PORTABLE POWER SUPPLY AND BATTERY CHARGER
A portable power source includes a housing and a battery receptacle supported by the housing. The battery receptacle is configured to receive a battery. The portable power source also includes a first power tool battery pack port that is configured to receive a first power tool battery pack. The portable power source further includes a charging circuit coupled to the battery receptacle and the power tool battery pack, and an inverter. The charging circuit is configured to receive power from the battery receptacle and to provide power to the power tool battery pack port. The inverter includes a DC input coupled to the battery receptacle, inverter circuitry, and an AC output. The inverter circuitry is configured to receive power from the battery receptacle via the DC input, invert DC power received from the battery receptacle to AC power, and provide the AC power to the AC output.
This application claims priority benefit to U.S. Provisional Application No. 61/915,483 filed Dec. 12, 2013 and to U.S. Provisional Application No. 61/944,819 filed Feb. 26, 2014, and the entire contents of both are hereby incorporated by reference.
FIELD OF INVENTIONThe present invention relates to portable power supplies and battery chargers.
SUMMARYIn one embodiment, the invention provides a portable power source including a housing and a battery receptacle supported by the housing. The battery receptacle is configured to receive a battery. The portable power source also includes a first power tool battery pack port supported by the housing. The first power tool battery pack port is configured to receive a first power tool battery pack. The portable power source further includes a charging circuit coupled to the battery receptacle and the power tool battery pack, and an inverter. The charging circuit is configured to receive power from the battery receptacle and to provide power to the power tool battery pack port. The inverter includes a DC input coupled to the battery receptacle, inverter circuitry, and an AC output. The inverter circuitry is configured to receive power from the battery receptacle via the DC input, invert DC power received from the battery receptacle to AC power, and provide the AC power to the AC output.
In another embodiment the invention provides a portable power source including a housing, a battery supported by the housing, and a first power tool battery pack port supported by the housing. The first power tool battery pack port is configured to receive a first power tool battery pack. The portable power source also includes a second power tool battery pack port supported by the housing, and a charging circuit coupled to the battery, the first power tool battery pack port, and the second power tool battery pack port. The second power tool battery pack port is configured to receive a second power tool battery pack. The charging circuit is configured to selectively receive power from the battery and the first power tool battery pack port, and provide power to the second power tool battery pack port to charge the second power tool battery pack.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
It should also be noted that a plurality of hardware and software based devices, as well as a plurality of different structural components may be used to implement the invention. In addition, it should be understood that embodiments of the invention may include hardware, software, and electronic components or modules that, for purposes of discussion, may be illustrated and described as if the majority of the components were implemented solely in hardware. However, one of ordinary skill in the art, and based on a reading of this detailed description, would recognize that, in at least one embodiment, the electronic based aspects of the invention may be implemented in software (e.g., stored on non-transitory computer-readable medium) executable by one or more processors. As such, it should be noted that a plurality of hardware and software based devices, as well as a plurality of different structural components may be utilized to implement the invention. Furthermore, and as described in subsequent paragraphs, the specific mechanical configurations illustrated in the drawings are intended to exemplify embodiments of the invention and that other alternative mechanical configurations are possible. For example, “controllers” described in the specification can include standard processing components, such as one or more processors, one or more computer-readable medium modules, one or more input/output interfaces, and various connections (e.g., a system bus) connecting the components.
The power device 10 includes a battery receptacle 12 to receive the battery 14 (see
The housing 22 includes a base portion 50 and a top portion 54. The base portion 50 generally supports the components of the power device 10 and includes the wheels 26. The wheels 26 facilitate movement of the power device 10 along a surface thereby making the power device 10 portable and convenient. The top portion 54 includes a storage compartment 58 (
The first battery pack port 70 is associated with the first battery pack charging indicator 73A and is configured to receive a first battery pack 86. In the illustrated embodiment, the first battery pack 86 is a tower style battery pack. Accordingly, the first battery pack port 70 includes an insertion hole 71 to receive tower style battery packs. The first battery pack charging indicator 73A signals a charge status of the first battery pack 86, such as charging, fully charged, or fault present. For example, the first battery pack charging indicator 73A includes two LEDs. In one embodiment, the LEDs may be of different colors, for example green and red. The first battery pack charging indicator 73A may then show that the first battery pack 86 is charging by, for example, flashing a red LED. Alternatively, the first battery pack charging indicator 73A may show that the first battery pack 86 is completely charged by, for example, lighting a green LED.
The second battery pack port 72 is associated with the second battery pack charging indicator 73B and is configured to receive a second battery pack 90. In the illustrated embodiment, the second battery pack 90 is a slide-on style battery pack. Accordingly, the second battery pack port 72 includes guide rails 75 to receive slide-on style battery packs. The second battery pack charging indicator 73B signals a charge status of the second battery pack 90, such as charging, fully charged, or fault present. For example, the second battery pack charging indicator 73B includes two LEDs. In one embodiment, the LEDs may be of different colors, for example green and red. The second battery pack charging indicator 73B may then show that the second battery pack 90 is charging by, for example, flashing a red LED. Alternatively, the second battery pack charging indicator 73B may show that the second battery pack 90 is completely charged by, for example, lighting a green LED.
