keeper is movable between a first position and a second position. The latch keeper is engaged by the latch bar when at least one of the latch bar and latch keeper is in the first position. The latch system further includes removable inserts positioned proximate an interface where the latch bar and latch keeper are capable of engaging each other. One or more of the removable inserts includes a tool steel.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/605,550, filed Mar. 1, 2012, the entire contents of which are hereby incorporated by reference.

BACKGROUND

In heavy earth moving equipment or excavators, such as power shovels for mining, it is typical to employ a large dipper or bucket for shoveling the materials from the work site. The dipper is normally provided with teeth on the front to provide a digging action against the surface being worked and further includes a hollow dipper body for collecting the material so removed. On the rear of the dipper, a door is pivotally mounted. A latch mechanism secures the door in its closed position and, when released, allows the door to open. Conventional latch mechanisms typically include a moveable latch lever generally beneath the dipper door. The latch lever is typically coupled to a slidable latch bar that selectively engages a latch keeper. To open the dipper door, the latch lever is moved, which causes the latch bar to slide away from the latch keeper and thereby disengage from the latch keeper. The dipper can be suitably tilted so as to open the dipper door under its own weight plus the weight of any material contained within the dipper body. The door is thereafter closed by swinging the dipper in such a direction so as to cause the dipper door to move by inertia towards its closed position until the latch bar reengages the latch keeper.

SUMMARY

In some embodiments, a power shovel dipper door includes a hollow dipper body defining a first end and a second end opposite the first end, a plurality of dipper teeth coupled to the first end, a dipper door pivotally mounted at the second end, and a latch system for releasably securing the dipper door in a closed position. The latch system includes a latch bar and a latch keeper. At least one of the latch bar and latch keeper is movable between a first position and a second position. The latch keeper is engaged by the latch bar when at least one of the latch bar and latch keeper is in the first position. The latch system further includes removable inserts positioned proximate an interface where the latch bar and latch keeper are capable of engaging each other. One or more of the removable inserts includes a tool steel.

In other embodiments, a latch system for a power shovel dipper door includes a latch bar movable between a first position and a second position, a latch keeper that is engaged by the latch bar when the latch bar is in the first position, and removable inserts positioned proximate an interface where the latch bar and latch keeper are capable of engaging each other. One or more of the removable inserts include a tool steel.

Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a shovel with a dipper.

FIG. 2 is an enlarged perspective view of the dipper of the shovel of FIG. 1.

FIG. 3 is a cross-sectional view of the dipper taken along line 3-3 of FIG. 2, illustrating a latch system according to one embodiment of the invention.

FIG. 4 is an enlarged partial perspective view of the latch system of FIG. 3 illustrating latch bar and keeper inserts.

It should be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the above-described drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.

DETAILED DESCRIPTION

FIG. 1 is a perspective view of a shovel. Generally, the illustrated shovel 10 includes a base 25, which is supported on drive tracks 20, and a boom 45 extending upwardly from the base 25. A pulling mechanism 58 (e.g., pulley or boom sheave) is mounted on one end of the boom 45 remote from the base 25. A dipper 55 is suspended by a flexible hoist rope or cable 62 from the pulling mechanism 58. The flexible hoist rope 62 extends from the base 25, upwardly along the boom 45 and over the pulling mechanism 58, and downwardly to an attachment point on the dipper 55.

Referring also to FIG. 2, the dipper 55 includes dipper teeth 56 along a front edge of a dipper body 57. As used herein, the terms “top,” “bottom,” “front,” “rear,” “side,” and other directional terms are not intended to require any particular orientation, but are instead used for purposes of description only. The dipper teeth 56 are used to excavate a desired work area. The hollow dipper body 57 is provided for collecting the excavated material. As shown in FIGS. 1 and 3, a door 70 is pivotally mounted to a rear of the dipper body 57. A latch mechanism 100 (described below) secures the door in a closed position and, when released, allows the door 70 to open, e.g., to transfer the collected material to a desired location.

