AUDIO VIDEO SYSTEM WITH EMBEDDED WIRELESS HOST AND WIRELESS SPEAKERS
An audio video system is described that includes an AV receiver with a wireless audio module (WAM) host and without audio amplifier functionality. The system further includes a plurality of wireless speakers each having a WAM device to enable unidirectional or bidirectional communications with the WAM host. Each wireless speaker includes an amplifier that may be matched to a driver of the speaker to optimize the frequency response of the driver.
Latest AliphCom Patents:
This Application is a Continuation of U.S. patent application Ser. No. 11/859,460 filed on Sep. 21, 2007, which is incorporated herein by reference.
FIELDEmbodiments of the invention pertain to an audio video system with an embedded wireless host communicating with wireless speakers.
BACKGROUNDIn the consumer electronics and computer industries, transmission of audio signals from a host player to remote device speakers has generally been accomplished over an analog wired interface comprising speaker wires. With the advent of digital audio content, the desire to maintain the pristine digital audio signal as far as possible along the audio signal chain has motivated designers to pursue digital interfaces to replace unsightly, signal-loss-prone analog speaker wires.
The High-Definition Multimedia Interface (HDMI) is an all-digital audio/video interface capable of transmitting uncompressed streams. HDMI is compatible with High-bandwidth Digital Content Protection (HDCP) Digital Rights Management technology. HDMI provides an interface between any compatible digital audio/video source, such as a set-top box, a DVD player, a PC, a video game console, or an audio video (AV) receiver and a compatible digital audio and/or video monitor, such as a digital television (DTV).
These prior art conventional systems contain components that can maintain pristine digital audio and video from source to display through HDMI interconnects. By contrast, the interconnects from the source to most of the speakers is still analog via conventional speaker wires. For prior art systems containing 6 individual speakers, and other, more advanced systems which support up to 8 speakers or more, the speaker wire interconnections not only suffer from analog signal loss, but the speaker wire interconnections can be an eyesore or a wire-hiding challenge. Also, a surround-sound system with a large number of speakers and associated wiring causes further complications for installation and ease of modification.
SUMMARYAn audio video system is described that includes an AV receiver with a wireless audio module (WAM) host and without audio amplifier functionality. The system further includes a plurality of wireless speakers each having a WAM device to enable unidirectional or bidirectional communications with the WAM host. Each wireless speaker includes an amplifier that may be matched to a driver of the speaker to optimize the frequency response of the driver.
For one embodiment, the AV receiver without audio amplifier has a functionality of a HDMI AV receiver. For another embodiment, functionality of the AV receiver is located in a HDMI TV. For another embodiment, functionality of the AV receiver is located in a HDMI DVD player. For another embodiment, functionality of the AV receiver is located in an integrated HDMI TV/DVD player.
Other features and advantages of embodiments of the present invention will be apparent from the accompanying drawings and from the detailed description that follows below.
Embodiments of the present invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
An AV system is described that includes an AV receiver with a WAM host and without an audio amplifier functionality. The system further includes a plurality of wireless speakers each having a WAM device to enable unidirectional or bidirectional communications with the WAM host.
One intended advantage of the AV system is having each wireless speaker include an amplifier that is matched to a driver of the speaker to optimize the frequency response of each driver. Another intended advantage is the design flexibility based on having the WAM host located in various types of sources such as an AV receiver, a DVD player, a display, or an integrated DVD player/display. The absence of a centralized audio amplifier functionality in a source creates this design flexibility.
The wireless audio topology of
Note that the topology between WAM host and WAM devices is point-to-multipoint, implemented via an Ultra Wide Band Host/Device architecture. Also noteworthy is the ability for bidirectional communications over the wireless link, as depicted with the wireless beacon-like icons. The majority of the data transferred in such an audio application is from host to devices, but very important, infrequent data is sent from the devices to the host, communicating acknowledgements of data transfers and application-specific information, such as packet reception reliability statistics. Additionally, the absence of speaker wires enables a simpler-to-setup, less cluttered environment, and allows the pristine digital audio content to reach the speakers with no signal loss.
For another embodiment, the DVD player 402 is a HDMI DVD player that includes the WAM host 404 to provide wireless audio capabilities. In this case, the digital audio video source is the DVD disc, whose data is extracted via the DVD drive, and then decoded in the DVD decoder, which creates separate video and audio outputs. The digital video output goes only to the HDMI transmitter (not shown), whereas the digital audio is sent to both the WAM Host and the HDMI transmitter. Video and audio in such arrangements are effectively synchronized at this point, and the HDMI link introduces effectively no latency for its video and audio going to a display, for example, so the wireless audio must meet acceptable latencies, else the system may exhibit annoying lip-sync issues.