The battery packs 86, 90 are power tool battery packs generally used to power a power tool, such as an electric drill, an electric saw, and the like. In some embodiments, each battery pack 86, 90 includes a microcontroller that monitors characteristics of the battery pack 86, 90. For example, the microcontroller may monitor the state of charge of the battery pack 86, 90, the temperature of the battery pack 86, 90, or other characteristics relevant to the battery pack 86, 90. The microcontroller may also control aspects of charging and/or discharging of the battery pack 86, 90. In the illustrated embodiment, the first battery pack 86 is different than the second battery pack 90. In other embodiments, the first battery pack 86 may be the same as the second battery pack 90. In such embodiments, the first battery port 70 and the second battery port 72 are also the same. In the illustrated embodiment, at least one of the battery packs 90 also includes an indicator 94 on the face of the battery pack 90 to display the current state of charge of the battery pack 90 and/or other characteristics of the battery pack 90. In the illustrated embodiment, the indicator 94 includes a plurality of LEDs. As the state of charge of the battery pack 90 increases, more LEDs light up and as the state of charge of the battery pack 90 decreases, less LEDs light up. The battery packs 86, 90 may include a different type of indicator to display the state of charge of the battery. For example, the indicator 94 may include a single LED that lights up only when the battery pack 86, 90 is fully charged. In other embodiments, the battery pack 86, 90 does not include an indicator.
In the illustrated embodiments, the battery packs 86, 90 include lithium ion cells. In other embodiments, the battery packs 86, 90 may be of a different chemistry, for example, nickel-cadmium, nickel-hydride, lithium ion, and the like. In the illustrated embodiment, the first battery pack 86 is a 12 volt battery and the second battery pack 90 is an 18 volt battery. In other embodiments, the output voltage level of the battery packs 86, 90 may be different. For example, the battery packs 86, 90 can be 4 volt battery packs, 28 volt battery packs, 40 volt battery packs, or another voltage. The battery pack 86, 90 may also have various capacities (e.g., 1.5, 2, 3, or 4 ampere-hours). For instance, in the illustrated embodiment, the first battery pack 86 may have a lower capacity (e.g., 2 ampere-hours) and the second battery pack 90 may have a higher capacity (e.g., 4 ampere-hours). In some embodiments, the battery packs 86,90 have a lower capacity than the battery 14, which may have a capacity of, for example, 20, 30, 40, 50, or 60 ampere-hours, or another capacity.
The battery packs 86, 90 also include terminals to connect to the power device 10. The terminals for the battery packs 86, 90 include a positive and a negative terminal to provide power to and from the battery pack 86, 90. In some embodiments, the battery packs 86, 90 also include a temperature terminal to monitor the temperature of the battery pack 86, 90 or of the power device 10. In some embodiments, the battery pack 86, 90 also includes data terminals to communicate with a portable device receiving power from the battery pack 86, 90 and with the power device 10. For example, the battery pack 86, 90 may include a microcontroller to monitor one or more characteristics of the battery pack 86, 90 and the data terminals may communicate with the power device 10 regarding the monitored characteristics.
The battery pack ports 70, 72 include terminals (
As shown in
The battery receptacle 12 provides structural support and an electrical connection between the battery 14 and the other electrical components of the power device 10. The battery receptacle 12 is positioned in the base portion 50 of the housing 22, as shown in
As illustrated in
As shown in
As previously discussed, the battery receptacle 12 is formed in part by the base portion 50 of the housing 22. The top portion 54 of the housing 22 is removable from the base portion 50. The battery receptacle 12 formed by the base portion 50 includes two sidewalls 152 and a back wall 153 that receive the battery 14. As shown in
As shown in
Thus, the vehicle battery 14 may be removed from the battery receptacle 12 without the need for any tools. For example, in practice, a user first disconnects the quick-connect terminals 102, 106 from the battery 14, and the user then releases the locking mechanism 154 coupling the top portion 54 to the base portion 50. The user then removes the top portion 54 from the base portion 50. The user unscrews the wing nut 178 to release the top member 170 from the partially threaded rods 174. Once the top member 170 is released, the battery 14 is removed from the top in the direction of arrow A.
