Control Barriers, Systems, and Methods of Using the Same
In an embodiment, a control barrier may include a hollow body at least partially defined by a front wall, a back wall, a top portion extending between the front and back walls, a bottom portion generally opposite the top portion, and first and second ends extending between the top and bottom portions. An elongated foot member may be connected to the back wall and a plurality of channels may be defined in at least one of the front wall or the back wall. The channels extend at least in a first direction and are arranged to reinforce the hollow body.
This application is a continuation of, and claims the benefit of, and priority to, U.S. patent application Ser. No. 13/674,819, filed on Nov. 12, 2012, and entitled WATER CONTAINMENT BARRIERS, SYSTEMS, AND METHODS OF USING THE SAME,” which is a continuation-in-part of, and claims the benefit of, and priority to, U.S. patent application Ser. No. 13/485,071, filed on May 31, 2012, and entitled “WATER MANAGEMENT BARRIERS, SYSTEMS, AND METHODS OF USING THE SAME,” and U.S. Design patent application 29/423,388, filed on May 31, 2012, and entitled “FLOOD CONTROL BARRIER,” each of which is a continuation-in-part of, and claims the benefit of, and priority to, U.S. patent application Ser. No. 12/623,172, filed on Nov. 20, 2009, and entitled “WATER MANAGEMENT BARRIER AND SYSTEM,” which claim the benefit of, and priority to, U.S. Provisional Patent Application Ser. No. 61/117,523, filed on Nov. 24, 2008 and entitled “FLOOD BARRIER WITH PIVOTING CONNECTOR,” each of which is hereby incorporated herein in its entirety by this reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
Example embodiments of the invention relate to devices, systems and methods for controlling flood waters. More particularly, example embodiments relate to a flood control barrier that is versatile, light-weight, cost effective, and reusable.
2. Related Technology
Traditionally, various types of barriers have been used to control flood waters, examples of which are sandbags, traffic barricades and bladder systems. Flood water control barriers are inherently a temporary solution to a temporary flood problem. Thus, flood control barriers may be sized such that individuals or groups of individuals may maneuver and set up the flood control barriers. Traditional flood control barriers are also usually designed such that once the flood control need has passed, then the flood control barriers may be removed. Importantly, of course, flood control barriers must be designed to hold back the extremely large force produced by flood waters.
Although traditional flood control barriers attempt to accomplish the above goals, such flood control barriers are nonetheless often expensive, difficult or time consuming to install, or don't adequately control flood waters in some situations. For example, sandbags, which are still the most commonly used means of controlling flood waters, may appear inexpensive because the bag can be produced and transported at relatively low cost; however, the true cost of sandbags is significantly higher when one considers the cost of the sand, filling and transporting the sandbags, and the number of sandbags needed to make an effective sandbag levee. In particular, a sandbag levee that is one mile long and four feet tall may require in excess of 400,000 sandbags. The total cost of sandbags, including labor, sand, and cleanup costs, can result in a significant cost to build a sandbag levee. For example, the total cost of a four foot high one mile sandbag levee would typically be in the range of a million dollars. Moreover, the amount of time it takes to fill and place 400,000 sandbags often is prohibitive in that some flood emergencies do not allow time to create an adequate flood control barrier with sandbags.
Additionally, once the flood waters subside, the sandbags typically are left in the sun to dry for several weeks due to the labor intensive process involved in moving sandbags that are wet. Thus, weeks after flood waters subside, the sandbags may still be blocking roads and other transportation routes. Furthermore, since the sand in the sandbags absorbs the flood water, including flood water contamination such as oil, gas, raw sewage, and other contaminates, the sandbags and the sand are not reusable. Therefore, used sandbags, including the sand, are usually hauled to a landfill where they fill huge amounts of space in the landfill.
On the other hand, in some situations, some communities have attempted to use traffic barriers, such as concrete lane dividers, as flood control barriers. However, traffic barriers are not specifically designed to retain and redirect flood waters, and result in a less than optimal solution. Specifically, traffic barriers are not easily adaptable to the contour of the terrain. Moreover, when two traffic barriers are connected together, the connection does not provide a tight seal to prevent the flood waters from passing between the barriers. Further, traffic barriers are often heavy, thus increasing the cost and time required to transport and assemble a flood control barrier.
Water-filled bladder systems used as flood control barriers are also considered to have substantial drawbacks. For example, flood waters may contain all types of debris. When that debris moves within the flood waters and contacts the rubber, water-filled bladder systems on the market today, such water-filled bladder systems can be punctured or otherwise incur substantial damage that makes them useless and non-reusable. Moreover, ground slope can also create situations where the water-filled bladders are ineffective.
What is desired, therefore, is a flood and water management device and system that, among other characteristics, is reusable, light-weight, adaptable to the contour of the terrain, and cost effective.
BRIEF SUMMARY OF THE INVENTIONExample embodiments of the invention relate to devices, systems and methods for containing, controlling and/or managing flood or other waters. More particularly, example embodiments relate to a water management apparatus that acts as a barrier and is versatile, light-weight, cost-effective, and reusable. For instance, example embodiments of the invention provide a water management barrier that is versatile to the contour of the landscape allowing the water management barrier to be used on a wide variety of landscapes. Additionally, embodiments of the invention offer a light-weight water management barrier that can easily be maneuvered and assembled by one or two people. Further, embodiments of the invention provide a cost-effective system for setting up and removing a water management barrier wall since the water management barriers can be reused, are designed for easy storage, and require significantly less labor to assemble and disassemble relative to traditional flood control barriers.
More specifically, a single water management barrier of an example embodiment disclosed herein can replace up to four-hundred and sixty-eight sandbags. One or two people may also be able to set-up and assemble a water management barrier into a water management system in about three to five minutes. Thus, the water management barrier saves time and money from potential damage caused by flooding, and can therefore also be an effective way at limiting damage to property and/or saving lives that may be at risk when immediate flood control is needed.
In an embodiment, a water management barrier may include a hollow body at least partially defined by a front wall, a back wall, a top portion extending between the front wall and the back wall, a bottom portion generally opposite the top portion, a first end extending between the first top portion and the bottom portion, and a second end extending between the top portion and the bottom portion. The hollow body may exhibit a height generally defined between the top portion and the bottom portion and may be configured to receive one or more pourable materials to at least partially fill the hollow body. The barrier may also include an elongated connection member connected to the first end and generally extending between the top portion and the bottom portion. The barrier may also include a connection recess formed in the second end. The connection recess may be sized and configured to generally correspond to at least a portion of the connection member. The barrier may also include an external support system connected to the front wall of the hollow body. The external support system may include an upper cross member, a lower cross member, a first side member generally extending between the upper and lower cross members, and a second side member generally opposite the first side member. The external support system may be configured to at least partially reinforce the front wall against internal forces and/or external forces exerted on the front wall. Finally, the barrier may include an elongated foot member attached to said bottom portion.
