VORTEX FINDER FOR CYCLONE SEPARATOR

A vortex finder for a cyclone separator, comprising a plurality of superposed rings each including a plurality of suspended plate segments. Each of the plate segments includes a main plate having radially offset upper and lower end portions, opposite inner and outer faces, an upper support member integrally formed with the upper end portion to protrude from the outer face, and a lower support member integrally formed with the lower end portion to protrude from the inner face. The upper support member of the plate segments of the one of the rings engages and is supported by the lower support member of the plate segments of another of the rings positioned above the one of the rings. The lower support member defines an open-bottom pocket having at least one pass-through opening for fluidly connecting a space inside the vortex finder with a space outside the vortex finder.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/442,298 filed Feb. 14, 2011 by David A. Brownlee, which is hereby incorporated herein by reference in its entirety and to which priority is claimed.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to cyclone separators provided to separate solid particles from a gas stream, and, more particularly, to a segmented vortex finder for cyclone separators such as used with circulating fluidized bed combustors and reactors.

2. Description of the Related Art

Cyclone separators connected to an outlet of pressurized fluidized bed combustors (PFBC), atmospheric fluidized bed combustors (AFBC) or circulating fluidized bed combustors (CFBC) are generally known. A cyclone separator is a device for removing particulates from an air, gas or liquid stream, without the use of filters, through vortex separation. Rotational effects and gravity are used to separate mixtures of solids and fluids. The cyclone separator can also be used to separate fine droplets of liquid from a gaseous stream. Cyclone separators are used in the cement, aluminum, and power industries.

A high speed rotating airflow is established within a cylindrical or conical container of the cyclone separator. Air flows in a helical pattern, beginning at the top (wide end) of the cyclone and ending at the bottom (narrow) end before exiting the cyclone in a straight stream through the center of the cyclone, up through a vortex finder and out the top. Larger (denser) particles in the rotating stream have too much inertia to follow the tight curve of the stream, and strike the outside wall, then falling to the bottom of the cyclone where they can be removed. In a conical system, as the rotating flow moves towards the narrow end of the cyclone, the rotational radius of the stream is reduced, thus separating smaller and smaller particles. The cyclone geometry, together with flow rate, defines a cut point of the cyclone separator. This is the size of particle that will be removed from the stream with 50% efficiency. Particles larger than the cut point will be removed with a greater efficiency and smaller particles with a lower efficiency.

In other words, cyclone separators use cyclonic action to separate dust particles from the gas stream. In a typical cyclone separator, the dust gas stream enters at an angle and is spun rapidly. The centrifugal force created by the circular flow throws the dust particles toward the wall of the cyclone separator. After striking the wall, these particles fall into a hopper located underneath. The cyclone separator creates a dual vortex to separate coarse dust particles from fine dust particles. A main downward vortex spirals downward and carries most of the coarser dust particles. An inner ascending vortex spirals upward and carries finer dust particles.

Vortex finders (also known as dip tubes, dip legs, immersion tubes, etc.) are a common component of cyclone separators. The cyclone separator creates a dual vortex to separate coarse dust particles from fine dust particles. A main downward vortex spirals downward and carries most of the coarser dust particles. An inner ascending vortex spirals upward and carries finer dust particles exiting the cyclone separator through a vortex finder. Vortex finders in cyclone separators have a tubular shape and serve to remove the lighter volatile components (finer dust particles, such as ash) along an axis of the cyclone separator in an upward direction without impeding the upward flow by the tangentially incoming medium.

Presently, a vortex finder is in the form of a welded or segmented plate, and/or segmented interlocking pieces of metal or ceramic. Also known in the art are vortex finders, which comprise hanging segments where one segment hangs on the upper segment in a staggered manner; i.e. the center line of the lower plate is in line with the sides of the supporting segment. Currently, pockets, which support the lower segments, have a solid bottom allowing particles, such as ash, to accumulate.