As shown in
As shown in
As shown in
The transformer 238 is electrically connected to the AC power input 222, the first DC power output connector 194, the second DC power output connector 198, the first charging circuit 242, the second charging circuit 244, and the controller 234. The transformer 238 receives AC power from the AC power input 222 and converts the AC power to DC power at one or more levels (e.g., 5V, 12V, and the like). The transformer 238 sends a control signal to the controller 234 to indicate that power is provided through the AC power input 222. The transformer 238 also provides the DC power to the first charging circuit 242 to charge the battery packs 86, 90. In other embodiments, the power device 10 includes a first charging circuit for the first battery pack 86 and a separate charging circuit for the second battery pack 90. The transformer 238 also provides the DC power to the second charging circuit 244 to charge the battery 14 if the state of charge of the battery 14 is below a predetermined voltage threshold. In some embodiments, the first charging circuit 242 and the second charging circuit 244 are combined into a single charging circuit (e.g., the first charging circuit 242) to control the charging of both the battery 14 and the battery packs 86, 90. The transformer 238 also provides the DC power to the first DC output connector 194 and to the second DC output connector 198 to provide power to a peripheral device. The DC output by the transformer 238 may be at different voltage levels for different components. For example, the transformer 238 may provide 18 volts for the first charging circuit 242 and 5 volts for the second DC output 198.
The DC power input 214 is connected to the first DC power output connector 194, the second DC power output connector 198, the inverter 246, the first charging circuit 242, the second charging circuit 244, and the controller 234. When an external DC power source is present and connected, the DC power input 214 sends a control signal to the controller 234 to indicate that power is provided through the DC power input 214. The DC power input 214 transfers the DC power to the first charging circuit 242 to charge the battery packs 86, 90 and to the second charging circuit 244 to charge the battery 14. The DC power input 214 also transfers DC power to the first DC power output connector 194 and to the second DC power output connector 198 to provide power for a peripheral device. The DC power input 214 is also electrically connected to the inverter 246. Although not shown, one or more DC-to-DC converters may be provided to receive and step down or up the DC input voltage to a level appropriate for the various components receiving the DC input voltage. For instance, the DC input 214 may receive 12 volts DC, which is converted to 18 volts for the charging circuit 242 and converted to 5 volts for the second DC output 198.
The inverter 246 is connected to the DC power input 214, the battery 14, the battery packs 86, 90, the AC power output connector 202, and the controller 234. The inverter 246 includes a DC input (e.g., from the DC power input 214, the battery 14, and/or the battery packs 86, 90), inverter circuitry that inverts the DC power from the DC source to AC power, and an AC output coupled to the AC power output connector 202 to provide the AC power. The inverter circuitry includes, for instance, power switching elements selectively enabled by the controller 234 to transform DC power to AC power. The inverter 246 transfers the AC power to the AC power output connector 202 to provide power to an AC-powered peripheral device. The inverter 246 is also connected to the controller 234 to receive instructions from the controller. In the illustrated embodiment, the controller 234 is connected to a power switch 250 for the inverter 246. In such embodiments, the power switch 250 is the AC switch 206. In some embodiments, the power switch 250 determines whether the inverter 246 is enabled or disabled. In such embodiments, the controller 234 determines the position of the power switch 250 (on or off) and instructs the inverter 246 to turn on or off accordingly. In other embodiments, the power switch 250 is directly connected to the inverter 246 such that when the power switch 250 is open, the inverter 246 does not function (i.e., is disabled) and when the power switch 250 is closed, the inverter 246 functions (i.e., is enabled). In some embodiments, disabling the inverter 246 when the AC output connector 202 is not in use helps save energy. In yet other embodiments, the power switch 250 controls the operation of other aspects of the power device 10, as discussed above. In such embodiments, the power switch 250 and the AC switch 206 are two different switches.
The first charging circuit 242 is electrically connected to the controller 234, the transformer 238, the DC power input 214, the battery 14, the first battery pack 86, and the second battery pack 90. The first charging circuit 242 controls the charging scheme for the battery packs 86, 90. In some embodiments, the first charging circuit 242 varies a charging current based on the temperature of the battery pack 86, 90, the state of charge of the battery pack 86, 90, the amount of time the battery pack 86, 90 has been charging, requests from the battery pack 86,90, and other factors. The first charging circuit 242 receives DC power from one of the transformer 238, the DC power input 214, the battery packs 86, 90, and/or the battery 14. In other words, the battery packs 86, 90 can receive DC power from the transformer 238, the DC power input 214, the battery 14, and/or one of the battery packs 86, 90. The first charging circuit 242 then controls the charging current provided to the battery packs 86, 90. Since the battery packs 86, 90 can also provide DC power to the first charging circuit 242, the battery packs 86, 90 can charge each other. In particular, if the state of charge of the battery 14 is below a predetermined voltage threshold, and the state of charge of the first battery pack 86 connected to the first charging port 70 is low, and the state of charge of the second battery pack 90 is high enough to support charging of the first battery pack 86, the first charging circuit 242 may utilize DC power from the second battery pack 90 to charge the first battery pack 86. In some embodiments, the first charging circuit 242 may also utilize DC power from the first battery pack 86 to charge the second battery pack 90. In other embodiments, only the second battery pack 90 can provide DC power to charge the first battery pack 86. The first charging circuit 242 sends and receives information regarding the charging scheme for the battery packs 86, 90 to and from the controller 234. For example, the first charging circuit 242 may communicate to the controller 234 information about the present charging current used to charge the battery pack 86, 90 and/or the present temperature of the battery pack 86, 90. In some embodiments, the battery packs 86, 90 include the charging circuit needed to charge the battery packs 86, 90. In such embodiments, the battery packs 86, 90 may be connected to the controller 234 and directly with a DC power source such as, for example, the transformer 238, the DC power input 214, and/or the battery 14.
