SYSTEM FOR CONVERSION OF WAVE ENERGY INTO ELECTRICAL ENERGY
The disclosure provides a device for converting wave motion into electricity, and methods of using the devices for generating electricity. The disclosure also provides a power generation device that includes a water blanket having a plurality of pods arranged in a grid for floating on the surface of a body of water. In one example, ball joints and hydraulic cylinders couple each of the pods to adjacent pods. Motors are coupled to the hydraulic cylinders such that a flow of hydraulic fluid created by expansion and compression of the cylinders due to movement of the pods causes rotational motion in the motor. Generators are coupled to respective motors to generate electricity from the rotational motion of the motors. Power from the ocean blanket can be supplemental with wind turbines, water paddles, water turbines, and solar cells.
Latest GLOBAL PERPETUAL ENERGY, INC. Patents:
This application is a continuation of U.S. patent application Ser. No. 13/487,114, filed Jun. 1, 2012, which is a continuation-in-part of International Application No. PCT/US2010/058995, filed Dec. 3, 2010, which claims the benefit of U.S. Provisional Application No. 61/266,961, filed Dec. 4, 2009. Each of the above-identified applications are herein incorporated by reference in their entirety.
FIELDThis disclosure relates in general to power generation and, more particularly, to a power generation plant for deriving electricity from water motion.
BACKGROUNDLarge portions of the world suffer from shortages in power generation. As a result, many of these countries remain underdeveloped from the rest of the world, and their citizens often must survive through harsh living conditions for much of the year, as neither heat nor cooling is available.
In the rest of the world, the vast amount of electricity is generated by oil, gas, coal or nuclear power plants. Burning oil, gas and coal results in polluted air, and all of those fuel resources are rapidly diminishing as the need for electricity has skyrocketed in developed countries. Nuclear energy requires the disposal of spent nuclear fuel, which remains dangerous for centuries.
Many clean alternatives have similar problems. Solar cells have an unlimited fuel source during daylight hours, but generate no electricity at night. Wind turbines also have a potentially unlimited power source, the wind, but will also not produce any power when the wind is light. With no practical way to store excess energy, these sources are generally supplemental to a fossil fuel powered energy system.
Therefore, a need has arisen for an energy plant that does not require fossil fuels and which produces generally uninterrupted energy.
SUMMARYThe present disclosure relates to a device for converting wave motion to electricity. In some embodiments, the device comprises a plurality of movable-interconnected buoyant pods, wherein movement of the pods in response to wave motion generates mechanical motion for use in generating electricity. In some embodiments, each of the plurality of buoyant pods is movably connected to at least one other of the plurality of buoyant pods via at least one of a plurality of coupling apparatus. In some embodiments, the device further comprises a motor operatively coupled to a generator and at least one of the plurality of coupling apparatus. In further embodiments, the coupling apparatus includes a hydraulic cylinder and an optional ball joint, wherein flow of hydraulic fluid created by expansion and compression of the cylinder due to movement of the pods in response to wave action causes rotational motion in the motor, which can drive a generator and produce electricity. In alternative embodiments, the coupling apparatus is a linear generator.
The present disclosure also provides a power generation unit comprising an integrated first system and at least one second system, each of the first and at least one second systems convert sources of renewable energy to electricity, the first system comprising a plurality of moveably interconnected buoyant pods forming a water blanket having a top side and a bottom side, wherein the water blanket generates electricity when the pods move in response to wave action; and the at least one second system is chosen from a system for converting solar energy to electricity, a system for converting wind energy to electricity, and a system for converting water energy such as ocean current energy or river flow energy into electricity. In some embodiments, each of the first and at least one second system are operatively connected to one or more generators for producing electricity. In further embodiments, the wind energy conversion system is one or more wind turbines disposed directly or indirectly on the top side of the water blanket, the solar energy conversion system is one or more solar cells disposed on the top side of the water blanket, and the water energy conversion system is one or more of at least one water turbine disposed on the bottom side of the water blanket and at least one water paddle disposed on the bottom side of the water blanket. In yet further embodiments, the at least one second system is a set of wind turbines, a set of water turbines, a set of water paddles, and a set of solar cells. In some embodiments, the power generation unit provides a near continuous source of power.