Current vortex finders suffer from thermal cycling, temperature over runs, and ash build up on the segments and in the pockets of the segments. When the pockets get full of ash the segments cannot expand and contract as originally designed. This hindered expansion/contraction induce stresses in the segments and in the wedges. These stresses, over time, cause the components to warp and ultimately, to be replaced.

The reduction of maintenance and increased performance of fluidized bed combustion (FBC) boilers presents the need for an improved design of vortex finders. The need therefore exists for a vortex finder for a cyclone separator, which is suitable for adaptation to differently sized cyclones designs, and in which individual components can be easily replaced. The need also exists for a vortex finder that comprises plate segments, which reduce the possibility of deformation or braking, are stronger yet have lower weight, and provide reduced stresses at peak stress points and reduced heat loss.

SUMMARY OF THE INVENTION

A first aspect of the invention provides a vortex finder for a cyclone separator, suspended from a top end of the cyclone separator. The vortex finder comprises a central axis and a plurality of superposed, circumferentially extending rings coaxial to the central axis and assembled so as to form the vortex finder. Each of the rings comprising of a plurality of substantially identical plate segments positioned at the same level so as to form the ring. The plate segments of one of the rings are suspended under the force of gravity from the plate segments of the adjacent ring positioned above the one of the rings for connecting the plate segments of each the ring to one another. Each of the plate segments includes a non-flat main plate having an upper end portion and a lower end portion radially offset from the upper end portion, an upper support member integrally formed with the upper end portion of the main plate so as to face away from the central axis and a lower support member integrally formed with the lower end portion of the main plate so as to face the central axis. The upper support member of the plate segments of the one of the rings engages and is supported by the lower support member of the plate segments of another of the rings positioned above the one of the rings. The lower support member defines an open-bottom pocket having at least one pass-through opening for fluidly connecting a space inside the vortex finder with a space outside the vortex finder.

A second aspect the invention provides a plate segment of a vortex finder, comprising a non-flat main plate having an upper end portion, a lower end portion radially offset from the upper end portion and opposite radially inner and outer faces, an upper support member integrally formed with the upper end portion of the main plate so as to protrude from the outer face, and a lower support member integrally formed with the lower end portion of the main plate so as to protrude from the inner face. The lower support member defines an open-bottom pocket having at least one pass-through opening.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated in and constitute a part of the specification. The drawings, together with the general description given above and the detailed description of the exemplary embodiments and methods given below, serve to explain the principles of the invention. The objects and advantages of the invention will become apparent from a study of the following specification when viewed in light of the accompanying drawings, wherein:

FIG. 1 is a schematic view of a steam generator of a fluidized bed combustor including a gas cyclone separator with a vortex finder according to the exemplary embodiment of the present invention;

FIG. 2 is a partial perspective view of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 3 is a partial top view of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 4 is a cross-sectional view of the vortex finder according to the exemplary embodiment of the present invention taken along the lines 4-4 in FIG. 3;

FIGS. 5-7 are perspective views of plate segments of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 8A is a front view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 8B is a side view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 8C is a rear view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 8D is a top view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 8E is a bottom view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention;

FIG. 9 is a cross-sectional view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention taken along the lines A-A in FIG. 8D;

FIG. 10 is a cross-sectional view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention taken along the lines B-B in FIG. 8D;

FIG. 11 is a cross-sectional view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention taken along the lines C-C in FIG. 8B;

FIG. 12 is a cross-sectional view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention taken along the lines D-D in FIG. 8B;

FIG. 13 is a cross-sectional view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention taken along the lines E-E in FIG. 12;

FIG. 14 is a cross-sectional view of the plate segments of the vortex finder according to the exemplary embodiment of the present invention taken along the lines F-F in FIG. 8B;

FIG. 15 is a perspective view of a support member in the gas cyclone separator for supporting the vortex finder according to the exemplary embodiment of the present invention;

FIG. 16 is a perspective view of a stiffener for the vortex finder according to the exemplary embodiment of the present invention; and

FIG. 17 is a perspective view of a clamp for the vortex finder according to the exemplary embodiment of the present invention.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

Reference will now be made in detail to exemplary embodiments and methods of the invention as illustrated in the accompanying drawings, in which like reference characters designate like or corresponding parts throughout the drawings. It should be noted, however, that the invention in its broader aspects is not limited to the specific details, representative devices and methods, and illustrative examples shown and described in connection with the exemplary embodiments and methods.