In another embodiment, a water management barrier may include a hollow body at least partially defined by a front wall, a back wall, a top portion extending between the front wall and the back wall, a bottom portion generally opposite the top portion, a first end extending between the first top portion and the bottom portion, and a second end extending between the top portion and the bottom portion. The hollow body may exhibit a height generally defined between the top portion and the bottom portion and may be configured to receive one or more pourable materials to at least partially fill the hollow body. The barrier may also include an elongated connection member connected to the first end and generally extending between the top portion and the bottom portion. The barrier may also include a connection recess formed in the second end. The connection recess may be sized and configured to generally correspond to at least a portion of the connection member. The barrier may also include an external support system removably connected to the front wall. The external support system may include a first side member comprising an angle member generally extending between the top portion and the bottom portion. The first side member may include a plurality of hinge portions projecting outwardly therefore. The hinge portions may be configured to help connect the external support system to an adjacent external support system. The external support system may also include a second side member comprising an angle member generally extending between the top portion and the bottom portion. The external support system may also include a plurality of cross bars extending between the first side member and the second side member. The barrier may also include a foot member attached to the back wall.
In yet another embodiment, a water containment wall may include a first water containment barrier connected to a second water containment barrier to form a containment area, wherein at least one of the first water containment barrier and the second water containment barrier is the water containment barrier of any of the previously described embodiments.
In yet another embodiment, a method of connecting water containment barriers may include providing a first water management barrier and a second water management barrier. Each of the first and second water containment barriers may include a hollow body at least partially defined by a front wall, a back wall, a top portion extending between the front wall and the back wall, and a bottom portion generally opposite the top portion. The barriers may also include a foot member attached to the bottom portion. The method may also include inserting the connection member of the first water containment barrier in the connection recess of the second water containment barrier such that the first and second water containment barriers are connected together. The method may further include attaching a first external support system having a first plurality of connecting members to the front wall of the first water containment barrier and attaching a second external support system having a second plurality of connecting members to the front wall of the second water containment barrier. The second external support system may be positioned such that a least a portion of the first plurality of connecting members intermesh with at least a portion of the second plurality of connecting members.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Additional features of the invention will be set forth in the description which follows. The features of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Example embodiments of the invention relate to devices, systems and methods for controlling flood waters. More particularly, example embodiments relate to a water management barrier that is versatile, light-weight, cost-effective, and reusable. For instance, example embodiments of the invention provide a flood control barrier that is versatile to the contour of the landscape, allowing the water management barrier to be used on a wide variety of landscapes. Additionally, embodiments of the invention offer a light-weight water management barrier that can easily be maneuvered and assembled by one or two people. Further, embodiments of the invention provide a cost-effective system for setting up and removing a flood or other water management wall since the water management barriers can be reused, are designed for easy storage, and require significantly less labor to assemble and disassemble relative to tradition flood control barriers. The water management barriers disclosed herein may be used for managing and controlling flood waters, and “water management barrier” is thus used herein interchangeably with “flood control barrier.” Such a water management barrier, or flood control barrier, may be used to manage and/or control many different types of waters, and is thus not limited to use in flood situations or with flood waters.
Generally, and as shown in
Flood control barrier 100 can be constructed of any number of suitable materials. For example, in one embodiment, flood control barrier 100 is constructed of light weight materials. Example light weight materials may include, for example, low-density polyethylene or other polymeric materials. When made of such materials, flood control barrier 100 can be manufactured by blow-molding, or rotational molding, and flood control barrier 100 can thus optionally have a one-piece configuration. Moreover, when flood control barrier 100 is constructed from low-density polyethylene or other similar materials, flood control barrier 100 is also reusable. Often flood waters are contaminated with oil, gas, raw sewage, or other contaminates. After exposure to such contaminates, flood control barrier 100 is easily washed clean. For this same reason, flood control barrier 100 can also be used to contain chemical spills.
While flood control barrier 100 is disclosed as being made of low-density polyethylene or other similar polymeric materials, it should be appreciated that this is merely exemplary and not limiting of the present invention. Flood control barrier 100 could be made of other materials of differing weights and densities. For instance, flood control barrier 100 could also be manufactured from metals, alloys, composites, other low-density polymers, and/or high-density polymers.
In operation, a plurality of flood control barriers 100 can be connected together to form a flood control wall 200 (see, e.g.,
Considering the structure of flood control barrier 100 in more detail, and referring to
At the same time, hollow portion 120 in the flood control barrier 100 can be filled with a pourable material. When such a pourable material is placed within flood control barrier 100, additional weight is added to flood control barrier 100 and flood control barrier 100 can then weigh upwards of about 1600 lbs., depending on the size and configuration of flood control barrier 100. For example, after flood control barrier 100 is in place, flood control barrier 100 can be filled with water. The addition of the water, for example, increases the mass of flood control barrier 100 and allows flood control barrier 100 to resist the force of flood waters in that the force of the flood water is not able to move flood control barrier 100. Therefore, flood control barrier 100 can include a set-up configuration in which flood control barrier 100 has an empty hollow portion 120, and an in-use configuration wherein hollow portion 120 is at least partially filled with a pourable material.
As mentioned, water is one example of a pourable material that may be used to fill hollow portion 120. In other embodiments, other pourable materials may be used based availability. For example, in other embodiments, a granular material such as sand, or possibly some other liquid may be poured into hollow portion 120. Multiple materials may also be mixed together. From this point on, water will be used in the following discussion; however, the pourable material or other material that is placed within hollow portion 120 not limited to water. Additionally, while the description herein describes placing a pourable material within hollow portion 120 after flood control barrier 100 is in place, this is not necessary. In some cases, hollow portion 120 may be fully or partially filled before it is moved to a final location; however, partially or fully filling hollow portion 120 will increase the weight of flood control barrier 100, and will make it more difficult to move, so in most applications hollow portion will be left unfilled before it is moved to a final location.
Flood control barrier 100 can have various optional characteristics that assist in providing an effective flood control solution as described herein. For example, hollow portion 120 of flood control barrier may have various different configurations from one embodiment to the next. As shown in
In order to fill hollow portion 120 with water, flood control barrier 100 can include one or more fill ports 122. The fill ports 122 can be configured to have a cap or lid, or alternatively, fill ports 122 can simply be a hole in the top portion 106 since the water will generally remain in the hollow portion 120 even if the fill port 122 is not closed off. As illustrated in
Just as the location of fill ports 122 may vary from one embodiment to the next, so too can the number of fill ports 122 vary. For example, as illustrated in
Another way in which fill ports 122 may vary is the actual configuration of fill ports 122. For example, fill ports 122 can be configured to retain a water hose such that hollow portion 120 may be filled with water without the need for a person to physically hold the water hose during the filling process. As illustrated in
As mentioned herein, once flood control barrier 100 is filled with water, flood control barrier 100 can weigh upwards of about 1600 lbs. When flood control barrier 100 is no longer needed, it may be desirable to move flood control barrier 100. At such time, while flood control barrier 100 may be moved with the water therein, it may be desirable to drain the water from hollow portion 120 so flood control barrier 100 can once again be easily moved by one or more two people. Therefore, flood control barrier 100 can include one or more drain ports 124. As illustrated in
Just as the location of drain port 124 may vary, so too can the number of drain ports 124 vary. As shown in
Drain port 124 may be configured to retain the water within hollow portion 120 until flood control barrier 100 is no longer needed. In one example embodiment, drain port 124 includes a drain cap (not shown) that is associated with drain port 124 such that the drain cap can effectively close the drain port 124. The drain cap may include a seal that cooperates with drain port 124 and the drain cap to form a water-tight seal. The drain cap can have a threaded, interference fit, or other containment or securement mechanism relative to drain port 124 such that the drain cap can easily be used to close or open drain port 124. Moreover, a containment means, such as a chord, may be connected to both the drain cap and flood control barrier 100 so that the drain cap does not get lost if removed from drain port 124.