The present disclosure also provides a floating platform configured to generate electricity in response to wave movement, and one or more subsystems connected to the platform for converting one or more of wind, solar, or water energy to electricity. In some embodiments, the platform is comprised of a plurality of pods wherein each pod is movably interconnected to at least one other pod by a coupling apparatus such that movement of the pods in response to wave action causes the coupling apparatus to directly or indirectly convert wave energy into electricity. In further embodiments, the coupling apparatus is operative coupled to a generator such that movement of the pods in response to wave motion causes the coupling apparatus to convert the wave motion into mechanical motion for driving the generator. In some embodiments, the one or more subsystems is a wind turbine subsystem, a water paddle subsystem, a water turbine subsystem, or a solar cell subsystem, or combinations thereof, wherein the wind turbine subsystem comprises one or more wind turbines disposed on a top side of the platform and operatively connected to a generator, the water paddle subsystem is at least one water paddle connected to the platform and operatively connected to a generator, the water turbine subsystem is disposed on an underside of the platform and operatively connected to a generator, and the solar cell subsystem comprises at least one solar cell disposed on the top side of the platform and operatively connected to a generator. In some embodiments, the platform includes gas or liquid-fillable ballasts which enable the platform to be raised or lowered for maintenance or use.
The disclosure also provides methods for generating energy from wave motion, and optionally from additional renewable sources of energy. In some embodiments, the method involves generating a near continuous source of renewable energy. In some embodiments, the method involves deploying in the ocean a device for converting wave motion to electricity, or a floating platform which is comprised of a plurality of movably interconnected pods configured to convert wave motion to electricity, or a power generation unit comprising an integrated first system and at least one second system, each for converting sources of renewable energy to electricity. In some embodiments, deploying involves fixing the device, platform or power generation unit to the ocean floor. In some embodiments, deploying involves freely floating the device, platform or power generation in the ocean, and moving the device, platform or power generation unit as needed, for example seasonally, to ocean locations with relatively stronger current.
In some embodiments, devices and methods according to the disclosure provides significant advantages over the prior art. For example, in some embodiments, the devices generate no greenhouse gases and do not use fossil fuels, nuclear fuel, or other non-renewable fuels. In some embodiments, the cost of energy should be greatly reduced, as all power sources come to the device naturally and continuously.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with accompanying drawings, in which:
A. Definitions
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
Where ever the phrases “for example,” “such as,” “including” and the like are used herein, the phrase “and without limitation” is understood to follow unless explicitly stated otherwise.
The terms “comprising” and “including” and “involving” (and similarly “comprises” and “includes” and “involves”) are used interchangeably and mean the same thing. Specifically, each of the terms is defined consistent with the common United States patent law definition of “comprising” and is therefore interpreted to be an open term meaning “at least the following” and also interpreted not to exclude additional features, limitations, aspects, etc.
The term “about” is meant to account for variations due to experimental error. The term “substantially” is intended to permit deviations that don't negatively impact the intended purpose. All measurements or numbers are implicitly understood to be modified by the word about, even if the measurement or number is not explicitly modified by the word about. Similarly, all descriptive terms are implicitly understood to be modified by the word substantially, even if the descriptive term is not explicitly modified by the word substantially.
As a person of ordinary skill understands, if a component is described as connected to another component, the connection may be a direct or indirect connection. B. Description
The present disclosure generally provides devices for generating power from wave motion, devices for generating power from wave motion and one or more additional alternative energy sources, including devices that produce near continuous power from alternative energy sources, and methods for generating power, including generating near continuous power, from renewable energy sources.