This description of exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “horizontal,” “vertical,” “up,” “down,” “upper”, “lower”, “right”, “left”, “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship. Additionally, the word “a” as used in the claims means “at least one” and the word “two” as used in the claims means “at least two”.

FIG. 1 schematically illustrates a steam generator of a fluidized bed combustor, such as a pressurized fluidized bed combustor (PFBC), atmospheric fluidized bed combustor (AFBC) or circulating fluidized bed combustor (CFBC), generally depicted with the reference numeral 10. The steam generator 10 includes a furnace 11, a hot gas cyclone separator 12 receiving combustion gas from the furnace 11, a parallel pass heat recovery area (HRA) 13 receiving gas from the cyclone separator 12.

The hot gas cyclone separator 12 comprises a housing 14 having a central axis 15, a gas inlet 16, a gas outlet 17a for withdrawal of lighter components of the combustion gas that flow upwardly, a particulate outlet 17b for withdrawal of heavier components of the combustion gas that have been separated in the cyclone separator 12, and a substantially cylindrical vortex finder 20 suspended from a support ring 18 at an upper end of the housing 14 of the cyclone separator 12 and extending into the housing 14 coaxially with the central axis 15 so as to be centrally-located in the housing 14 of the cyclone separator 12.

As illustrated in detail in FIGS. 2-4, the vortex finder 20 comprises a plurality of superposed, circumferentially extending rows 221, 222, . . . 22N of plate segments 241, 242, . . . 24N assembled so as to form the vortex finder 20 having the central axis 15. Each of the plurality of superposed, circumferentially extending rows 221, 222, . . . 22N of the plate segments 241, 242, . . . 24N forms a ring coaxial to the central axis 15. As further illustrated in FIGS. 2-4, the plate segments 241, 242, . . . 24N extend vertically and are circumferentially juxtaposed so as to form the substantially cylindrical vortex finder 20.

These plate segments 241, 242, . . . 24N are substantially structurally identical in the exemplary embodiment of the present invention, but may differ by size. In view of the structural similarities thereof, and in the interest of simplicity, the following discussion will sometimes use a reference numeral in brackets without a letter to designate an entire group of substantially identical structures. For example, the reference numeral [24] will be used when generically referring to the plate segments 241, 242, . . . 24N rather than reciting all reference numerals. Similarly, the reference numeral [22] will be used when generically referring to the rows (or rings) 221, 222, . . . 22N rather than reciting all reference numerals.

The plate segments [24] forming the same row (or ring) [22](i.e., the plate segments [24] positioned at the same level) are substantially structurally and geometrically identical. However, the plate segments [24] forming different rows [22] are substantially structurally identical, while may differ by size. For instance, according to the exemplary embodiment of the present invention as illustrated in FIGS. 2, 4 and 5-7, the plate segments 241 of the first row 221 are geometrically smaller than the plate segments 242 of the second row 222, which, in turn, are geometrically smaller than the plate segments 243 of the third row 223. Specifically, the height L1 of the plate segments 241 is smaller than the height L2 of the plate segments 242, while the height L3 of the plate segments 243 is greater than the height L2 of the plate segments 242, as best shown in FIG. 4.

The plate segments 241 of the first row 221 of the vortex finder 20 are suspended from the support ring 18 of the housing 14 of the cyclone separator 12. The rest of the plate segments [24] of one of the rings [22] are suspended under the force of gravity from the plate segments of another of the rings positioned above the one of the rings for connecting the plate segments of each the ring to one another, as best shown in FIGS. 2-4. For that reason, the upper rows [22] of the vortex finder 20 are heavier and stronger than the adjacent lower rows [22]since the stress in the plate segments [24] is created by the weight of the lower rows [22]. Accordingly, the weight of lower rows [22] is lower than the supporting rows [22] above. The height [L] of the plate segments [24] does not control the weight thereof. In other words, the supporting ring of segments is equal to or heavier than the lower supporting ring of segments.