In addition to fill ports 122 and drain port 124, various other optional characteristics of flood control barrier 100 can assist with providing an effective flood control barrier. For example, flood control barrier 100 can have a variety of geometric configurations that stabilize and provide strength to the overall structure of flood control barrier 100. For instance, and as best illustrated in
Moreover, foot member 118 can provide addition stability as well as strength. As illustrated in
As will be appreciated by one skilled in the art in view of the disclosure herein, foot member 118 may not only add stability to flood control barrier 100, but may also provide flood control barrier 100 with added strength to resist the force of flood waters. In particular, when in use, flood water creates pressure that results in a force that acts normal to the surface area of a submerged member. As a result, as foot member 118 is positioned below the surface of flood water, the flood water provides a downward force acting normal to foot member 118, and that helps hold flood control barrier 100 in place, thereby increasing the ability of flood control barrier 100 to contain flood water.
Another way in which flood control barrier 100 can be strengthened is through the use of stake ports 126. As illustrated in
The number of stake ports 126 included within the flood control barrier 100, if any, may vary from one embodiment to the next. In one example, as illustrated in
Stake ports 126 can provide additional strength to flood control barrier 100, particularly with respect to its resistance to move from a predetermined location on the ground; however, flood control barrier 100 also can include various features that provide structural integrity relative to flood control barrier 100 itself. For example, as shown in
The configuration of support rods 128, if any, can vary from one embodiment to the next. For example, the position of support rods 128 can vary. As illustrated in
In addition to variations in the position of support rods 128, the shape and dimensions of support rods 128 may vary. In one example embodiment, the cross-sectional dimension of support rods 128 is about one inch to about two inches. In other example embodiments, the cross-sectional dimension of support rods 128 may be larger than about two inches, or smaller than about one inch, depending on the desired configuration of flood control barrier 100. Moreover, support rods 128 as illustrated in
Depending on the configuration of flood control barrier 100, the number of support rods 128 included in flood control barrier 100 may vary. For example, and as illustrated in
Support rods 128 are only one example of how the structural integrity of flood control barrier 100 can be improved. Another example is the geometric configuration of front wall 102 and back wall 104. In particular, and as illustrated in
Raised portions 130 and 132 may vary from one embodiment to the next. For example, the number of raised portions 130 and 132 can vary. As illustrated, both front wall 102 and back wall 104 include five raised portions 130 and 132, respectively. In other example embodiments, front wall 102 and/or back wall 104 can include more or fewer raised portions 130 and 132, respectively, depending on the configuration of flood control barrier 100.
In addition to the number of raised portions 130 and 132, the geometric configuration of raised portions 130 and 132 may vary from one embodiment to the next. For example, the width, length, and height (i.e., the extent to which raised portions 130 and 132 project from front wall 102 and back wall 104, respectively) may vary from one embodiment of flood control barrier 100 to the next, from one raised portion 130 or 132 to the next, or within the same raised portion 130 or 132.
Just as there are various geometric characteristics that provided added strength and support to flood control barrier 100, there are other geometric characteristics that can provide a unique and effective way to store the flood control barrier 100. By way of illustration, flood control barrier 100 can have geometric features that provide for easy stacking and/or storage of flood control barriers 100 when not in use. For example, and as illustrated in
In more detail, and as shown in
In addition to protrusions 144 and indentations 146, flood control barrier 100 can optionally include a storage lip 148, as illustrated in
Once the flood control barriers are in the storage configuration, an example of which is illustrated in
In one example, flood control barriers that are positioned in the storage configuration can be stacked on a flat bed trailer such that the flood control barriers can quickly be transported to a flood zone if needed. In one example embodiment, a forty-foot trailer can hold up to seventy-two individual flood control barriers 100. In other embodiments, a trailer can carry more or fewer flood control barriers 100 depending on the size of flood control barriers 100 and the size of the trailer.
Furthermore, flood control barriers 100 may be secured to a trailer or other movable storage location. In one example embodiment, a strap system may be used to secure flood control barriers 100 in the storage configuration. Flood control barriers 100 can, for example, include a strap groove 150 that offers a location for a strap 151 to interface with flood control barriers 100, such that strap 151 can securely hold the flood control barriers on a trailer or other device. In one example, and as illustrated in
Referring now to
In one example embodiment, flood control barriers 100 are first strapped to carts and then loaded onto a trailer such that flood control barriers 100 may be removed from the trailer with additional efficiency. The carts may be customized to lock into place on the trailer during transport, and easily unlock from the trailer when removed. Additionally, the carts, whether standard or customized, may hold up to twelve flood control barriers 100 or more and may be moved to a central deployment location so that the flood control barriers 100 may be assembled into a flood wall 200. Depending on the configuration of the trailer, carts, and/or flood control barriers 100, more or fewer flood control barriers 100 may be placed on any single cart or trailer.
As mentioned earlier, the unique configuration of flood control barrier 100 with hollow portion 120 allows flood control barrier 100 to have a manageable weight that allows it to be moved by one or two people. For example, with a weight of less than about 110 pounds, two people could easily move flood control barrier 100 into an assembly position. A single person may also be able to move flood control barrier 100 into an assembly position, particularly if a dolly or other device is used. In addition to the lightweight configuration, flood control barrier 100 also can additionally, or alternatively, incorporate other features that allow people to easily maneuver, position, and secure flood control barrier 100. For instance, in one embodiment, flood control barrier 100 can include integral handles 152. For example, and as illustrated in
The integral handles 152, illustrated in
In addition to integral handles 152, the flood control barrier 100 can optionally include upper lifting pole ports 154a and/or lower lifting pole ports 154b through which lifting poles 156 can be inserted. For example, the lifting poles 156 can be inserted through the lower lifting pole ports 154b, as illustrated in
Referring back to
In one example embodiment, connection member 114 is a substantially cylindrical member, such as that illustrated in
Connection member 114 can have various additional or alternative characteristics that assist in connecting one flood control barrier 100 to another. For example, and as illustrated best in
In addition to tapered end 158, connection member 114 can have various other geometric characteristics. In one example embodiment, such as that illustrated in
In an alternative embodiment, connection member 114 can have a conical configuration having its base oriented at the bottom of flood control barrier 100 and extending upward towards the top of flood control barrier 100. The radius of the cone shape can decrease gradually as the cone extends towards the top of the barrier. In other embodiments, a conical configuration may be provided in which the connection member tapers such that the radius of the cone decreases gradually as the cone extends towards the bottom of the barrier.
