Fasteners, Deployment Systems, and Methods for Ophthalmic Tissue Closure and Fixation of Ophthalmic Prostheses and Other Uses
Methods and devices for ophthalmic tissue closure and fixation of ophthalmic prostheses are provided. In accordance with some embodiments, devices for both grasping and clipping a plurality of ocular tissue and ocular prostheses are provided. Various device embodiments are provided for both malleable clips and delivery of normally closed clips (i.e. shape memory). The device may accommodate a plurality of clips which include, but are not limited to: malleable metals, absorbable, shape memory, drug-eluting, and adhesive dispensing. The clips may be pigmented to match the colors of associated tissue (cornea, iris, conjunctiva, sclera, retina) to serve to camouflage fixation clips for healing duration or permanently. According to one aspect, shallow angle access to anatomy may be provided by specialized angulation of device shaft and closure jaws that are intended to access the eye through a small self-healing cornea incision and/or any ocular tissue.
The present application is a Continuation of U.S. Ser. No. 13/434,562 filed Mar. 29, 2012 (Allowed); which claims the benefit under 35 USC 119(e) of US Provisional Appln. No. 61/468,827 filed Mar. 29, 2011; the full disclosures which are incorporated herein by reference in their entirety for all purposes.
FIELD OF THE INVENTIONThe present invention relates generally to medical devices, systems and methods, with many of the embodiments described herein providing fasteners such as clips, staples, or the like, optionally for ophthalmic surgery and, more particularly, to repair of wounds, closure of incisions, and fixation of prosthetic structures in ophthalmic surgery.
BACKGROUND OF THE INVENTIONIn the field of ophthalmology, there exist distinct clinical subspecialties (e.g., cataract, retina, cornea, etc.) organized around disease classifications of the eye. Within each subspecialty, there exist distinct surgical therapies that involve specialized wound closures and prosthesis fixation requiring substantial and/or difficult suturing of tissue. The primary tissues involved in any given surgery maybe any or all of the following: cornea, iris, conjunctiva, sclera, and retina.
Many surgical procedures involve suturing techniques to ensure a secure, water tight seal. Depending on the procedure, the suturing process can be very time consuming relative to the total length of a procedure. Suturing time can be so significant (e.g., iris fixation of a common prosthesis such as intra-ocular lens) that some surgeons may prefer to avoid a particular case by referring the patient to an experienced specialist. Additionally, the overhead expense of the surgical facility (which can be incurred not only during the underlying therapeutic procedure but also throughout the time dedicated to suturing of the access site and the like) will often result in a negative cash flow for a particularly complex suture case.
In recent years, adhesives (typically fibrin) have been developed as an alternative for ocular tissue closure and fixation of prosthetic structures. However, adhesives have been associated with disadvantages for both the surgeon and patient. For the surgeon, adhesives can be time consuming to mix, variable in curing time, limited to linear low-force incisions, and/or less customizable than would be ideal, potentially leading to difficulty in obtaining a desired closure pressure. For the patient, the use of adhesive for ophthalmological procedures can result in discomfort, because the typical curing process may leave a slight amount of cured adhesive standing or protruding above the intended anatomy. The resulting height can cause significant ocular discomfort. Consequently, there exists an opportunity for improved methods and devices for ocular tissue closure and fixation.
BRIEF SUMMARY OF THE INVENTIONThe invention generally provides improved medical devices, systems, and methods. Many embodiments of the invention employ tissue fasteners that can be inserted into (and optionally, though not necessarily, through) tissue structures underlying a tissue surface, often without having to access opposed surfaces behind the tissue structures. Exemplary embodiments of the fasteners are particularly well suited for apposition and closure of tissue edges bordering incisions and other wounds of ophthalmic tissues, to affix prosthetic structures to an ophthalmic tissue structure, and the like. First and second legs of the fastener may be configured to be advanced distally through a tissue surface and into the tissue. A base of the fastener may support the legs relative to each other, and may comprise an arc or other bend protruding laterally from the legs, with the bend generally being configured to reside along the tissue surface through which the legs are inserted. The legs may angle toward or away from each other as they advance along straight or curving insertion paths, and plastic, elastic, and/or super-elastic deformation of the base can help bring wound edges of the tissue into engagement, advance the legs within the tissue and/or maintain the base of the fastener along the tissue surface.
In a first aspect, embodiments of the invention provide methods for surgical tissue fixation. The method comprises advancing a first leg of a surgical fastener through a tissue surface and within tissue underlying the surface. A second leg of the surgical fastener is advanced through the tissue surface and within the tissue. A base of the fastener supports the legs, and the base is reconfigured so that the advanced legs maintain the base in engagement with the tissue surface. The reconfigured base has a bend extending along the tissue surface.
In another method aspect, a method for ophthalmic tissue fixation comprises piercing an ophthalmic tissue surface with a first end of a first leg of a surgical fastener at a first penetration site. The first leg is advanced within tissue underlying the surface, and travels along a first path. A second end of a second leg of the fastener pierces the tissue surface at a second penetration site, and is advanced within the tissue along a second path. The first and second paths forms opposed oblique angles with the tissue surface, and the first and the second paths extend along a leg deployment plane. The paths have a path separation different than a penetration site separation between the penetration sites. A base of the fastener includes an elongate body having an axis extending between the legs. The axis has a bend protruding from the leg plane and along a base surface, with the base surface extending across the leg plane. The base is reconfigured so as to inhibit withdrawal of the legs along the paths, and to maintain the base surface along the tissue surface such that the fastener is affixed to the tissue adjacent the first and second legs.