FIGS. 3 and 4 illustrate the dipper 55 including the latch system 100 according to one embodiment of the invention. The latch system 100 includes a slidable latch bar 110 and a latch keeper 120 that is selectively engagable by the latch bar 110. In the illustrated embodiment, the latch bar 110 is coupled to a latch lever 130, which in turn is coupled to the dipper door 70 on an underside thereof. The latch keeper 120 is coupled to the dipper body 57. The dipper door 70 is held closed when the latch bar 110 is in engagement with the latch keeper 120. To open the dipper door 70, the latch lever 130 is moved, which causes the latch bar 110 to slide away from the latch keeper 120 and thereby disengage from the latch keeper 120. Movement of the latch lever 130 may be accomplished by means of mechanical, hydraulic, pneumatic, or electric systems depending upon the capabilities and configuration of the latch lever 130. The dipper 55 may also be tilted toward direction 140 so as to open the dipper door 70 under its own weight plus the weight of any material contained within the dipper body 57. The door 70 is thereafter closed by swinging the dipper 55 in the direction 150 so as to cause the dipper door 70 to move by inertia towards its closed position, and until the latch bar 110 reengages the latch keeper 120.

Proximate an interface where the latch bar 110 and the latch keeper 120 are capable of engaging each other, the latch system 100 includes removable inserts 160, 170. In the illustrated embodiment, the inserts 160 and 170 are coupled to the latch bar 110 and the latch keeper 120, respectively. The latch bar insert 160 is received in a recess formed on the latch bar 110. An outer surface of the latch bar insert 160 is flush with an outer surface of the latch bar 110, so that the assembly of the latch bar 110 and the latch bar insert 160 gives a smooth linear appearance. Likewise, the latch keeper insert 170 is received in a recess formed on the latch keeper 120, and an outer surface of the latch keeper insert 170 is flush with an outer surface of the latch keeper 120 so that the assembly of the keeper 120 and the insert 170 gives a smooth linear appearance.

In the illustrated embodiment, the latch bar insert 160 and the latch keeper insert 170 are arranged so as to define a gap 180 therebetween when the dipper door 70 is closed. When the dipper door 70 is swinging toward a closed position, the latch bar insert 160 may contact the latch keeper insert 170 intermittently or occasionally, e.g., via inertia. Through these contacts, the removable inserts 160, 170 may become gradually worn; however, as explained below, the wear life or service life of the removable inserts 160, 170 disclosed herein can be enhanced by using tool steel. Although FIG. 4 illustrates the latch bar insert 160 and the latch keeper insert 170 as being separated when the dipper door 70 is in the closed position, in some embodiments, the latch bar insert 160 and the latch keeper insert 170 may occasionally contact or slide against each other when the dipper door 70 is closed. In other embodiments, the latch bar insert 160 and the latch keeper insert 170 may be in constant contact with each other when the dipper door 70 is closed.

For at least the past twenty years, certain carburized steel alloys have been used as the latch keeper insert, with or without a latch bar insert. Where a latch bar insert is used, certain through-hardened steel alloys have been used as a suitable material. The service life of such latch bar and keeper inserts, however, have been typically limited to approximately 10-15 days. Removing and replacing the inserts from the dipper door after the useful service life can be costly and time consuming. First, the dipper door needs to be hauled or hoisted to an open position (e.g., approximately 10° to approximately 20°). This can be accomplished either by temporarily welding a steel support (not shown) between the dipper door 70 and the rest of the dipper 55, or by adjusting the latch lever 130 relative to a corresponding latch lever retainer (not shown) on the door 70 using shims. Once the door is opened, the latch keeper insert can be removed and replaced. In large dippers, the dipper door can weigh on the order of 15-20 metric tons and the latch bar itself can weigh on the order of one metric ton. Removing and replacing the worn latch inserts is therefore be time-consuming and cumbersome. Thus, there has developed a need for removable inserts with a longer service life. Others in the industry, however, have failed to meet this need for at least the past twenty years.

In the illustrated embodiment, to decrease wear on the latch bar 110 and keeper 120, the removable inserts 160, 170 are each made of a tool steel, such as D2 and S7. The nominal composition of the D2 tool steel includes, by weight, approximately 10% to approximately 18% chromium, approximately 1.5% carbon, approximately 1.0% vanadium, approximately 0.7% molybdenum, approximately 0.45% manganese, approximately 0.30% silicon, approximately 0.030% phosphorus, approximately 0.030% sulfur, and the balance iron and incidental elements and impurities. Use of the word “approximately” to describe a particular recited amount or range of amounts is meant to indicate that values near to the recited amount are included in that amount such as, but not limited to, values that could or naturally would be accounted for due to instrument and/or human error in forming measurements. The D2 tool steel can be through-hardened to a Rockwell C-scale hardness of approximately 57 to approximately 59 by placing the steel in a furnace, tempering at a suitable temperature, and subsequently cooling in air.