Cone shaped connection members can simplify assembly of the flood control inasmuch as to connect one flood control barrier 100 to another, flood control barrier 100 needs to be lifted only to a fraction of the height of the other barrier, such as twelve inches for example, before it can be dropped into place. This is so because the width of the opening of connection recess 116 may be greater than the width of connection member 114 at a height less than the full height of the flood control barrier 100, as illustrated in
Once flood control barriers 100 are connected, flood control wall 200 can be constructed. An example of flood control wall 200 is shown in
As is shown in
Just as there can be circumstances in which it is desirable that flood control wall 200 bend or curve, there can be other circumstances where it is desirable that flood control wall 200 have about a ninety degree corner to effectively control flood waters. In such circumstances a corner barrier 300 as shown in
A corner barrier 300 can include the same or similar characteristics, function, materials, etc. as described herein with respect to flood control barrier 100. Therefore, the above discussion regarding flood control barrier 100 is hereby incorporated with respect to the corner barrier 300.
One example embodiment of a corner barrier 300 is illustrated in
Corner barrier 300 can be configured to change the direction of a flood control wall by about ninety degrees, or in some other angle increment. In other words, flood control wall 200 connected to first end 310 of corner barrier 300 may be, for example, about ninety degrees offset from flood control wall 200 connected to second end 312 of corner barrier 300. In one example, as shown in
As illustrated in
Just as terrain and flood conditions may require the use of a corner barrier 300, there can be circumstances in which it is necessary to add height to flood control barrier 100 or corner barrier 300. For example, the amount of water in combination with the terrain characteristics may present a situation in which the flood waters would otherwise spill over the flood control wall 200 unless height is added to flood control barriers 100 or corner barriers 300. In these situations, an extension barrier 400, an example of which is illustrated in
Extension barrier 400 can include the same or similar characteristics, function, materials, etc. as described with respect to flood control barrier 100 above. Therefore, the above discussion regarding flood control barrier 100 is hereby incorporated with respect to extension barrier 400.
In particular, extension member 400 includes a front wall 402, a back wall 404, a top portion 406, and a bottom portion 408 that forms a substantially rigid body around a hollow portion 420. Extension barrier 400 further can include a first end 410 with a connection member 414, and a second end 412 with a connection recess 412. Connection member 414 and connection recess 416 are configured to correspond and interface with adjacent connection recess 416 or connection member 414, respectively, on an adjacent extension member 400.
Moreover, and as illustrated in
In use, extension barrier 400 is configured to be connected to top portion 106 of flood control barrier 100 (
In order to further secure extension barrier 400 to flood control barrier 100, bottom portion 408 may further include one or more indentations 446 that are positioned to align and interface with protrusions 144 located on top portion 106 of flood control barrier 100. In other example embodiments, bottom portion 408 can include additional indentations, protrusions, tolerances, and/or other geometry that assist in securing and stabilizing extension barrier 400 to flood control barrier 100.
In addition or alternative to indentations 446, extension barrier 400 can include lock ports 454. For example, and as illustrated in
The preceding text and corresponding figures provide a number of different components and modules that can be used to efficiently construct a flood control wall to control flood water. In addition to the foregoing, embodiments of the present invention can also be described in terms of one or more acts in a method for accomplishing a particular result. For example,
For example,
Continuing,
Additionally,
In addition to the acts shown in
When a waterproof membrane 500 is used in conjunction with the flood control barrier 100, it may be desirable in some cases to secure waterproof membrane 500 to a ground or other surface so that waterproof membrane 500 remains in place at least until the force of the water 600 is adequately upon the waterproof membrane 500. For example, in one embodiment, weights 502 may be placed on the edge of the waterproof membrane 500 as illustrated in
In addition to waterproof membrane 500, flood control barrier 100 can also be constructed with an additional support rod 504, as illustrated in
In still other embodiments, flood control barrier 100 may be supported in additional or alternative manners. For example, multiple support rods 504 may support a single flood control barrier 100. In other embodiments, an additional flood control barrier may be placed against the back-side of flood control barrier 100, and can be perpendicular to flood control barrier 100. Such an additional barrier can thus assist or replace support rod 504 in supporting flood control barrier, and can be particularly helpful in instances where the water being controlled or managed is exerting an intense pressure against a wall constructed of flood control barriers 100. Additionally, cables or chains can be weaved or passed through one or more of the ports in adjacent flood control barriers adding additional strength to the flood control wall 200. In one embodiment, an entire flood control wall 200 can be further connected together by weaving a cable through the ports of each flood control barrier 100 included in the flood control wall 200.
Referring now to
In the illustrated embodiment, a connection member 714 may be formed or otherwise attached to the first end 710 and may be used to connect the first end 710 of the water management barrier 700 to the second end of another water management barrier. The connection member 714 may substantially extend between the top portion 706 and the bottom portion 708 of the water management barrier 700. In an embodiment, the connection member 714 may include a generally cylindrical body portion. The connection member 714 may also include a tapered end 758 at or near the top portion 706. The tapered end 758 may have a generally conical shape or any other shape that reduces the cross-sectional dimension of the connection member 714 near the top of the connection member 714 and/or the top portion 706. For example, the tapered end 758 may include an inner portion adjacent the first end 710 having a generally rectangular configuration so as to maximize the attachment surface area of the tapered end 758 of the connection member 714 to the first end 710. In addition, the tapered end 758 may include an outer portion having a semi-conical configuration to allow for a smoother initial interface with the connection recess 716 of an adjacently placed water management barrier 700, such that the connection member 714 does not have to be perfectly aligned with a connection recess to be connected together. A connection recess 716 may also be formed in or otherwise connected to the second end 712 of the water management barrier 700. The connection recesses 716 may facilitate another water management barrier being connected to the second end 712 of the water management barrier 700. While the connection member 714 is illustrated having a generally cylindrical body portion, in other embodiments, the connection member 714 may have a generally elliptical body portion, a generally rounded rectangular body portion, a generally conical body portion, or any other suitable body shape. For example, the connection member 714 may have a generally conical body portion having a base oriented at the bottom portion 708 of the water management barrier 700 that extends upward toward the top portion 706. In an embodiment, the diameter of the cone shape can decrease gradually as the cone extends toward the top portion 706. Such a configuration may allow a user to substantially tight seal between adjacent water management barriers 700. For example, a user may loosely insert the connection member 714 of one water management barrier 700 into the connection recess 716 of another water management barrier. The user may then orient each water management barrier relative to one another in any desired configuration. Once the user has the water management barriers 700 in the user's desired configuration, the user may force the connection member 714 further into the connection recess 716 such that the conical body portion of the connection member 714 is wedged or jammed within the connection recess 716 to form a sealed connection. In some embodiments, the sealed connection may be sufficiently tight to prevent flood water and/or other materials from passing between the barriers. In other embodiments, the sealed connection may significantly reduce seepage of flood water and/or other materials from between the barriers.