The second charging circuit 244 is electrically connected to the controller 234, the transformer 238, the DC power input 214, the first battery pack 86, the second battery pack 90, and the battery 14. The second charging circuit 244 controls the charging scheme for the battery 14. In some embodiments, the second charging circuit 244 varies a charging current based on the temperature of the battery 14, the state of charge of the battery 14, the amount of time the battery 14 has been charging, requests from the battery 14, and other factors. The second charging circuit 244 receives DC power from one of the transformer 238, the DC power input 214, the first battery pack 86, and the second battery pack 90. The second charging circuit 244 may send and receive information regarding the charging scheme for the battery 14 to and from the controller 234. For example, the second charging circuit 244 may communicate to the controller 234 the current state-of-charge of the battery 14. In some embodiments, the battery 14 does not require any particular charging schemes and the second charging circuit 244 is thus not necessary. In such embodiments, the battery 14 is directly connected to a DC power source, such as for example, the transformer 238, the DC power input 214, and/or the battery packs 86, 90. The battery 14 also receives charging power through the secondary battery terminals 186. In the illustrated embodiment, the secondary battery terminals 186 are connected directly to the battery 14. In other embodiments, when the secondary battery terminals 186 are connected to a power source (e.g., a vehicle battery charger), the secondary battery terminals 186 may connect to the second charging circuit 244 to charge the battery 14. In some embodiments, the battery 14 only receives charging power through the secondary battery terminals 186 on the top portion 54 of the power device 10. In other embodiments, the first charging circuit 242 and the second charging circuit 244 are combined such that the first charging circuit 242 also controls the charging of the battery 14.
The controller 234 is electrically connected to the transformer 238, the DC power input 214, the inverter 246, the power switch 250, the first charging circuit 242, and the second charging circuit 244, and the battery packs 86, 90 through the charging ports 70, 72. The controller 234 receives indication signals from the transformer 238 and from the DC power input 214 indicating that power is received through one of the transformer 238 and the DC power input 214. In some instances, the controller 234 is also operable to control the transformer 238 and/or the DC input 214 to control power conversion and/or power output levels. The controller 234 also receives and sends control signals to the inverter 246. In the illustrated embodiment, the controller 234 is connected to a power switch 250. The power switch 250, in some embodiments, controls the inverter 246. In such embodiments, the power switch 250 is equivalent to the AC switch 206. Also in such embodiments, the controller 234 sends control signals to the inverter 246 depending on the position of the power switch 250. In other embodiments, the power switch 250 controls the first charging circuit 242, the second charging circuit 244, or both. In such embodiments, the controller 234 sends control signals to the first charging circuit 242 and/or the second charging circuit 244 to start or stop charging the battery packs 86, 90 and/or the battery 14. The controller 234 includes a processor and memory storing software executed by the processor to effect the functionality of the controller 234 described herein. If multiple power inputs are connected and operable to provide power to the power device 10, the controller 234 is operable to select one for supplying power according to a predetermined priority schedule. Alternatively, additional circuitry may be provided so that the power device 10 can use multiple power sources simultaneously.
The power output panel 18 includes a first DC output connector 194, a second DC output connector 198, an AC output connector 202, an AC output switch 206, and an AC indicator 210. The first DC power output connector 194 and the second DC power output connector 198 receive DC power from the transformer 238, the DC power input 214, the battery 14, and the battery packs 86, 90, based on which power input is available to provide DC power. The first DC power output connector 194 and the second DC power output connector 198 are configured to receive and output DC power from the battery 14, for example, when the transformer 238 and the DC power input 214 are not receiving power from an external power source. In the illustrated embodiment, the first DC power output connector 194 and the second DC power output connector 198 are also configured to receive and output DC power from the battery packs 86, 90, for example, when the transformer, the DC power input 214, and the battery 14 cannot provide sufficient power. For example, if the state of charge of the battery 14 is insufficient (i.e., the state of charge of the battery 14 is below a voltage threshold) or the battery 14 is removed, and the power device 10 is disconnected from an external power source, the battery packs 86, 90 provide power to the DC power output connectors 194, 198 and/or the AC power output connector 202 (via the inverter 246). In the illustrated embodiment, the first DC power output connector 194 provides a 12 volt output and is in the shape of a cigarette lighter, as typically seen in vehicles. In other embodiments, the first DC output connector 194 may provide a different voltage and/or may have a different type of connection. In the illustrated embodiment, the second DC output connector 198 includes two Universal Serial Bus (USB) ports to provide power (e.g., 5 V) to a peripheral device such as, for example, a tablet computer, a radio, a smartphone, and the like. In other embodiments, the second DC output 198 may be in the form of a different port, for example a micro-USB port or a coaxial power plug.