The nominal composition of the S7 tool steel includes, by weight, approximately 3.25% chromium, approximately 1.40% molybdenum, approximately 0.70% manganese, approximately 0.50% carbon, approximately 0.30% silicon, and the balance iron and incidental elements and impurities. The S7 tool steel can be hardened to a Rockwell C-scale hardness of approximately 54 to approximately 56 by placing the steel in a furnace, tempering at a suitable temperature, and subsequently cooling in air.

Tool steels such as D2 and S7 have been used in the machining world (e.g., for dies and shear blades) for approximately 40-50 years. These steels can attain a high hardness. Generally, the hardness of an alloy is inversely proportional to its toughness. Therefore, the high hardness of the tool steel would indicate that the toughness may be unsuitably low (i.e., brittle) for applications that are exposed to a high impact. The toughness of the tool steel may be further reduced at low temperatures due to a ductile-to-brittle transition, and in light of the fact that a power shovel may be exposed to temperatures lower than approximately −40° C. Therefore, latch inserts for a power shovel dipper door are expected to require high toughness at such low temperatures. For this reason, tool steels were hitherto not used as latch inserts, although they have been used in the machining world.

In the illustrated embodiment, the latch bar insert 160 and the latch keeper insert 170 have different hardnesses, and are of different tool steels. In one particular embodiment, the latch bar insert 160 is made of the D2 tool steel a Rockwell C-scale hardness of approximately 57 to approximately 59, and the latch keeper insert 170 is made of the S7 tool steel with a Rockwell C-scale hardness of approximately 54 to approximately 56. Moreover, a ratio of wear life of the latch bar insert 160 to wear life of the latch keeper insert 170 is approximately two to one. In other embodiments, however, the ratio of the wear life of the latch bar insert 160 to the wear life of the latch keeper insert 170 is different. Moreover, the latch bar insert 160 and the latch keeper insert 170 can be made of tool steels other than D2 or S7, and the latch bar insert 160 and the latch keeper insert 170 may or may not be made of the same tool steel. In yet other embodiments, the latch bar insert 160 and the latch keeper insert 170 have the same hardness.

An illustrative embodiment of the removable inserts is described in greater detail below. Additionally, counterexamples (Examples 1, 2, 3, and 5) were also prepared and tested for comparison. In the examples and counterexamples, removable inserts 160, 170 were applied on a latch system 100 of a dipper door 70 in a power shovel 10. The shovel 10 was used to move material, and the wear on the latch keeper insert 170 was measured as a function of time and material moved. Initially, the latch keeper insert 170 was a generally rectangular box with faces joined at right angles to each other. As the test progressed, however, an edge of the latch keeper insert 170 that contacts the latch bar insert 160 gradually receded and became rounded. The receded length to the latch keeper insert 170 edge was measured vertically and horizontally, as a function of time and material moved.

Example 1

A latch bar insert was made of a manganese steel bar and a latch keeper insert was made of a carburized steel alloy. Example 1 is a counterexample. The service life of the latch bar and keeper inserts was exhausted after 15 days of moving material. The following Table 1 summarizes the measurements.

TABLE 1 Number of Cumulative Vertical length Horizontal length days from material to the receded to the receded start of test moved (ton) edge (inch) edge (inch) 1 28,364 Not measured Not measured 2 37,916 0.0625 0.0625 8 409,994 0.6250 0.1250 13 806,020 0.6250 0.5000 15 878,108 1.1250 0.5000

Example 2

A latch bar insert was made of a manganese steel bar and a latch keeper insert was made of a weld overlay. Example 2 is a counterexample. The service life of the latch bar and keeper inserts was exhausted after 13 days of moving material. The following Table 2 summarizes the measurements.