An embodiment of the present invention is described in
Each of the subsystems provides energy using different forces and in many cases there is only a small possibility that all the forces will be low at the same time. Power from the system 10 can be transferred to the end user using undersea power cables.
On the deck of the system 10, large wind turbines 16a, which can be of conventional design create electricity from the wind.
The Ocean Blanket Subsystem 12 comprises three separate assemblies for providing electricity. First, a grid is formed of pods 18, which are connected together by mechanical ball joints 20 which give the pods 18 freedom of movement in all directions relative to adjacent pods 18. Pods are further linked by multiple hydraulic cylinders 22 coupling the pods that expand and contract responsive to movement of the floating pods as they move relative to one another due to waves. As the cylinders expand and contract, they create a flow of hydraulic fluid through hydraulic pump/motors associated with each of the pods, causing the motor to turn. As the motor turns, it power a generator. Up to sixteen hydraulic cylinders may be connected to each pod. Operation of the hydraulic cylinders, motor and generator is described in greater detail in connection with
Second, paddle wheels 24 beneath the pod 18 (see
Third, the stationary domes 26 on the top of the pods 18 are covered with photovoltaic (solar) cells 28. The solar cells 28 convert sunlight into electricity.
Power is passed to the underwater cables through the slip ring 23 for each pad 18, which allows the pad to move freely without stressing the electrical connection. In the preferred embodiment, both hydraulics and electric energy pass through the slip ring 23.
The pods of the Ocean Blanket subsystem 12 are described in greater detail in connection with
The hydraulic cylinder 22 also connect the pods 18 together. Each side of a pod 18 has up to four cylinders 22 that are connected to the pod 18 with ball joints 42. Every hydraulic cylinder 22 completes a ball joint 46 (in the illustrated embodiment, the cylinders 22 have female ball joint portions at each end and the pods 18 have male ball joint portions) at each end. The pods 18 can have up to 16 hydraulic cylinders that will move simultaneously. The movements of the pods 18 create hydraulic forces in the cylinders 22, which power hydraulic motors 48. The hydraulic motors power respective generators 50, which create electricity.
Referring to
The paddle wheel 24 rotates around a horizontal axis to generate electricity. If the ocean current changes direction, the paddle has to be able to also change direction; for this reason the paddle wheel has to be able to spin around the vertical axis. This is accomplished by creating a recess 58 (see
The Ocean Blanket 12 generates an amount of power which is based on:
1. Speed of the current.
2. Size of the waves.
3. Frequency of the waves.
4. Size and weight of the pod assemblies.
5. Sun availability.
Accordingly, the Ocean Blanket 12 provides electricity in almost any climate and during any time of day. The Ocean Blanket 12 can also be coupled to the platform using cylinders such that the rising and falling tide creates hydraulic flow.
This system will work continuously. As long as the ocean (or other body of water such as river or large lake) has movement this system will continuously generate electricity. The ocean alone has more than enough force to supply electricity for the entire earth.
The Water Turbine Subsystem 14 is shown in greater detail in
Because of the size of the water turbines, a rotatable anchor point 40 is connected to telescoping piers 44 (see
In the preferred embodiment shown in
In operation, the Water Turbine subsystem 14 uses the force of the ocean current, and/or the flow of water (such as in a river) to rotate the water turbines 32. The larger the diameter of the turbines 32, the greater the force that will be created to drive the generators 36. This subsystem is designed to allow for large diameter water turbines. As with wind turbines 17 and paddles 24 a rudder determines the direction of the water current, and or the flow of water (not shown on drawing), such that the force of the current against the turbines 32 is optimized.
Each water turbine 32 rotates around a horizontal axis. A shaft connected to either a right angle gearbox and/or to a right angle joint will rotate around a vertical axis as the water turbine 32 rotates around its horizontal axis. As the vertical shaft rotates, it will drive its associated generator to produce electricity.