Also shown in
Considering the structure of the water management barrier 700 in more detail, and still referring to
In one embodiment, as shown in
Referring still to
Like the raised portions 130, the geometric configuration of the raised portions 730 and/or the channels 731 may vary from one embodiment to the next. For example, one or more of the raised portions 730 may exhibit a thickness that is generally uniform. In other embodiments, the thickness and/or the width of the raised portions 730 may vary from one raised portion 730 to another. In yet other embodiments, one or more of the channels 731 and/or the raised portions 730 may exhibit a generally rectangular geometry, a generally curved geometry, a generally elliptical geometry, or the like. Moreover, while five raised portions 730 and four channels 731 are illustrated, in other embodiments the front wall 702 may include more or fewer raised portions 730 and/or the channels 731, respectively, depending on the configuration of the water management barrier 700. In some configurations, the raised portions 730 may be at least partially solid. In other embodiments, the raised portions 730 may be at least partially hollow. In some embodiments, the raised portions 730 and/or channels 731 may extend between the first end 710 and the second end 712. In yet other embodiments, the raised portions 730 and/or channels 731 may extend along only a portion of the front wall 702. For example, the raised portions 730 and/or the channels 731 may extend along the front wall 702 between the top portion 706 and an intermediate point between the top portion 706 and the bottom portion 708.
In an embodiment, the raised portions 730 and/or the channels 731 may be formed on the front wall. In other embodiments, the raised portions 730 and/or the channels 731 may be formed in the front wall. In yet other embodiments, the raised portions 730 and/or channels 731 may be attached to the front wall 702 by any suitable means such as adhesives, fasteners, welds, or the like.
Referring again to
Similar to the raised portions 730 and the channels 731, the raised portions 732 and/or the channels 733 may provide additional reinforcement and/or stiffness to the water management barrier 700. For example, as flood waters, mud, rocks, debris flow, or the like build up against the back wall 704, extremely large forces and/or pressure may act normal to the back wall 704 of the water management barrier 700, such that the back wall 704 could tend to collapse into the hollow portion 720. The ribbed configuration of the raised portions 732 and the channels 733 may help stiffen and/or reinforce the back wall 704 against such collapse. Like raised portions 730 and the channels 731, the raised portions 732 and/or the channels 733 may vary from one embodiment to another. For example, the width, orientation, length, and/or height may vary from one embodiment of the water management barrier 700 to another, from one raised portion 732 and/or channel 733 to another, or within the same raised portion 732 and/or channel 733.
Another way in which the water management barrier 700 may be strengthened, stiffened, reinforced, and/or stabilized is through the foot member 718. As illustrated in
In the illustrated embodiment, the toe-like portion 718A of the foot member 718 may exhibit a relatively low-profile. For example, the toe-like portion 718A may exhibit a thickness T generally defined between the upper surface and the bottom portion 708. In an embodiment, the thickness T of the toe-like portion 718A may be between about one-half inch and about six inches; between about one inch and about five inches; or between about one and a half inches and three inches. In other embodiments, the thickness T of the toe-like portion 718A of the foot member 718 may be larger or smaller. In other embodiments, the thickness T of the toe-like portion 718A may be about ten percent; about fifteen percent; about twenty percent; about twenty-five percent of the length L of the toe-like portion 718A. In yet other embodiments, the thickness T of the toe-like portion 718A may be between about five percent and about forty percent; between about ten percent and about thirty percent; or about fifteen percent and about twenty-five percent of the length L of the toe-like portion 718A. In other embodiments, the dimensional relationship between the thickness T and the length of the toe-like portion 718A may be greater or less relative to one another.
Such a low-profile configuration of the toe-like portion 718A may allow a waterproof membrane, draped over the foot member 718 and the land or support surface proximate to the water management barrier 700, to be less likely to tear when stepped upon or under the weight of flood water. In addition, the low-profile configuration of the toe-like portion 718A may help reduce the overall or stacked height of two or more water management barriers in a storage configuration. For example, as shown in
In an embodiment, the height H of the water management barrier 700 may be about forty-six and three quarter inches and the thickness of the toe-like portion 718A may be about one and three quarter inches. Such a configuration may allow about ninety-six water management barriers 700, in the storage configuration, to be shipped on a standard flatbed trailer. Thus, the water management barriers 700 may be less expensive to ship and more available to a user. Of course, in other embodiments, the size and/or relationship between the height H of the water management barriers 700 and the thickness T of the toe-like portion 718A of the foot member 718 may be greater or less.
Referring now to
For example,
By increasing the length of the foot member 718 and/or the toe-like portion 718A, the centroid of water or mud over the foot member 718 is at a greater distance from point A thereby producing a greater resisting overturning moment. Moreover, the dimensional relationship between the back wall 704 and the foot member 718 may influence the magnitude of the resisting overturning moments relative to the overturning moment or the capability of the water management barrier 700 to resist overturning. In an embodiment, the height H of the water management barrier 700 may be generally defined between the top portion 706 and the bottom portion 708. For example, the eight of the water management barrier may be between about twenty inches and about eighty inches; between about thirty inches and about sixty inches; or between about forty inches and about fifty inches. In an embodiment, the toe-like portion 718A of the foot member 718 may exhibit a length L generally defined between a free end of the toe-like portion 718A and a storage lip 748 or the curved portion of the foot member 718. For example, the length L of the toe-like portion 718A may be between about three inches and about forty inches; between about five inches and about twenty inches; or between about eight inches and about twelve inches. In other embodiments, length L of the toe-like portion 718A of the foot member 718 may be larger or smaller. In yet other embodiments, the length L of the toe-like portion 718A may be between about five percent and one-hundred and five percent; about ten percent and one-hundred percent; about twelve percent and thirty-five percent; about twenty percent and fifty percent; or about twenty-five percent and forty percent the height H of the water management barrier 700. In other embodiments the length of the toe-like portion 718A and the height H of the water management barrier 700 may be larger or smaller relative to each other.
Another way in which the water management barrier 700 can be strengthened, reinforced, and/or stiffened is through the use of support rods or reinforcement tubes 728A, 728B, 728C. Referring now to
Such support rods 728A, 728B, 728C may provide reinforcement and/or stiffness to the hollow body 720 of the water management barrier 700. For example, flood water and/or mud may exert pressure or external forces normal to the back wall 704, which would tend to cause the back wall 704 to collapse inward and towards the front wall 702. In addition, pourable materials with the hollow body 720 may exert pressure and/or internal forces normal to the back wall 704 and front wall 702 in an outward direction, which would tend to cause the front wall 702 and the back wall 704 to swell, bulge outward, or belly out. The support rods 728A, 728B, 728C can help resist such pressure and/or forces placed on the water management barrier 700 by reinforcing the front wall 702 and/or the back wall 704.