TABLE 2 Number of Cumulative Vertical length Horizontal length days from material to the receded to the receded start of test moved (ton) edge (inch) edge (inch) 1 71,568 Not measured Not measured 13 735,518 1.1875 0.7500

Example 3

A latch bar insert was made of a stainless steel and a latch keeper insert was made of TOUGHMET®. TOUGHMET is a copper-based alloy with a nominal composition, by weight, of approximately 15% nickel, approximately 8% tin, and the balance copper and incidental elements and impurities. Example 3 is a counterexample. The service life of the latch bar and keeper inserts was exhausted after 3 days of moving material. The following Table 3 summarizes the measurements.

TABLE 3 Number of Cumulative Vertical length Horizontal length days from material to the receded to the receded start of test moved (ton) edge (inch) edge (inch) 1 33,206 Not measured Not measured 3 139,984 1.0000 1.0000

Example 4

A latch bar insert was made of the D2 tool steel and a latch keeper insert was made of the S7 tool steel. The service life of the latch bar and keeper inserts was exhausted after 54 days of moving material. This represents an approximately fivefold increase in service life of the removable inserts. The following Table 4 summarizes the measurements.

TABLE 4 Number of Cumulative Vertical length Horizontal length days from material to the receded to the receded start of test moved (ton) edge (inch) edge (inch) 1 22,678 Not measured Not measured 4 261,108 Not measured Not measured 12 926,532 0.5625 0.4375 15 1,190,040 Not measured Not measured 28 2,234,246 0.8125 0.6250 37 3,136,680 Not measured Not measured 54 5,036,272 Not measured Not measured

Example 5

Both the latch bar insert and the latch keeper insert were made of Nano Steel. Example 5 is a counterexample. The service life of the latch bar and keeper inserts was exhausted after 9 days of moving material. To keep the latch system running in place, a welding was required on the latch keeper insert. The following Table 5 summarizes the measurements.

TABLE 5 Number of Cumulative Vertical length Horizontal length days from material to the receded to the receded start of test moved (ton) edge (inch) edge (inch) 1 116,498 Not measured Not measured 9 752,928 Not measured Not measured

Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described.

Claims

1. A power shovel dipper door comprising:

a hollow dipper body defining a first end and a second end opposite the first end;
a plurality of dipper teeth coupled to the first end;
a dipper door pivotally mounted at the second end; and
a latch system for releasably securing the dipper door in a closed position, the latch system including a latch bar and a latch keeper, at least one of the latch bar and latch keeper being movable between a first position and a second position, the latch keeper being engaged by the latch bar when at least one of the latch bar and latch keeper is in the first position, and the latch system further including removable inserts positioned proximate an interface where the latch bar and latch keeper are capable of engaging each other, wherein one or more of the removable inserts includes a tool steel.

2. The power shovel dipper door of claim 1, wherein at least one removable insert comprises, by weight, approximately 10% to approximately 18% chromium, approximately 1.5% carbon, approximately 1.0% vanadium, approximately 0.7% molybdenum, approximately 0.45% manganese, approximately 0.30% silicon, approximately 0.030% phosphorus, approximately 0.030% sulfur, and the balance iron and incidental elements and impurities.

3. The power shovel dipper door of claim 1, wherein at least one removable insert comprises, by weight, approximately 3.25% chromium, approximately 1.40% molybdenum, approximately 0.70% manganese, approximately 0.50% carbon, approximately 0.30% silicon, and the balance iron and incidental elements and impurities.

4. The power shovel dipper door of claim 1, wherein the removable inserts include a latch bar insert removably coupled to the latch bar and a latch keeper insert removably coupled to the latch keeper.

5. The power shovel dipper door of claim 4, wherein the latch bar insert has a first hardness and the latch keeper insert has a second hardness, and wherein the first hardness is greater than the second hardness.

6. The power shovel dipper door of claim 4, wherein the latch bar insert has a hardness of approximately 57 to approximately 59 in Rockwell C-scale.

7. The power shovel dipper door of claim 4, wherein the latch keeper insert has a hardness of approximately 54 to approximately 56 in Rockwell C-scale.

8. The power shovel dipper door of claim 4, wherein the latch bar insert comprises, by weight, approximately 10% to approximately 18% chromium, approximately 1.5% carbon, approximately 1.0% vanadium, approximately 0.7% molybdenum, approximately 0.45% manganese, approximately 0.30% silicon, approximately 0.030% phosphorus, approximately 0.030% sulfur, and the balance iron and incidental elements and impurities.