The AC output connector 202 includes two AC output connectors (e.g., AC plug receptacles). The AC output connector 202 is coupled to the AC power input 222 and to the inverter 246. The AC power output connector 202 receives AC power from one of the AC power input 222 and the inverter 246. The AC power output connector 202 provides AC power to an AC-powered peripheral device. The AC output switch 206 controls when power is accessible through the AC output connector 202 while the AC indicator 210 lights up to indicate when power is accessible through the AC output connector 202. Thus, a peripheral device can connect to the power device 10 through the DC power output connectors 194, 198 or the AC power output connector 202. The power device 10 can then provide power to the peripheral device for charging a battery of the peripheral device and/or powering the peripheral device. In the illustrated embodiment, the power device 10 also includes the power switch 250 (see
The power device 10 operates in an AC mode, a DC mode, and a standalone mode. The power device 10 is operable to charge the battery 14 and the battery packs 86, 90 in the AC mode and the DC mode. The power device 10 is operable to supply power to a peripheral device in the AC mode, the DC mode, and the standalone mode. In the AC mode, the power device 10 receives AC power from the AC power input 222. The power device 10 is then operable to forward the received AC power to the AC power output connector 202 to power a coupled AC-powered peripheral device. The power device 10 is also operable to rectify the received AC input power using the transformer 238. The resulting DC power is provided to the first charging circuit 242 to charge the battery packs 86, 90, to the second charging circuit 244 to charge the battery 14, and to power DC-powered peripheral devices, if present, via one of the first and the second DC power output connectors 194, 198.
In the DC mode, the power device 10 receives power from an external DC power source through the DC power input 214. The DC power input 214 provides power to a DC-powered peripheral device via the first DC output connector 194 and the second DC output connector 198. Additionally, the DC input power is received by the inverter 246, which inverts the power to provide AC power to AC-powered devices, if present, via the AC output connector 202. Furthermore, in the DC mode, power from the DC power input 214 is provided to the first charging circuit 242 to charge the battery packs 86, 90, if present, and to the second charging circuit 244 to charge the battery 14, if present.
In the standalone mode, the power device 10 is coupled to the battery 14, but is not connected to an AC or DC external power source via AC power input 222 or DC power input 214, respectively. Accordingly, the battery 14 is not charged in the standalone mode. However, the battery 14 (a) provides DC power to the inverter 246, which is inverted and provided to AC peripheral devices coupled to the AC power output connector 202, (b) provides DC power to the first DC output connector 194 and to the second DC output 198 to power DC peripheral devices coupled to the DC power output connectors 194, 198, and (c) provides DC power to the first charging circuit 242 to charge the battery packs 86, 90. Thus, the power device 10 and battery 14 operate together as a portable power supply for battery packs 86, 90, and both AC and DC devices.
In some embodiments, in the standalone mode, the power device is coupled to one of the first battery pack 86 and the second battery pack 90, but is not connected to the battery 14 or to an AC or DC external power source via AC power input 222 or DC power input 214, respectively. Accordingly, the first battery pack 86 and the second battery pack 90 are not charged in this standalone mode. However, the battery packs 86, 90 (a) provide DC power to the inverter 246, which is inverted and provided to AC peripheral devices coupled to the AC output connector 202, and (b) provide DC power to the first DC output connector 194 and to the second DC output connector 198 to power DC peripheral devices coupled to the DC power output connectors 194, 198. Thus, the power device 10 and the battery packs 86, 90 operate together as a portable power supply for both AC and DC devices.
In some embodiments, in the standalone mode, the power device 10 is coupled to the first battery pack 86, the second battery pack 90, and to the battery 14, but the battery 14 is either not functioning or depleted. In such embodiments, the first battery pack 86 and the second battery pack 90 provide power to AC and DC peripheral devices as described above, and provide DC power to the second charging circuit 244 to charge the battery 14. In some situations, one of the battery packs 86, 90 is also depleted (e.g., the first battery pack 86). In such situations, the remaining battery pack 86, 90 (e.g., the second battery pack 90) provides power to the first charging circuit 242 to charge the depleted battery pack (e.g., the first battery pack 86), and to the second charging circuit 244 to charge the battery 14, as well as to any desired AC or DC outputs.
The power device 1000 connects to the battery pack 1014. In the illustrated embodiment, the battery pack 1014 is an 18 Volt battery pack. In other embodiments, the capacity of the battery pack 1014 may be different. For example, the battery pack can be a 4 volt battery pack, 12 volt battery pack, 40 volt battery pack, or another voltage. In the illustrated embodiment, the battery pack 1014 includes lithium ion battery cells. In other embodiments, the battery pack 1014 may be of a different chemistry, for example, nickel-cadmium, nickel-hydride, and the like.