In the preferred embodiment, each water turbine 32 has its own shaft 34, so that each water turbine assembly 30 will have multiple shafts, with each shaft extending from the water turbine 32 to the respective generator 36. The generators 36 then send power out through a slip ring 43. The slip rings 43 allow equipment to rotate while being able to maintain power connections, such as electricity (power, and controls), pneumatics, hydraulics, water etc . . . . The purpose of this slip ring 43 is to allow the power (electricity) generated from the generators out to the end user, yet allowing the water turbines assemblies to spin freely.
The slip ring 43 stays in a fixed position while the generator base 38, and the water turbines 32, spin around the vertical axis. As the system spins, the slip ring 43 will keep all electrical connections together, all of the power generated by all of the generators 36 will continuously pass through the slip ring 43. From this point, the electricity created by this system can be transferred to the end user utilizing underwater sea cables, and or overhead cables.
Preferably, guarding is provided to protect the water turbine assemblies from the creatures in the water, boats, sub-marines, and general debris flowing through the water.
The power generated by the overall system 10 will be determined by location, because there are many factors that can change even on a daily basis such as:
1. Speed of the current.
2. Size of the waves.
3. Frequency of the waves.
4. Size and weight of the pod assemblies.
5. Sun availability.
6. Wind speed.
7. The diameter of the water turbines.
8. The different types of water turbines.
9. The type of blade assemblies.
10. The number of blade assemblies.
11. Surface area of the blades.
12. The number of water turbines on each assembly.
This system 10 could be used to generate power for not only cities, but also countries around the world. Conventional power plants utilize gas, coal, or nuclear. This system would utilize our earth's largest and most plentiful natural resources, which have an unlimited supply of power. Just as importantly, the system 10 will work continuously. As long as the oceans have movement, the sun continues to shine, and the wind continues to blow, this system will continuously generate electricity. The ocean alone has more than enough force to supply electricity for the entire earth.
The present invention provides significant advantages over the prior art:
1. No greenhouse gases
2. Does not require external fuel source such as:
-
- a. Coal
- b. Gas
- c. Nuclear
- d. other non-renewable fuels
3. Environmentally friendly
4. Reduces the cost of electricity
5. Will ultimately reduce the cost of fuel around the world. It is the basic rule of supply and demand. Since the demand will significantly drop down, then price will follow.
6. Saves our earth's resources that are not renewable.
7. Helps omit global warming
Although the Detailed Description has been directed to certain exemplary embodiments, various modifications of these embodiments, as well as alternative embodiments, will be suggested to those skilled in the art.
For example, although the specification describes the pods as being movably interconnected by hydraulic cylinders, a person of skill with the benefit of this disclosure can appreciate that other coupling apparatus can be used. For example, the pods can be movably interconnected by linear generators (in addition to or alternative to the hydraulic cylinders) or any other coupling link that can convert the motion of the pods in response to wave action directly or indirectly into electricity.
As another example, the power generation unit could be supported by ballasts which may be reversibly filled (e.g. filled and drained and refilled) with fluid (gas or liquid) to cause the unit to be further submerged in water or alternatively be raised above the water for easier access to the underside, for example for maintenance.
As yet another example, the disclosure describes a platform that is fixed to the ocean bed. However, in an alternative embodiment the platform can be freely floating and moved periodically to insure the platform is located where the current is sufficiently strong or of a desirable strength, for example, it may be desirable to move the platform seasonally. A person of skill could, for example, use or adapt technologies used with respect to water-based oil rigs to secure power generation units according to the present disclosure and/or alternatively a person of skill could use technology used with respect to flotation of and movement of water-based oil rigs to the power generation units according to the present disclosure.
Further non-limiting examples of embodiments include:
1. A power generation device, comprising:
-
- a plurality of pods arranged in a grid for floating on the surface of a body of water;
- hydraulic cylinders coupling each of the pods to adjacent pods;
a motor coupled to the hydraulic cylinders, such that a flow of hydraulic fluid created by expansion and compression of the cylinders due to movement of the pods causes rotational motion in the motor; and,
generators coupled to respective motors to generate electricity from the rotational motion of the motors.