9. The power shovel dipper door of claim 4, wherein the latch keeper insert comprises, by weight, approximately 3.25% chromium, approximately 1.40% molybdenum, approximately 0.70% manganese, approximately 0.50% carbon, approximately 0.30% silicon, and the balance iron and incidental elements and impurities.

10. The power shovel dipper door of claim 4, wherein the latch insert has a first wear life and the latch keeper insert has a second wear life, and wherein a ratio of the first wear life to the second wear life is approximately two to one.

11. The power shovel dipper door of claim 1, wherein the latch system has a wear life of approximately 20 days to approximately 60 days.

12. The power shovel dipper door of claim 1, wherein the latch bar is coupled to the dipper door and the latch keeper is coupled to the dipper body.

13. The power shovel dipper door of claim 1, wherein the latch bar is movable between the first position and the second position, and the latch keeper is engaged by the latch bar when the latch bar is in the first position.

14. A latch system for a power shovel dipper door, the latch system comprising:

a latch bar movable between a first position and a second position;
a latch keeper that is engaged by the latch bar when the latch bar is in the first position; and
removable inserts positioned proximate an interface where the latch bar and latch keeper are capable of engaging each other, one or more of the removable inserts including a tool steel.

15. The latch system of claim 14, wherein at least one removable insert comprises, by weight, approximately 10% to approximately 18% chromium, approximately 1.5% carbon, approximately 1.0% vanadium, approximately 0.7% molybdenum, approximately 0.45% manganese, approximately 0.30% silicon, approximately 0.030% phosphorus, approximately 0.030% sulfur, and the balance iron and incidental elements and impurities.

16. The latch system of claim 14, wherein at least one removable insert comprises, by weight, approximately 3.25% chromium, approximately 1.40% molybdenum, approximately 0.70% manganese, approximately 0.50% carbon, approximately 0.30% silicon, and the balance iron and incidental elements and impurities.

17. The latch system of claim 14, wherein the removable inserts include a latch bar insert removably coupled to the latch bar and a latch keeper insert removably coupled to the latch keeper.

18. The latch system of claim 17, wherein the latch bar insert has a first hardness and the latch keeper insert has a second hardness, and wherein the first hardness is greater than the second hardness.

19. The latch system of claim 17, wherein the latch bar insert has a hardness of approximately 57 to approximately 59 in Rockwell C-scale.

20. The latch system of claim 17, wherein the latch keeper insert has a hardness of approximately 54 to approximately 56 in Rockwell C-scale.

21. The latch system of claim 17, wherein the latch bar insert comprises, by weight, approximately 10% to approximately 18% chromium, approximately 1.5% carbon, approximately 1.0% vanadium, approximately 0.7% molybdenum, approximately 0.45% manganese, approximately 0.30% silicon, approximately 0.030% phosphorus, approximately 0.030% sulfur, and the balance iron and incidental elements and impurities.

21. The latch system of claim 17, wherein the latch keeper insert comprises, by weight, approximately 3.25% chromium, approximately 1.40% molybdenum, approximately 0.70% manganese, approximately 0.50% carbon, approximately 0.30% silicon, and the balance iron and incidental elements and impurities.

22. The latch system of claim 17, wherein the latch insert has a first wear life and the latch keeper insert has a second wear life, and wherein a ratio of the first wear life to the second wear life is approximately two to one.

23. The latch system of claim 14, wherein the latch system has a wear life of approximately 20 days to approximately 60 days.

Patent History
Publication number: 20150033594
Type: Application
Filed: Feb 28, 2013
Publication Date: Feb 5, 2015
Applicant: Hamischfeger Technologies, Inc. (Wilimington, DE)
Inventor: Richard Nicoson (Hartford, WI)
Application Number: 14/382,248
Classifications
Current U.S. Class: Including Door Structure Or Operator (37/445); Sliding (292/137)
International Classification: E02F 3/407 (20060101); C22C 38/00 (20060101); C22C 38/04 (20060101); C22C 38/02 (20060101); C22C 38/24 (20060101); C22C 38/22 (20060101);