The battery pack 1014 is a power tool battery pack generally used to power a power tool, such as an electric drill, an electric saw, and the like. In some embodiments, the battery pack 1014 includes a microcontroller that monitors characteristics of the battery pack 1014. For example, the microcontroller may monitor the state of charge of the battery pack 1014, the temperature of the battery pack 1014, or other characteristics relevant to the battery pack 1014. The microcontroller may also control aspects of charging and/or discharging of the battery pack 1014. In the illustrated embodiment, the battery pack 1014 also includes an indicator 1018 on the face of the battery to display the current state of charge of the battery pack 1014. In the illustrated embodiment, the indicator 1018 includes a plurality of LEDs. As the state of charge of the battery pack 1014 increases, more LEDs light up and as the state of charge of the battery pack 1014 decreases less LEDs light up. The battery pack 1014 may include a different type of indicator to display the state of charge of the battery. For example, the indicator 1018 may include a single LED that lights up only when the battery pack 1014 is fully charged. In other embodiments, the battery pack 1014 does not include an indicator.
The battery pack 1014 also includes terminals to connect to the power device 1000. The terminals for the battery pack 1014 include a positive and a negative terminal to provide power to and from the battery pack 1014. In some embodiments, the battery pack 1014 also includes a temperature terminal to monitor the temperature of the battery pack 1014 or of the power device 1000. In some embodiments, the battery pack 1014 also includes data terminals to communicate with a portable device receiving power from the battery pack 1014 and with the power device 1000. For example, the battery pack 1014 may include a microcontroller to monitor one or more characteristics of the battery pack 1014 and the data terminals may communicate with the power device 1000 regarding the monitored characteristics.
The power device 1000 includes terminals (not shown) that connect to the terminals of the battery pack 1014. A latching mechanism on the battery pack 1014 (see
In the illustrated embodiment, the power device 1000 includes a power source input 1022. The power source input 1022 is an AC plug that flips up to expose power terminals and can flip down when it is not in use. The AC plug 1022 connects to an AC power source and provides AC power to the power device 1000. In the illustrated embodiment, the power device 1000 also includes a DC power output 1030 and an AC power output 1026. The DC power output 1030 is a USB port. In other embodiments, the DC power output 1030 can be in the form of a different port, for example a micro-USB port or a coaxial power plug. A peripheral device can connect to the power device 1000 through the DC power output 1030 or the AC power output 1026. The power device 1000 can then provide power to the peripheral device for charging a battery of the peripheral device and/or powering the peripheral device. In the illustrated embodiment, the power device 1000 also includes a power switch 1034 with an on position and an off position to enable and disable, respectively, a feature of the power device 1000. For example, in
As shown in
The transformer 1046 receives AC power from the AC power input 1022 and converts the AC power to DC power. The transformer 1046 sends a control signal to the controller 1042 to indicate that power is provided through the AC power input 1022. The transformer 1046 provides the DC power to the charging circuit 1050 to charge the battery pack 1014. The transformer 1046 also provides the DC power to the DC output 1030 to provide power to a peripheral device. The DC output by the transformer 1046 may be at different voltage levels for different components. For example, the transformer 1046 may provide 18 volts for the charging circuit 1050 and 5 volts for the DC output 1030.
The DC power input 1038 receives DC power from an external source, for example, a vehicle battery. The DC power input 1038 is connected to the DC power output 1030, the inverter 1054, the charging circuit 1050, and the controller 1042. The DC power input 1038 sends a control signal to the controller 1042 to indicate that power is provided through the DC power input 1038. The power input 1038 transfers the DC power to the charging circuit 1050 to charge the battery pack 1014. The power input 1038 also transfers DC power to the DC power output 1030 to provide power for a peripheral device. The DC power input 1038 is also electrically connected to the inverter 1054. Although not shown, one or more DC-to-DC converters may be provided to receive and step down or up the DC input voltage to a level appropriate for the various components receiving the DC input voltage. For instance, the DC input 1038 may receive 12 volts DC, which is converted to 18 volts for the charging circuit 1050 and converted to 5 volts for the DC output 1030.
The inverter 1054 is connected to the DC power input 1038, the battery pack 1014, the AC power output 1026, and the controller 1042. The inverter 1054 converts the DC power from the DC power input 1038 and from the battery pack 1014 to AC power. The inverter 1054 transfers the AC power to the AC power output 1026 to provide power to a peripheral device. The inverter 1054 is also connected to the controller 1042 to receive instructions from the controller. In the illustrated embodiment, the controller 1042 is connected to a power switch 1034 for the inverter 1054. In some embodiments, the power switch 1034 determines whether the inverter 1054 is currently functioning. In such embodiments, the controller 1042 determines the position of the power switch 1034 (on or off) and instructs the inverter to turn on or off. In other embodiments, the power switch 1034 is directly connected to the inverter 1054 such that when the power switch 1034 is open, the inverter does not function and when the power switch is closed, the inverter 1054 functions. In yet other embodiments, the power switch 1034 controls the operation of other aspects of the power device 1000, as discussed above.