Optionally, the support rods 728A, 728B, 728C may perform additional functions and/or provide additional features to the water management barrier 700. For example, similar to the lifting pole ports 154, the support rods 728A may further comprise lifting pole ports through which lifting poles can be inserted. The support rods 728B may further comprise strap ports through which one or more straps can be inserted such that the water management barrier 700 may be secured to one or more other water management barriers or a trailer or other device. For example, one or more nylon straps made be inserted through the strap ports to restrain adjacent water management barriers 700. Furthermore, similar to the integral handles 152, the support rods 728C may further comprise handles so as to provide easily accessible grips. Due to the size and shape of the support rods 728C, the support rods 728C may further function as strap ports similar to the support rods 728B.
The configuration of the support rods 728A. 728B. 728C can vary from one embodiment to the next. For example, in some embodiments, the support rods 728A, 728B, 728C may comprise hollow tubes, solid tubes, or a combination of both. In other embodiments, the shape, position, and/or dimensions of the support rods 728A, 728B, 728C may vary. For example, the cross-sectional dimension of one or more of the support rods 728A, 728B, 728C may be about one inch to about two inches. In other embodiments, the cross-sectional dimensions of one or more of the support rods 728A, 728B, 728C may be larger or smaller depending on the desired configuration of the water management barrier 700. In addition, as illustrated in
The water management barrier 700 may also be reinforced, stiffened, or straightened through the use of stake ports 726. As illustrated in
Similar to the stake ports 126, the number of stake ports 726 included within the water management barrier 700 may vary. In one example, as illustrated in
Similar to the flood control barrier 100, the water management barrier 700 may include geometric features that provide for easier stacking and/or storage of multiple water management barriers 700 when not in use. For example, as illustrated in
In more detail, and as shown in
The protrusions 744 may also help prevent a waterproof membrane draped over the top portion 706 of the water management barrier 700 from ripping or tearing. For example, although not necessary, a waterproof membrane can be draped over a portion of the front wall, over the top portion, down the back wall, over the foot member, and out over the land or other support surface proximate to the water management barrier 700 as shown and described in relation to
In addition to the protrusions 744, the water management barrier 700 can optionally include a storage lip 748, as illustrated in
In the illustrated embodiment, the back wall and foot member of each water management barrier 1910 are oriented toward the containment area 1920 such that the water management wall 1900 may be configured to help limit and/or prevent the escape of materials and/or fluids from the containment area 1920. In some embodiments, a liner (i.e., woven liner) or membrane may be used in conjunction with the water management wall 1900 to function as a containment liner. For example, a membrane similar to waterproof membrane 500 may be draped over the water management wall 1900 such that the membrane substantially lines the entirety of the containment area 1920. In other embodiments, the liner or membrane may be omitted.
In an embodiment, the containment area 1920 may be configured to store or retain liquids, water, chemicals, soil, contaminated materials, stockpiles and/or the like. In other embodiments, the containment area 1920 may include one or more storage tanks, pipelines, pressure vessels, well heads, frac tanks, and/or the like. For example, in the event of a tank leak, the water management wall 1900 may help contain the contents of the tank within the containment area 1920. Accordingly, the water management wall 1900 may help prevent and/or limit the tank contents from escaping into the environment. In other embodiments, the water management wall 1900 can enable controlled recovery, remediation, and/or disposal of the spill. In other embodiments, if a tank within the containment area 1920 requires maintenance and/or repair, one or more of the water management barriers 1910 and/or corner barriers 1930 may be conveniently removed from the water management wall 1900. Such a configuration may allow for ingress and/or egress of equipment and/or personnel to and from the containment area 1920 for repair and/or maintenance purposes. After the tank is repaired and/or maintained, the water management barriers 1910 and/or corner barriers 1930 may be conveniently reconnected to reconstruct the water management wall 1900 around the containment area 1920.
Referring now to
In the illustrated embodiment, a connection member 2014 may be formed or otherwise attached to the first end 2010 and may be used to connect the first end 2010 of the water containment barrier 2000 to the second end of another water containment barrier. In an embodiment, the connection member 2014 may substantially extend between the top portion 2006 and the bottom portion 2008 of the water containment barrier 2000. In an embodiment, the connection member 2014 may include an elongated and generally rounded rectangular body. A connection recess 2016 may also be formed in or otherwise connected to the second end 2012 of the water containment barrier 2000. In an embodiment, the connection recess 2016 may facilitate another water containment barrier being connected to the second end 2012 of the water containment barrier 2000. In an embodiment, the water containment barrier 2000 may be configured not to rotate with respect to an adjacent water containment barrier while connected. In other embodiments, similar to the flood control barrier 100 and the water management barrier 700, the water containment barrier 2000 may be configured to be able to be rotated with respect to an adjacent water containment barrier while connected. Optionally, the connection member 2014 and/or the connection recess 2016 may include one or more grooves or protrusions extending along a length of the connection member 2014 and/or the connection recess 2016. Such a configuration may help improve the fit between the connection member 2014 and/or the connection recess 2016. Moreover, the water containment barrier 2000 may be connected to other water management/containment barriers, extension barriers, and/or corner barriers to form a flood control wall or containment area similar to the embodiments shown and described in relation to
Optionally, the water containment barrier 2000 may further include one or more strap ports 2028 through which one or more straps can be inserted to help secure the water containment barrier 200 to one or more other water containment barriers or a trailer or other device. The strap ports 2028 may be configured similar to the support rods shown and described in relation to
Referring still to
Optionally, the bottom portion 2008 may include one or more features configured to help prevent the water containment barrier 2000 from being displaced or pushed back by the water. For example, the bottom portion 2008 may include one or more channels, notches, apertures, cavities, protrusions, recesses, or any other suitable feature to help the water containment barrier 2000 grip the ground or other support surface.
In an embodiment, the water containment barrier 2000 may include a height generally defined between the top portion 2006 and the bottom portion 2008 as shown in
Referring still to
Considering the structure of the water containment barrier 2000 in more detail, the front wall 2002, the back wall 2004, the top portion 2006, and the bottom portion 2008 may form a hollow body that surrounds and/or substantially encloses the hollow portion 2020. Similar to the hollow portions 120, 720, the hollow portion 2020 may be fillable with a pourable material such as foam, water, rocks, sand, beads, gel, combinations thereof, or the like. For example, filling the hollow portion 2020 with low-density foam may provide rigidity, structural support, and/or insulation to the water containment barrier 2000. However, when the low-density foam is placed within the hollow body 2020, the hollow body 2020 may have a tendency to deform, swell, belly out, or increase in size or volume as a result of pressure exerted on the hollow body 2020 by the foam. In addition, as previously discussed, the flood water, mud, and/or rocks may exert forces and/or pressures on the water containment barrier 2000 that tend to collapse the hollow body 2020 of the water containment barrier inward.