The plate segments [24] of one of the rings [22] are suspended under the force of gravity from the plate segments [24] of another of the rings [22] positioned above the one of the rings [22] for connecting the plate segments [24] of each the ring [22] to one another, except of the plate segments 241 of the first row 221 of the vortex finder 20, which are suspended from the top end 18 of the housing 14 of the cyclone separator 12, as best shown in FIGS. 2-4. In other words, the plate segments 242 of the ring 222 are suspended under the force of gravity from the plate segments 241 of the ring 22j positioned above the ring 222 for connecting the plate segments 24j and 242 of the ring 221 and 222 to one another, while the plate segments 243 of the ring 223 are suspended under the force of gravity from the plate segments 242 of the ring 222 positioned above the ring 223 for connecting the plate segments 242 and 243 of the ring 222 and 223 to one another, and so on.

As illustrated in detail in FIGS. 5-14, each of the plate segments [24] comprises a non-flat main plate 26 having an upper end portion 26U, a lower end portion 26L radially offset from the upper end portion 26U, and a central portion 26C interconnecting the upper end portion 26U with the lower end portion 26L of the main plate 26. According to the exemplary embodiment of the present invention illustrated in detail in FIGS. 4-7, 8B, 9, 10 and 13, the upper end portion 26U and the lower end portion 26L of the main plate 26 extend substantially parallel to the central axis 15, while the central portion 26C is oriented obliquely relative to both the upper and lower end portions 26U and 26L of the main plate 26 so as to provide a radial offset “K” between the lower end portion 26L and the upper end portion 26U of the main plate 26. Furthermore, the main plate 26 has opposite radially inner and outer faces 27i and 27o, respectively. Specifically, the inner face 27i faces the central axis 15, while the outer face 27o faces away from the central axis 15 of the vortex finder 20. Moreover, each of the plate segments [24] comprises an upper support member 28 integrally formed with the upper end portion 26U of the main plate 26 so as to protrude from the outer face 27o of the main plate 26 and face away from the central axis 15, and a lower support member 36 integrally formed with the lower end portion 26L of the main plate 26 so as to protrude from the inner face 27i of the main plate 26 and face the central axis 15 of the vortex finder 20.

As further illustrated in detail in FIGS. 2, 3, 8D, 8E, 11 and 12, the plate segment [24] is curved inwardly in the plane orthogonal to the central axis 15 and extends vertically in the direction substantially parallel to the central axis 15 to form the substantially cylindrical vortex finder 20.

The upper support member 28 includes a downwardly protruding upper flange 30 radially spaced from the radially outer face 27o of the main plate 26 and an upper connecting portion 32 integrally connecting the upper flange 30 to the upper end portion 26U of the main plate 26 of the plate segments [24]. As illustrated, the upper connecting portion 32 extends radially outwardly from the upper end portion 26U (or, the radially outer face 27o) of the main plate 26 away from the central axis 15 in the direction substantially perpendicular to the central axis 15, while the upper flange 30 is spaced from the outer face 27o of the main plate 26 in the direction substantially perpendicular to the central axis 15.

In turn, the lower support member 36 includes an upwardly protruding lower flange 38 radially spaced from the inner face 27i of the main plate 26 and a lower connecting portion 40 integrally connecting the lower flange 38 to the lower end portion 26L of the main plate 26 so as to form at least one pass-through opening 42 between the lower flange 38 of the lower support member 36 and the inner face 27i of the main plate 26 for fluidly connecting a space 21i inside the vortex finder 20 with a space 21o outside the vortex finder 20 so as to form an open-bottom pocket 44 at the lower end portion 26L of the main plate 26 of the plate segments [24]. The at least one pass-through opening 42 allows the ash, separated from the combustion gas, to flow and escape the vortex finder 20. As illustrated, the lower connecting portion 40 extends radially upwardly from the lower end portion 26L (or, the radially inner face 27i) of the main plate 26 toward the central axis 15 in the direction substantially perpendicular to the central axis 15, while the lower flange 38 is spaced from the inner face 27i of the main plate 26 in the direction substantially perpendicular to the central axis 15.