2. The power generation device of paragraph 1 wherein said pods further include a paddle wheel for contact with the body of water, such that currents in the body of water rotate the paddle wheel.
3. The power generation device of paragraph 2 wherein the paddle wheel is mechanically coupled to a second generator for generating electricity from rotational movement of the paddle wheel.
4. The power generation device of paragraph 1 wherein the pods are attached to a platform.
5. The power generation device of paragraph 1, further comprising wind turbines disposed on the platform for generating electricity from wind movement.
6. The power generation device of paragraph 1 further comprising water turbines assemblies coupled to the platform and extending into the body of water, wherein each water turbine assembly comprises:
-
- a. a plurality of turbines, each coupled to a respective shaft;
- b. a plurality of generators, each coupled to one of the shafts.
7. The power generation device of paragraph 6 wherein the generators are housed in a generator base coupled to a shaft support that rotates freely within the platform about a vertical axis.
8. The power generation device of claim 1 wherein solar cells are disposed on the pods.
9. The power generation device of paragraph 1, further comprising a platform disposed on the pods, a water paddle attached to each pod, wind turbines disposed on the platform, water turbine assemblies disposed on an underside of the platform, and solar cells disposed on a top surface of the platform.
10. The power generation device of paragraph 1, wherein each pod is attached to 16 hydraulic cylinders.
11. The power generation device of paragraph 1, further comprising ball joints coupling each of the pods to adjacent pods.
12. A device for converting wave motion into electrical energy, the device comprising: a plurality buoyant pods; and, a plurality of coupling apparatus, wherein each of the plurality of buoyant pods is moveably connected to at least one other of the plurality of buoyant pods via at least one of the plurality of coupling apparatus, wherein each of the plurality of coupling apparatus is configured to generate mechanical motion for driving motors which drive generators to produce electricity, wherein each of the buoyant pods are of sufficient size to support a wind turbine.
13. A device according to paragraph 12, wherein the pods are independently buoyant.
14. A device according to paragraph 12, wherein the device further comprises a mechanism such as a fluid-fillable ballast that results in the pods being buoyant.
15. A device according to paragraph 12, wherein the each of the plurality of buoyant pods is further movably interconnected to at least one other of the plurality of buoyant pods via a ball joint.
16. A device according to paragraph 12, wherein the buoyant pods are interconnected to form a grid of a size and strength suitable for supporting at least one of a windmill subsystem and water turbine subsystem.
17. A device according to paragraph 12, wherein the pods are configured to be able to receive a solar cell for converting solar energy to electricity.
18. A device according to paragraph 12, wherein each of the pods is connected to up to sixteen coupling apparatus.
19. A device according to paragraph 18, wherein the coupling apparatus is a hydraulic cylinder and the device further comprises one or more hydraulic motors operatively coupled to generators for producing electricity, wherein the hydraulic motors are driven by the hydraulic cylinders when they expand and compress with pod movement in response to wave action.
20. A power generation unit, comprising: an integrated first system and at least one second system, each of the first and at least one second systems are configured to convert a source of renewable energy to electricity, the first system comprising a plurality of movably interconnected buoyant pods forming a water blanket having a top side and a bottom side, wherein the water blanket generates electricity when the pods move in response to wave action, and the at least one second system is chosen from a system for converting solar energy to electricity, a system for converting wind energy to electricity, and a system for converting water energy such as ocean current energy or river flow energy into electricity.
21. A power generation unit according to paragraph 20, wherein each of the plurality of pods is connected to at least one other of the plurality of pods by at least one coupling apparatus that converts wave motion into electricity.