The charging circuit 1050 is electrically connected to the controller 1042, the transformer 1046, the DC power input 1038, and to the battery pack 1014. The charging circuit 1050 controls the charging scheme for the battery pack 1014. In some embodiments, the charging circuit 1050 varies a charging current based on the temperature of the battery pack 1014, the state of charge of the battery pack 1014, the amount of time the battery pack 1014 has been charging, requests from the battery pack 1014, and other factors. The charging circuit 1050 receives DC power from one of the transformer 1046 and the DC power input 1038. The charging circuit 1050 sends and receives information regarding the charging scheme for the battery pack 1014 to and from the controller 1042. For example, the charging circuit 1050 may communicate to the controller 1042 information about the present charging current used to charge the battery pack 1014.
The controller 1042 is electrically connected to the transformer 1046, the DC power input 1038, the inverter 1054, the power switch 1034, and the charging circuit 1050. The controller 1042 receives indication signals from the transformer 1046 and from the DC power input 1038 indicating that power is received through one of the transformer 1046 and the DC power input 1038. In some instances, the controller 1042 is also operable to control the transformer 1046 and/or the DC input 1038 to control power conversion and/or power output levels. The controller also receives and sends control signals to the inverter 1054. In the illustrated embodiment, the controller is connected to a power switch 1034. The power switch 1034, in some embodiments, controls the inverter 1054. In such embodiments, the controller 1042 sends control signals to the inverter depending on the position of the power switch 1034. In other embodiments, the power switch 1034 controls the charging circuit 1050. In such embodiments, the controller 1042 sends control signals to the charging circuit 1050 to start or stop charging the battery pack 1014. The controller 1042 includes a processor and memory storing software executed by the processor to effect the functionality of the controller 1042 described herein.
The AC output 1026 is connected to the AC power input 1022 and to the inverter 1054. The AC power output 1026 receives AC power from one of the AC power input 1022 and the inverter 1054. The AC power output 1026 provides AC power to a peripheral device. The DC power output 1030 is connected to the transformer 1046, the DC power input 1038, and the battery pack 1014. The DC power output 1030 receives DC power from one of the transformer 1046, the DC power input 1038, and the battery pack 1014. The DC power output 1030 is configured to receive and output DC power from the battery pack 1014 when the transformer 1046 and the DC power input 1038 are not receiving power from an external power source.
The power device 1000 operates in an AC mode, a DC mode, and a standalone mode. The power device 1000 is operable to charge the battery pack 1014 in the AC mode and the DC mode. The power device 1000 is operable to supply power to a peripheral device in the AC mode, the DC mode, and the standalone mode. In the AC mode, the power device 1000 receives AC power from the AC power input 1022. The power device 1000 is then operable to forward the received AC power to the AC power output 1026 to power a coupled AC-powered peripheral device. The power device 1000 is also operable to rectify the received AC input power using the transformer 1046. The resulting DC power is provided to the charging circuit 1050 to charge the battery pack 1014, if present, and to power DC-powered peripheral devices, if present, via DC power output 1030.
In the DC mode, the power device 1000 receives power from an external DC power source through the DC power input 1038. The DC power input 1038 provides power to a DC-powered peripheral device via the DC output 1030. Additionally, the DC power input 1038 is received by the inverter 1054, which inverts the power to provide AC power to AC-powered devices, if present, via the AC output 1026. Furthermore, in the DC mode, power from the DC power input 1038 is provided to the charging circuit 1050 to charge the battery pack 1014, if present.
In the standalone mode, the power device 1000 is coupled to the battery pack, but is not connected to an AC or DC external power source via AC power input 1022 or DC power input 1038, respectively. Accordingly, the battery pack 1014 is not charged in the standalone mode. However, the battery pack 1014 (a) provides DC power to the inverter 1054, which is inverted and provided to AC peripheral devices coupled to the AC power output 1026, and (b) provides DC power to the DC output 1030 to power DC peripheral devices coupled to the DC power output 1030. Thus, the power device 1000 and battery pack 1014 operate together as a portable power supply for both AC and DC devices.
In some embodiments, the power devices 1100, 1300, 1400, 1500, 1600, and 1700 are supported by one or more battery pack(s) coupled thereto. In other embodiments, the power devices 1100, 1300, 1400, 1500, 1600, and 1700 include base feet that extend downward and support the power devices in conjunction with the bases of the battery packs. Accordingly, looking to
Thus, the invention provides, among other things, a power device configured to provide power to charge battery packs and provide AC and DC power to a peripheral device. Various features and advantages of the invention are set forth in the following claims.
Claims
1. A portable power source comprising:
- a housing;
- a battery receptacle supported by the housing, the battery receptacle configured to receive a battery;
- a first power tool battery pack port supported by the housing, the first power tool battery pack port configured to receive a first power tool battery pack;
- a charging circuit coupled to the battery receptacle and the power tool battery pack and configured to receive power from the battery receptacle and to provide power to the power tool battery pack port; and
- an inverter including a DC input coupled to the battery receptacle, inverter circuitry, and an AC output, the inverter circuitry configured to receive power from the battery receptacle via the DC input, invert DC power received from the battery receptacle to AC power, and provide the AC power to the AC output.