The upper flange 30 may be in the form of one or more upper flanges 30. According to the exemplary embodiment of the present invention as shown in FIGS. 8C and 11, the downwardly protruding upper flange 30 includes three upper flanges (or teeth) 30, each downwardly protruding from the upper connecting portion 32 and radially spaced from the radially outer face 27o of the main plate 26. As illustrated, the upper flanges 30 are geometrically different. Further according to the exemplary embodiment of the present invention, the centrally disposed upper flange 30 is provided with a strengthening rib 34 disposed between the central upper flange 30 and the upper end portion 26U (or, the radially outer face 27o) of the main plate 26 below the upper connecting portion 32, as illustrated in FIGS. 8B, 8C, 9, 10 and 11.

As described above, each of the plate segments [24] is provided with at least one (i.e., one or more) pass-through opening 42 between the lower flange 38 of the lower support member 36 and the inner face 27i of the main plate 26. The lower connecting portion 40 includes one or more connecting portions 40. According to the exemplary embodiment of the present invention as shown in FIGS. 8E and 12, the lower connecting portion 40 includes four lower connecting portions 40, each connecting the lower flange 38 to the lower end portion 26L of the main plate 26. Further according to the exemplary embodiment of the present invention, the open spaces between the lower connecting portions 40 define three pass-through openings 42 of different area so as to form the open-bottom pocket 44. In other words, the open-bottom pocket 44 according to the exemplary embodiment of the present invention includes three pass-through openings 42, as best illustrated in FIGS. 8E and 12.

The lower end portion 26L of the main plate 26 is radially offset from the upper end portion 26U thereof so that the upper flange 30 of the upper support member 28 is aligned with a space between the lower flange 39 of the lower support member 36 and the lower end portion 26L of main plate 26. In other words, the upper flange 30 is aligned with the open-bottom pocket 44 at the lower end portion 26L of main plate 26, as shown in FIG. 13. Moreover, as illustrated in FIGS. 11 and 12, in the plate segments [24] according to the exemplary embodiment of the present invention, each of the three upper flanges 30 is aligned with the corresponding one of the three pass-through openings 42. As further illustrated in FIGS. 11 and 12, geometrical dimensions (length, width, area) of the three upper flanges 30 are smaller than geometrical dimensions (length, width, area) of the three corresponding pass-through openings 42. The plate segments [24] provided with the open-bottom pocket 44, which allows the ash, separated from the combustion gas, to flow and escape the vortex finder 20 through the at least one pass-through opening 42, expand and contract more freely, thus reducing stresses and therefore, the tendency to warp.

According to the exemplary embodiment of the present invention shown in FIGS. 5-8E, 11 and 12, each of the plate segments [24] of the vortex finder 20 is provided with at least two reinforcing ribs 45 formed unitarily with the main plate 26 both on the outer and inner faces 27o, 27i of the main plate 26. In addition, as shown best in FIGS. 5, 6 and 8A-8D, the reinforcing ribs 45 may be formed on an outer surface of the upper connecting portion 32 of the upper support member 28. In other words, according to the exemplary embodiment of the present invention, the reinforcing ribs 45 extend the entire length of the central portion 26C and at least part of the upper and lower end portions 26U and 26L of the main plate 26. Also, the reinforcing ribs 45 may extend across the outer surface of the upper connecting portion 32 of the upper support member 28. The reinforcing ribs 45 are provided to reduce the overall volume and therefore weight of the plate segment [24] resulting in a stronger segment, which is under less stress due to the reduced weight of the adjacent plate segments [24] and overall reduced weight of the fully assembled vortex finder 20.