22. A power generation unit according to paragraph 21, wherein the unit further comprises one or more generators for producing electricity, and one or more hydraulic motors, and the plurality of coupling apparatus is a plurality of hydraulic cylinders that converts wave motion into mechanical motion and that are operatively connected to the one or more hydraulic motors which are in turn operatively connected to the one or more generators.
23. A power generation unit according to paragraph 20, wherein the at least one system for converting solar energy to electricity comprises one or more solar cells disposed on the top side of the water blanket, the at least one system for converting wind energy to electricity comprises one or more windmills disposed on the top side of the water blanket, and the at least one system for converting water energy to electricity is chosen from a system comprising a water paddle connected to the water blanket, a system comprising water turbines disposed on the bottom side of the water blanket, or both.
24. A power generation unit according to paragraph 23 comprising each of the solar energy system, wind energy system, water paddle system, and water turbine system.
25. A device for generating power from one or more sources of renewable energy, comprising a floating platform configured to generate electricity in response to wave movement, and one or more subsystems connected to the platform for converting one or more of wind, solar, or water energy to electricity.
26. A device according to paragraph 25, wherein the device provides a near continuous source of power.
27. A device according to paragraph 25, wherein the floating platform is comprised of a plurality of movably interconnected pods, wherein movement of the pods in response to wave action generates electricity.
28. A device according to paragraph 25, wherein the device further comprises a plurality of coupling apparatus and each of the plurality of pods is connected to at least one other of the plurality of pods by at least one of the plurality of coupling apparatus, wherein the coupling apparatus converts pod movement directly or indirectly into electricity.
29. A device according to paragraph 25, wherein the plurality of coupling apparatus is a plurality of hydraulic cylinders and the device further comprises one or more hydraulic motors operatively connected to one or more generators for producing electricity, wherein pod movement causes the plurality of hydraulic cylinders to compress and expand producing rotational motion in the one or more hydraulic motors.
30. A method for generating electricity from a renewable source of energy, the method comprising deploying a device for converting wave motion into electricity in the ocean, wherein the device comprises: a plurality of pods which are movably interconnected in a manner that results in movement of the pods in response to wave motion being converted to electricity; and one or more subsystems connected to the pods for converting one or more of wind, solar, or water energy to electricity.
31. A method according to paragraph 30, wherein the plurality of pods form a platform and deploying the device further comprises fixedly attaching the platform to the ocean floor.
32. A method according to paragraph 30, wherein the device is freely floating in the ocean, and the method further comprises periodically moving the device to a location with a desired ocean current strength.
33. A method according to paragraph 30, wherein the device further comprises a plurality of coupling apparatus, and each of the plurality of pods is connected to at least one other of the plurality of pods by a coupling apparatus, wherein movement of the pods induces the coupling apparatus to convert wave motion into electricity.
34. A method according to paragraph 33, wherein the plurality of coupling apparatus is a plurality of hydraulic cylinders and the device further comprises one or more hydraulic motors operatively connected to one or more generators for producing electricity, wherein movement of the pods causes the hydraulic cylinders to expand and compress resulting in rotational motion in the hydraulic motors.
The invention encompasses any such modifications or alternative embodiments, and any additional modifications and alternative embodiments that fall within the scope of the claims.
Claims
1. A power generation device, comprising:
- a plurality of pods arranged in a grid for floating on the surface of a body of water;
- hydraulic cylinders coupling each of the pods to adjacent pods;
- a motor coupled to the hydraulic cylinders, such that a flow of hydraulic fluid created by expansion and compression of the cylinders due to movement of the pods causes rotational motion in the motor; and,
- generators coupled to respective motors to generate electricity from the rotational motion of the motors.
2. The power generation device of claim 1 Wherein said pods further include a paddle wheel for contact with the body of water, such that currents in the body of water rotate the paddle wheel for further production of electrical energy from ocean energy.