For these reasons and other, the water management barrier 2000 may include one or more features configured to help reinforce and/or stiffen the water management barrier 2000. For example, the back wall 2004 of the water containment barrier 2000 may include a ribbed structure having raised portions 2032 spaced from each other and channels 2033 defined between the raised portions 2032. The ribbed structure of the back wall 2004 may be configured similar to the back wall 704 shown and described in relation to
Referring now to
Another way in which the water containment barrier 2000 may be strengthened stiffened, reinforced, and/or stabilized is through use of an external support system.
The upper cross member 2053 may generally extend between the first and second side members 2051 and 2052 near the top portion 2006. The lower cross member 2054 may generally extend between the first and second side members 2051 and 2052 near the bottom portion 2008. The cross bars 2055 may extend between the first and second side members 2051, 2052 at one or more locations along the front wall 2002. The external support system 2050 may be configured to help reinforce or increase the rigidity of the water containment barrier 2000 by distributing forces exerted on the water containment barrier 2000 throughout the external support system 2050.
Optionally, the first and second side members 2051, 2052 may be positioned relative to the upper and lower cross members 2053, 2054 so as to form one or more angles between the side members and the cross members. For example, as shown in
While the first and second side members 2051, 2052 and the upper and lower cross members 2053, 2054 are shown as angle members, in other embodiments, one or more of the above members may comprise a channel member, an pipe member, a T-member, a H-member (e.g., I-beam), a flat bar, a round bar, a square bar, a pipe member, a square tube, a rectangular tube, a round tube, or any other suitable structural member.
Referring again to
The cross bars 2055 may be sized, spaced, configured and/or oriented to help influence reinforcement provided by the external support system 2050. For example, in the illustrated embodiment, the cross bars 2005 may be distributed nearer the lower cross member 2054 than the upper cross member 2053. In other embodiments, the spacing between the cross bars 2055 and the upper and lower cross members 2053, 2054 may vary. For example, in the illustrated embodiment, the lowest cross bar 2055 may be closer to the lower cross member 2053 than the highest cross bar 2055 is relative to the upper cross member 2054. Such a configuration may increase reinforcement nearer the bottom portion 2008 of the water containment barrier 2000 where forces exerted on the water containment barrier 2000 may be greatest.
In other embodiments, the external support system 2050 may include one or more cross bars 2055 extending diagonally between the first and second side members 2051, 2052. In other embodiments, the external support system 2050 may include at least two diagonal cross bars 2055 placed in an X-like configuration as shown in
While the cross bars 2055 are shown as pipe members, in other embodiments, one or more of the cross bars 2055 may comprise a channel member, an angle member, a T-member, a H-member (e.g., I-beam), a W-member, a flat bar, a round bar, a square bar, a square tube, a rectangular tube, a round tube, or any other suitable structural member.
The external support system 2050 may include any suitable material. For example, in an embodiment, one or more portions of the external support system 2050 may include steel, aluminum, plastic materials, galvanized iron, alloys, composite materials, combinations thereof, or any other suitable material. Such a configuration may allow the external support system 2050 to be formed and configured to match one or more contours of the front wall 2002. For example, in an embodiment, one or more of the cross bars 2055 may include one or more aluminum materials configured to allow the one or more cross bars 2055 may be bent or shaped to generally correspond to one or more contours of the front wall 2002. In other embodiments, one or more portions of the external support system 2050 may include one or more portions coated with one or more materials. For example, in an embodiment, the external support system 2050 may be powder coated to help improve the material or mechanical properties of the external support system 2050. It will be appreciated that the external support system 2050 may be configured to help the front wall 2002 resist tensile forces, impact forces, compressive forces, shear forces, combinations thereof, or any other internal and/or external forces.
Referring again to
In other embodiments, the one or more bolts may be pre-attached to an exterior surface of the front wall 2002 and extending therefrom. In other embodiments, the one or more bolts may be selectively threaded into receiving holes pre-formed in the front wall 2002. In yet other embodiments, the one or more bolts may be selectively threaded into the front wall 2002. Such a configuration may allow the external support system 2050 to be connected to and/or removed from the front wall 2002 as desired. For example, in an embodiment, after the water containment barrier 2000 is connected to another water containment barrier, the external support system 2050 may be connected to the front wall 2002 for additional reinforcement. In addition, when the water containment barrier 2000 is not in use, the external support system 2050 may be removed from the front wall 2002. Such a configuration may facilitate transport or storage of the water containment barrier 2000. While the external support system 2050 is illustrated being bolted on the front wall 2002, in other embodiments, the external support system 2050 may be removably attached or connected to the front wall via one or more screws, clips, cables, pins, cords, mechanical connectors couplings, combinations thereof, or any other suitable connection type.
Optionally, the external support system 2050 may be connected to the front wall 2002 of the water containment barrier 2000 prior to the water containment barrier 2000 being connected to another barrier. For example, in an embodiment, the water containment barrier 2000 having the external support system 2050 connected thereto may be connected to another water containment barrier having an external support system connected thereto while the water containment barriers are rotated away from one another. Once the water containment barriers are connected together, the water containment barriers may then be rotated toward each other such that the external support systems may be connected together. In other embodiments, the external support system 2050 may be connected to the front wall 2002 via adhesives, welding, or the like. In yet other embodiments, the external support system 2050 may be integral to the water containment barrier 2000.
The external support system 2050 may be configured to be connected to an adjacent external support system 2050 of another water containment barrier in any suitable manner. For example, in the illustrated embodiment, the first side member 2051 may include a plurality of hinge portions or connecting members 2057, each comprising a tube-like member projecting outwardly from the first side member 2051. The lowermost connecting member 2057 may be substantially aligned with the lower cross member 2054. The remainder of the connecting members 2057 may be vertically aligned there above with one or more spaces 2058 between two or more selected connecting members 2057. A plurality of connecting members 2059 comprising tube-like members on the second side member 2052 may similarly disposed extending away from the second side member 2052. The connecting members 2059 may be vertically aligned and have one or more spaces 2060 between two or more selected connecting members 2059. The spaces 2060 may be sized and/or configured to selectively receive other connecting members such as those indicated at 2057. The top connecting member 2059 may be substantially aligned with the upper cross member 2053. The lowermost connecting member 2059 may be spaced above the lower cross member 2054 a distance about equal to the height of the lowermost connecting member 2057 of the first side member 2051. In an embodiment, connecting members 2057 and connecting members 2059 may have generally vertically aligned bores extending therethrough. The bores may be configured to receive one or more connection pins 2062 (as shown in
While the external support systems of the water containment barriers 2000 are illustrated including and being connected via a plurality of hinged portions or connecting members, in other embodiments, the external support systems of the water containment barriers 2000 are illustrated being connected via one or more pivot connections, one or more pinned connections, one or more mechanical fasteners, one or more clips, one or more cables, one or more straps, one or more cords, one or more couplings, one or more linking connections, one or more fixed connections, combinations thereof, or any other suitable connection type.
There may be circumstances where it is desirable that water containment wall 2100 have about a ninety degree corner. For example, a corner barrier 3000 as shown in
A corner barrier 3000 may include many of the same or similar features, function, materials, etc. as described above with respect to water containment barrier 2000, water management barrier 700, and flood control barrier 100. Therefore, the above discussion regarding the water containment barrier 2000, water management barrier 700, and flood control barrier 100 is hereby incorporated with respect to the corner barrier 3000.