Further according to the exemplary embodiment of the present invention, each of the plate segments [24] of the vortex finder 20 is a unitary cast steel part providing a high heat resistance. However, the plate segment [24] of the vortex finder 20 made of metallic, ceramic, or any other appropriate material is also within the scope of the present invention. Further according to the exemplary embodiment of the present invention, the steel plate segments [24] may be coated with ceramic material. The use of ceramic coatings of the steel plate segments [24] provided improved temperature control, heat resistance, friction reduction, and erosion protection of the vortex finder 20. Moreover, the ceramic coating functions as means of wear protection and friction reduction. As a result, hot combustion gas from the circulating fluidized bed combustor and particulates easily travel at a higher velocity with less turbulence due to smoother surface inside the vortex finder 20. The ceramic coating reduces heat loss, thus increasing performance of the fluidized bed combustor. The ceramic coating of the steel plate segments [24] also assists in shedding performance reducing particulate accumulation on and within the plate segments [24] as it makes more difficult for the ash to adhere to the plate segments [24].

Therefore, primary benefits of using ceramic coating on the plate segments [24] are:

    • ceramic coating when applied to metal surfaces of the plate segments [24] protects against erosion, corrosion, and extends life of the plate segments [24];
    • as a thermal barrier, ceramic coating enhances performance and reduces critical temperature of the plate segments [24];
    • ceramic coating is not prone to chip, crack, or peel, and permits better survival to stress and thermal shock of the plate segments [24];
    • ceramic coating can survive base metal temperatures above typical CFB operating temperature; and
    • ceramic coating is easily cleaned.

As disclosed above, the plate segments 241 of the first row 221 of the vortex finder 20 are suspended from the supporting member 18 of the housing 14 of the cyclone separator 12. Specifically, according to the exemplary embodiment of the present invention as illustrated in FIGS. 3 and 4, the support ring 18 is provided with a plurality of curved support members 46 attached (such as by welding or fastening with bolts) to the support ring 18 for supporting the plate segments 241 of the first row 221 of the vortex finder 20. As illustrated in detail in FIG. 15, each of the support members 46 comprises a substantially horizontal support plate 48 attached to the support ring 18 (such as by welding or fasteners), and substantially parallel support flanges 50 and 51 extending upwardly from and formed unitary with the support plate 48 so as to form a support channel 52. The support channel 52 is provided for receiving the upper flange 30 of the plate segments 241 of the first row 221 of the vortex finder 20 when the vortex finder 20 is suspended from the support ring 18. Moreover, the vortex finder 20 may also include a plurality of stiffeners 54, shown in FIGS. 4 and 16, mounted on top of the upper connecting portions 32 of the upper support members 28 of at least some of the plate segments [24]. Furthermore, the lower rings (e.g., the ring 22N) of the vortex finder 20 may also include a plurality of clamps 58 engaging the adjacent plate segments (such as plate segments 24N) of the same ring (as shown in FIG. 17) in order to avoid flapping of the lower plate segments 24.

Therefore, the present invention provides novel plate segments of a vortex finder for a cyclone separator, provided with at least one pass-through opening in a lower support member thereof for fluidly connecting a space inside the vortex finder with a space outside the vortex finder. The plate segments for the vortex finder according to the present invention reduce the possibility of deformation or braking, are stronger yet have lower weight, and provide reduced stresses at peak stress points and reduced heat loss.

The foregoing description of the exemplary embodiment of the present invention has been presented for the purpose of illustration in accordance with the provisions of the Patent Statutes. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments disclosed hereinabove were chosen in order to best illustrate the principles of the present invention and its practical application to thereby enable those of ordinary skill in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated, as long as the principles described herein are followed. Thus, changes can be made in the above-described invention without departing from the intent and scope thereof. It is also intended that the scope of the present invention be defined by the claims appended thereto.