For one embodiment, each wireless speaker 430, 440, 450, 460, 470, and 480 further includes an amplifier 432, 442, 452, 462, 472, and 482, respectively, matched to a driver of the respective speaker to optimize the frequency response of the driver. For another embodiment, at least one wireless speaker includes a plurality of drivers and a plurality of amplifiers with each amplifier being matched to a respective driver to optimize the frequency response of each driver. For example, a wireless speaker may include various types of drivers such as a woofer that produces low frequency sounds, a tweeter that produce the high frequency sounds, and a midrange driver that produces a range of frequencies in the middle of the sound spectrum. Each driver located in a wireless speaker can have a distributed amplifier optimized for the frequency range of the driver.
The wireless audio topology reduces clutter and also enables consolidation of devices and multiple locations of the WAM host, as shown in
WAM host 512 and without a centralized audio amplifier. The display 502 may be a HDMI display that can be coupled to a HDMI DVD player 510. For one embodiment, the AV system 500 further includes a plurality of wireless speakers 530, 540, 550, 560, 570, and 580, each having a respective WAM device 534, 544, 554, 564, 574, and 584 to enable bidirectional communications with the WAM host 512. For another embodiment, each wireless speaker 530, 540, 550, 560, 570, and 580 further includes a respective amplifier 532, 542, 552, 562, 572, and 582 matched to a driver of the respective speaker to optimize the frequency response of the driver.
The wireless audio topology reduces clutter and also enables consolidation of devices and multiple locations of the WAM host, as shown in
The wireless audio topology reduces clutter and also enables interesting consolidation of devices and multiple locations of the WAM host, as shown in
High quality pristine digital audio can be provided for various embodiments with no speaker wiring required. For example, a consumer can quickly and easily install the wireless speakers with no stripping of speaker wires. Also, a consumer has a general freedom to decorate or redecorate a building or residence without being limited with speaker wire concerns. A consumer can also purchase an AV system including the wireless speakers in a piecemeal manner.
The transceiver may be a HDMI transceiver located in a source such as a HDMI TV, a HDMI DVD player, or an integrated HDMI TV/DVD player. The source includes no audio amplifier. At least one wireless speaker may include a plurality of drivers and a plurality of amplifiers with each driver being matched to an amplifier to optimize the frequency response of the driver.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims
1. A system, comprising:
- an audio video (AV) receiver with a wireless audio module (WAM) host and without a centralized audio amplifier functionality, the WAM host being implemented using a point-to-multipoint network topology using an Ultra-Wideband (UWB) host/device architecture,
- the WAM host including a first microprocessor, an audio-in first-in-first-out (FIFO) buffer coupled with a digital audio input, the audio-in FIFO coupled with a first input and a first output of the first microprocessor, a first packet memory operative for packet storage and coupled with an output of the first microprocessor, and an UWB host coupled with an output of the first packet memory and bi-directionally coupled with the first microprocessor, the UWB host operative to wirelessly transmit digital audio received on the digital audio input; and
- a plurality of wireless speakers each having a WAM device configured for bi-directional communication with the WAM host over a wireless link between each WAM device and the WAM host, wherein each wireless speaker includes an amplifier to amplify communications received from the WAM host and to which at least a part of the centralized audio amplifier functionality is distributed,
- each WAM device including an UWB device operative to wirelessly receive the digital audio transmitted by the UWB host, a second packet memory operative for packet storage and coupled with an output of the UWB device, a second microprocessor bi-directionally coupled with the UWB device and with an output of the second packet memory, and an audio-out FIFO coupled with a second input and a second output of the second microprocessor, and the audio-out FIFO coupled with a digital audio output operative to output digital audio.
Type: Application
Filed: Sep 15, 2014
Publication Date: Aug 6, 2015
Applicant: AliphCom (San Francisco, CA)
Inventors: John David Banks (Cupertino, CA), David C. Buuck (Santa Clara, CA), Jon Norenberg (Modesto, CA), Bradley Bozarth (Mountain View, CA), Eric Wiles (Sunnyvale, CA), Tom Mader (San Francisco, CA)
Application Number: 14/486,997