3. power generation device of claim 1 wherein the pods are attached to a platform, and the device further comprises at least one of; wind turbines disposed on the platform for generating electricity from wind movement; water turbines assemblies coupled to the platform and extending into the body of water, wherein each water turbine assembly comprises: i) a plurality of turbines, each coupled to a respective shaft; and, ii) a plurality of generators, each coupled to one of the shafts; or solar cells disposed on the pods.
4. The power generation device of claim 1, wherein each pod is attached to 16 hydraulic cylinders and the device further comprises bail joints coupling each of the pods to adjacent pods.
5. A power generation unit, comprising: an integrated first system and at least one second system, each of the first and at least one second systems are configured to convert a source of renewable energy to electricity, the first system comprising a plurality of movably interconnected buoyant pods forming a water blanket having a top side and a bottom side, wherein the water blanket generates electricity when the pods move in response to wave action, and the at least one second system is chosen from a system for converting solar energy to electricity, a system for converting wind energy to electricity, and a system for converting water energy such as ocean current energy or river flow energy into electricity.
6. A power generation unit according to claim 5, wherein each of the plurality of pods is connected to at least one other of the plurality of pods by at least one coupling apparatus that converts wave motion into electricity.
7. A power generation unit according to claim 6, wherein the unit further comprises one or more generators for producing electricity, and one or more hydraulic motors, and the plurality of coupling apparatus is a plurality of hydraulic cylinders that converts wave motion into mechanical motion and that are operatively connected to the one or more hydraulic motors which are in turn operatively connected to the one or more generators.
8. A power generation unit according to claim 5, wherein the at least one system for converting solar energy to electricity comprises one or more solar cells disposed on the top side of the water blanket, the at least one system for converting wind energy to electricity comprises one or more windmills disposed on the top side of the water blanket, and the at least one system for converting water energy to electricity is chosen from a system comprising a water paddle connected to the water blanket, a system comprising water turbines disposed on the bottom side of the water blanket, or both.
9. A power generation unit according to claim 8, comprising each of the solar energy system, wind energy system, water paddle system, and water turbine system.
10. A device for generating power from one or more sources of renewable energy, comprising a floating platform configured to generate electricity in response to wave movement, and one or more subsystems connected to the platform for converting one or more of wind, solar, or water energy to electricity.
11. A device according to claim 10, wherein the floating platform is comprised of a plurality of movably interconnected pods, wherein movement of the pods in response to wave action generates electricity.
12. A device according to claim 10, wherein the device further comprises a plurality of coupling apparatus and each of the plurality of pods is connected to at least one other of the plurality of pods by at least one of the plurality of coupling apparatus, wherein the coupling apparatus converts pod movement directly or indirectly into electricity.
13. A device according to claim 10, wherein the plurality of coupling apparatus is a plurality of hydraulic cylinders and the device further comprises one or more hydraulic motors operatively connected to one or more generators for producing electricity, wherein pod movement causes the plurality of hydraulic cylinders to compress and expand producing rotational motion in the one or more hydraulic motors.
14. A method for generating electricity from a renewable source of energy, the method comprising deploying a device according to claim 5 for converting wave motion into electricity in the ocean.
15. A method according to claim 14, wherein the device is freely floating in the ocean, and the method further comprises periodically moving the device to a location with a desired ocean current strength.
16. A method according to claim 14, wherein the device further comprises a plurality of coupling apparatus, and each of the plurality of pods is connected to at least one other of the plurality of pods by a coupling apparatus, wherein movement of the pods induces the coupling apparatus to convert wave motion into electricity.
Type: Application
Filed: Sep 26, 2014
Publication Date: Apr 2, 2015
Applicant: GLOBAL PERPETUAL ENERGY, INC. (Caddo Mills, TX)
Inventor: Terry Wayne Henry (Caddo Mills, TX)
Application Number: 14/497,670
International Classification: F03B 13/20 (20060101); F03D 9/00 (20060101); F03B 3/04 (20060101); F03B 13/10 (20060101); F03B 17/06 (20060101);