As illustrated in
As shown, corner barrier 3000 may further include an external support system 3050 connected to the front wall 3002. The external support system 3050 may include a first side member 3051, a second side member 3052, an upper cross member 3053, a lower cross member 3054, and a plurality of cross bars 3055. In an embodiment, one or more connecting members 3057 may be attached to the first side member 3051. One or more connecting members 3059 may also be attached to the second side member 3052. The connecting members 3057, 3059 may be configured to generally correspond with connecting members 2057, 2059, such that the external support system 3050 may connect with external support system 2050. In an embodiment, at least some of the cross bars 3055 may extend between the first and second side members 3051 and 3052. Optionally, the spacing and/or distribution of the cross bars 3055 may be different that the spacing and/or distribution of the cross bars 2055. Such a configuration may help reinforce a water management wall (shown in
In the illustrated embodiment, the back wall and foot member of each water management barrier 2000 may be oriented toward the containment area 3020 such that the water containment wall 2100 may be configured to help limit and/or prevent the escape of materials and/or fluids from the containment area 3020. The external support systems of the water containment barrier 2000 and the corner barrier 3000, respectively, may be connected to the front walls of each barrier and oriented away from the containment area 3020. Such a configuration may help reinforce the water containment wall 2100 against deformation, swelling, bellying out, and/or the like.
Optionally, a liner (i.e., woven liner) or membrane may be used in conjunction with the water containment wall 2100 (e.g, the water containment barriers 2000 and the corner barriers 3000) to function as a containment liner as shown in
In an embodiment, the containment area 3020 may be configured to store or retain liquids, water, chemicals, soil, contaminated materials, stockpiles and/or the like. In other embodiments, the containment area 3020 may include one or more storage tanks, pipelines, pressure vessels, well heads, frac tanks, and/or the like. For example, in the event of a tank leak, the water containment wall 2100 may help contain the contents of the tank within the containment area 3020. Accordingly, the water containment wall 2100 may help prevent and/or limit the tank contents from escaping into the environment. In other embodiments, the water containment wall 2100 can enable controlled recovery, remediation, and/or disposal of the spill. In other embodiments, if a tank within the containment area 3020 requires maintenance and/or repair, one or more of the water management barriers 2100 and/or corner barriers 3000 may be conveniently removed from the water containment wall 2100. Such a configuration may allow for ingress and/or egress of equipment and/or personnel to and from the containment area 3020 for repair and/or maintenance purposes. After the tank is repaired and/or maintained, the water containment barriers 2000 and/or corner barriers 3000 may be conveniently reconnected to reconstruct the water containment wall 2100 around the containment area 3020.
The invention is susceptible to various modifications and alternative means. Specific examples have been shown by way of example in the drawings and are described in detail herein. It should be understood, however, that the invention is not to be limited to the particular devices or methods disclosed. To the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the claims.
Claims
1. A control barrier comprising:
- a hollow body at least partially defined by a front wall, a back wall, a top portion extending between said front wall and said back wall, a bottom portion generally opposite said top portion, a first end extending between said top portion and said bottom portion, and a second end extending between said top portion and said bottom portion;
- an elongated foot member connected to said back wall; and
- a plurality of channels defined on at least one of said front wall or said back wall, said plurality of channels extending in at least a first direction and arranged to reinforce said hollow body.
2. The control barrier of claim 1, wherein a portion of said channels extend into an upper surface of said foot member.
3. The control barrier of claim 1, wherein a portion of said back wall is oblique relative to a portion of said foot member.
4. The control barrier of claim 1, wherein said first direction is between said top portion and said bottom portion of said hollow body.
5. The control barrier of claim 1, wherein said foot member is sized and configured such that a body of water positioned above said foot member exerts a generally downward force normal to said upper surface portion of said foot member to push said foot member against a support surface under said foot member.
6. The control barrier of claim 1, wherein said at least one first connection member defines a through hole.
7. The control barrier of claim 1, further comprising a plurality of holes defined in said back wall.
8. The control barrier of claim 1, further comprising a plurality of holes defined in said front wall.
9. The control barrier of claim 1, wherein at least some of said plurality of channels are defined on said back wall.
10. The control barrier of claim 1, further comprising a plurality of ribs defined on at least one of said front wall or said back wall, said plurality of ribs extending in at least a first direction.
11. The control barrier of claim 1, wherein said hollow body is arranged to receive a material.
12. A control barrier system comprising:
- a first control barrier including: a hollow body at least partially defined by a front wall, a back wall, a top portion extending between said front wall and said back wall, a bottom portion generally opposite said top portion, a first end extending between said top portion and said bottom portion, and a second end extending between said top portion and said bottom portion; an elongated foot member connected to said bottom portion; a plurality of channels defined on at least one of said front wall or said back wall, said plurality of channels extending in at least a first direction and arranged to reinforce said hollow body; and
- a second control barrier connected to said first control barrier.
13. The control barrier system of claim 12, wherein said second control barrier is rotatably connected to said first control barrier.
14. The control barrier system of claim 12, further comprising a waterproof membrane draped over at least said rotatable connection between said first control barrier and said second control barrier.
15. The control barrier of claim 12, wherein a portion of said channels extend into an upper surface of said foot member.
16. The control barrier of claim 12, wherein a portion of said back wall is oblique relative to a portion of said foot member.
17. The control barrier of claim 12, wherein said first direction is between said top portion and said bottom portion of said hollow body.
18. A method of forming a control barrier wall, the method comprising:
- providing a first control barrier and a second control barrier, each of said first control barrier and said second control barrier including: a hollow body at least partially defined by a front wall, a back wall, a top portion extending between said front wall and said back wall, a bottom portion generally opposite said top portion, a first end extending between said top portion and said bottom portion, and a second end extending between said top portion and said bottom portion; an elongated foot member connected to said bottom portion; a plurality of channels defined on at least one of said front wall or said back wall, said plurality of channels extending in at least a first direction; and connecting the first control barrier to the second control barrier.
19. The method of claim 18, further comprising covering said back walls of said first and second control barriers with a waterproof membrane.
20. A control barrier comprising:
- a hollow body at least partially defined by a front wall, a back wall, a top portion extending between said front wall and said back wall, a bottom portion generally opposite said top portion, a first end extending between said top portion and said bottom portion, and a second end extending between said top portion and said bottom portion;
- an elongated foot member connected to said hollow body; and
- a plurality of recessed portions defined on at least one of said front wall or said back wall, said plurality of recessed portions arranged to reinforce said hollow body.
21. The control barrier of claim 20, wherein the elongated foot member is connected to said bottom portion.
22. The control barrier of claim 20, wherein the elongated foot member is connected to said back wall.
Type: Application
Filed: Mar 10, 2015
Publication Date: Jul 2, 2015
Inventor: Jaren Taylor (Logan, UT)
Application Number: 14/643,095