Claims

1-22. (canceled)

23. A vortex finder for a cyclone separator, comprising:

a plurality of superposed, circumferentially extending rings coaxial to a central axis, wherein each ring comprises a plurality of plate segments positioned to form the ring, each plate segment comprising
a main plate having an upper end portion, a central portion, and a lower end portion, the upper end portion and the lower end portion extend substantially parallel to the central axis,
an upper connecting portion projecting from the upper end portion and extending substantially perpendicular to the central axis,
an upper flange projecting downward from the upper connecting portion and extending substantially parallel to the central axis,
a lower connecting portion projecting from the lower end portion and extending substantially perpendicular to the central axis, and
a lower flange projecting upward from the lower connecting portion and extending substantially parallel to the central axis.

24. The vortex finder of claim 23, wherein the lower connecting portion comprises an opening configured to receive an upper flange of a plate segment associated with an adjacent ring.

25. The vortex finder of claim 23, wherein the upper flange comprises a first upper flange having a first length and a second upper flange having a second length less than the first length.

26. The vortex finder of claim 25, wherein the lower connecting portion comprises a first opening having a first width and a second opening having a second width greater than the first width.

27. The vortex finder of claim 26, wherein the second opening of the lower connecting portion is greater than an area of the second upper flange.

28. The vortex finder of claim 26, wherein the upper flange further comprises a third upper flange having the first length and the lower connecting portion further comprises a third opening having the first width, wherein the second upper flange is disposed between the first upper flange and the third upper flange, and the second opening is disposed between the first opening and the second opening.

29. The vortex finder of claim 23, wherein the plurality of superposed, circumferentially extending rings comprises a first ring and a second ring, wherein the plate segments of the first ring are smaller than the plate segments of the second ring.

30. The vortex finder of claim 29, wherein the plate segments of the first ring have a height smaller than a height of the plate segments of the second ring.

31. The vortex finder of claim 29 wherein the lower connecting portions of the plate segments of the first ring are configured to receive the upper flange portions of the plate segments of the second ring.

32. The vortex finder of claim 23, wherein the upper connecting portion and the lower connecting portion are integrally formed with the main plate.

33. A plate segment of a vortex finder, comprising:

a main plate having an upper end portion, a central portion, and a lower end portion, wherein the upper end portion and the lower end portion extend substantially parallel to a central axis;
an upper connecting portion projecting from the upper end portion and extending substantially perpendicular to the central axis;
an upper flange projecting downward from the upper connecting portion and extending substantially parallel to the central axis;
a lower connecting portion projecting from the lower end portion and extending substantially perpendicular to the central axis; and
a lower flange portion projecting upward from the lower connecting portion and extending substantially parallel to the central axis.

34. The plate segment of claim 33, wherein the lower connecting portion comprises at least one opening extending through the lower connecting portion.

35. The plate segment of claim 34, wherein the lower connecting portion comprises a first opening having a first width and a second opening having a second width greater than the first width.

36. The plate segment of claim 35, wherein the lower connecting portion further comprises a third opening have the first width, where the second opening is disposed between the first opening and the third opening.

37. The plate segment of claim 33, wherein the upper flange comprises at least one upper flange extending substantially parallel to the central axis.

38. The plate segment of claim 37, wherein the upper flange comprises a first upper flange having a first length and a second upper flange having a second length less than the first length.

39. The plate segment of claim 38, wherein the first upper flange has a first width and the second upper flange has a second width greater than the first width.

40. The plate segment of claim 38, wherein the upper flange further comprises a third upper flange having the first length, where the second upper flange is disposed between the first upper flange and the third upper flange.

41. The plate segment of claim 33, wherein the upper connecting portion and the lower connecting portion are integrally formed with the main plate.

42. The plate segment of claim 33, further comprising a reinforcing rib disposed on a surface of the main plate.

Patent History
Publication number: 20150040526
Type: Application
Filed: Oct 15, 2014
Publication Date: Feb 12, 2015
Inventor: David A. BROWNLEE (Franklin, TN)
Application Number: 14/514,693
Classifications
Current U.S. Class: With Inflow Gas Control Or Distribution (55/418)
International Classification: B04C 5/103 (20060101); B01D 45/16 (20060101);