2. The portable power source of claim 1, further comprising a power supply unit supported by the housing, the power supply unit configured to receive power from an external power source selected from a group consisting of an AC power input, a vehicle DC socket, a vehicle battery, and a photovoltaic cell.
3. The portable power source of claim 2, further comprising a power output panel including:
- an AC output connector coupled to the AC output of the inverter and the power supply unit, the AC output connector configured to receive power from the inverter and the power supply unit, and to output AC power, and
- a DC output connector coupled to the battery receptacle and the first power tool battery pack port, the DC output connector configured to receive power from the battery receptacle and the first power tool battery pack port, and to output DC power.
4. The portable power source of claim 1, further comprising a second power tool battery pack port supported by the housing, the second power tool battery pack port configured to receive a second power tool battery pack.
5. The portable power source of claim 4, wherein the first power tool battery pack port includes guide rails to receive a slide-on style power tool battery pack and the second power tool battery pack port includes an insertion hole to receive a tower style power tool battery pack.
6. The portable power source of claim 4, wherein the charging circuit is also coupled to the second power tool battery pack port and is further configured receive power from the first power tool battery pack port when a state of charge of the battery is below a voltage threshold or the battery receptacle is disconnected from the battery, and provide power to the second power tool battery pack port from the first power tool battery pack port.
7. The portable power source of claim 1, wherein the battery receptacle includes connecting terminals configured to connect to terminals of the battery, and wherein the charging circuit is further configured to provide power to the connecting terminals of the battery receptacle to charge the battery.
8. The portable power source of claim 1, wherein DC input of the inverter is also coupled to the power tool battery pack port and the inverter is further configured to receive power from the power tool battery pack port, invert the power received from the power tool battery pack port to AC power, and provide the AC power to the AC output.
9. The portable power source of claim 1, wherein a capacity of the battery is higher than a capacity of the power tool battery pack.
10. The portable power source of claim 1, wherein the housing includes a base portion and a top portion, the base portion and the top portion are coupled together with a locking mechanism, the top portion being removable from the base portion to expose the battery when the locking mechanism is released.
11. The portable power source of claim 10, wherein the top portion includes a power output panel and a lid providing access to the power tool battery pack port, and wherein the bottom portion includes a wheel.
12. The portable power source of claim 11, wherein the top portion includes battery cables, the battery cables including connecting terminals to selectively connect to terminals of the battery.
13. A portable power source comprising:
- a housing;
- a battery supported by the housing;
- a first power tool battery pack port supported by the housing, the first power tool battery pack port configured to receive a first power tool battery pack;
- a second power tool battery pack port supported by the housing, the second power tool battery pack port configured to receive a second power tool battery pack; and
- a charging circuit coupled to the battery, the first power tool battery pack port, and the second power tool battery pack port, the charging circuit configured to selectively receive power from the battery and the first power tool battery pack port, and provide power to the second power tool battery pack port to charge the second power tool battery pack.
14. The portable power source of claim 13, wherein the first power tool battery pack port includes guide rails configured to receive a slide-on style power tool battery pack, and the second power tool battery pack port includes an insertion hole configured to receive a tower style battery pack.
15. The portable power source of claim 13, wherein the battery includes a vehicle battery, and wherein the battery is removable from the housing.
16. The portable power source of claim 13, further comprising an inverter including a DC input coupled to the battery, the first power tool battery pack port and the second power tool battery pack port, inverter circuitry, and an AC output, the inverter circuitry configured to receive power from the battery, the first power tool battery pack port, and the second power tool battery pack port via the DC input, invert the DC power received from the DC input to AC power, and provide the AC power to the AC power output.
17. The portable power source of claim 13, further comprising a power supply unit supported by the housing, the power supply unit including an AC power input and a DC power input.
18. The portable power source of claim 17, further comprising a power output panel including
- an AC output connector coupled to the AC output of the inverter and the power supply unit, the AC output connector configured to receive power from the inverter and the power supply unit, and to output AC power, and
- a DC output connector coupled to the battery receptacle and the first power tool battery pack port, the DC output connector configured to receive power from the battery receptacle and the first power tool battery pack port, and to output DC power.
19. The portable power source of claim 18, further comprising an AC output switch movable between a first position in which the inverter is enabled to invert DC power to AC power to provide AC power to the AC output connector and a second position in which the inverter is disabled.
20. The portable power source of claim 13, wherein the housing includes a base portion and a top portion, the base portion and the top portion are coupled together with a locking mechanism, the top portion being removable from the base portion to expose the battery when the locking mechanism is released.
21. The portable power source of claim 20, wherein the top portion includes a lid to access the first power tool battery pack port and the second power tool battery pack port when the top portion is coupled to the base portion with the locking mechanism.
Type: Application
Filed: Dec 12, 2014
Publication Date: Jun 18, 2015
Patent Grant number: 10044197
Inventors: Paul Fry (Sussex, WI), Kyle Harvey (Wauwatosa, WI)
Application Number: 14/569,049