In another method aspect, a method for ophthalmic surgical tissue fixation comprises piercing a tissue surface with a first end of a surgical fastener and advancing the first end within tissue. The tissue comprises an ophthalmic tissue, and the tissue surface comprises or is disposed adjacent a visible surface of an eye so that the first end is advance toward an interior of the eye. The fastener is reconfigured so as to affix a body of the fastener along the visible surface of the eye. The visible surface of the eye has an ophthalmic color and the body of the fastener has a color sufficiently corresponding to the ophthalmic color to camouflage the fastener.
In yet another method aspect, a method for affixing an ophthalmic device to an iris of an eye comprises introducing a tool into the eye at an insertion location, and advancing the tool from the insertion location across a visual field of the eye to a deployment location. A fastener is deployed with the tool into the iris at the deployment location.
In a device aspect, embodiments of the invention provide a device for surgical tissue fixation. The device comprises a first elongate leg defining an axis and a first end configured for advancing axially within tissue. A second leg defining an axis and a second end configured for advancing axially within the tissue. The first and second leg axes define a leg plane. A base extends along a base surface and supports the legs. The base has a bend protruding from the leg plane, and the base is configured to deform so that the legs maintain the base surface along the tissue surface after advancing the legs.
In another device aspect, a device for ophthalmic tissue fixation comprises a first leg with a first end configured for piercing an ophthalmic tissue surface of at a first penetration site, and for advancing within tissue underlying the ophthalmic tissue surface along a first path. A second leg has a second end configured for piercing the ophthalmic tissue surface at a second penetration site, and for advancing within the tissue along a second path. The first and second paths form opposed oblique angles with the tissue surface. The first and the second paths also extend along a leg plane, and the paths having a path separation different than a penetration site separation between the penetration sites. A base extends between the legs, the base comprising an elongate body having an axis. The axis has a bend protruding from the leg plane between the legs and along a base surface corresponding with the ophthalmic tissue surface. The base is configured for deformation so as to inhibit withdrawal of the legs along the paths, and so as to maintain the base surface along the ophthalmic tissue surface.
In yet another aspect, a fastener can be used for ophthalmic surgical tissue fixation to an ophthalmic tissue having an ophthalmic tissue surface comprising or disposed adjacent a visible surface of an eye. The fastener comprises a surgical fastener with a first end configured for piercing the ophthalmic tissue surface and for advancing within the ophthalmic tissue. A body extends proximally of the first end, the body comprising a deformable metal so as to support the body of the fastener along the visible surface of the eye. The visible surface of the eye has an ophthalmic color, and the body of the fastener has a color sufficiently corresponding to the ophthalmic color to camouflage the fastener.
In yet another device aspect, embodiments of the invention provide a system for affixing an ophthalmic device to an iris of an eye. The system comprises a tool having a proximal end and a distal end with a shaft extending therebetween. The distal end and adjacent shaft are configured for insertion into the eye at a minimally invasive insertion location, and are also configured for advancing from the insertion location across a visual field of the eye to a deployment location. A fastener is deployably supported adjacent the distal end of the shaft. The fastener has a leg with a tissue piercing end, and the leg is oriented across the shaft so as to be advanceable into the iris at the deployment location when the tool is inserted.
Optionally, the tissue in which the fasteners are to be deployed will comprise an ophthalmic tissue of an eye. The first and second legs can be inserted with first and second edges of a wound disposed therebetween, and the deforming of the base can be performed so as to urge the edges together for healing of the wound. In some embodiments, the fastener can be included in a deployment system configured to foster a predetermined deployed separation between the legs, so that the deforming of the base urges the legs toward the predetermined separation. In some embodiments, the deforming of the base is performed by releasing the base so that the base urges the edges of the wound against each other, optionally with a sealing or other engagement force in a desired range. In some embodiments, the deforming of the base comprises adjusting the bend of the base so as to provide a desired engagement between the edges of the wound against , with the deployment optionally being manually adjusted by a surgeon or other health care professional.
The base and legs may be formed integrally from a continuous length of material, with the material optionally being bent and/or otherwise processed to form the desired shapes and to have the desired functionality. In many embodiments, the continuous length of material will comprise a deformable metallic wire, though alternative embodiments may employ deformable polymers (optionally including biodegradable and/or bioresorbable polymers) or the like. The legs, base, and the like may also be assembled from a series of discrete components by soldering, welding, adhesively or ultrasonic bonding, and/or the like. In many embodiments, the base will comprises an elongate body having a first base portion with a first base axis adjacent the first leg, a second base portion having a second base axis adjacent the second leg, and one or more middle base portion having a middle base axis disposed between the first base portion and the second base portion. The bend will typically be disposed at least in part along the middle base portion. The middle base portion may comprise an arc, and may optionally extend near or to one or both of the legs. In alternative embodiments, the middle base portion(s) may have sharp bends, optionally at joints between assembled components or the like. Exemplary embodiments for ophthalmic applications can be formed from wire having a cross sectional size of wire diameters up to about 0.010 inches, often being in a range from about 0.001 to 0.010 inches, and typically being in a range from 0.002 to 0.006 inches. The tissue-penetrating legs for such ophthalmic applications will generally be separated from the base surface (and/or tissue surface when deployed) by less than about 5 mm, typically by a distance in a range from about 0.1 to about 0.5 mm, and often in a range from about 0.3 to about 0.5 mm. Separation between the legs when the fastener is in a resting state may be in a range from 0 to about 5 mm. Other medical and/or surgical applications may employ embodiments that range up to larger sizes, for example, optionally being formed of wires that range up to 0.020 inches. For some ophthalmological applications for closure and the like, exemplary embodiments may comprise tantalum, may primarily be composed of tantalum, and/or may be substantially or entirely composed of tantalum.
The first base axis, second base axis, and middle base axis often extend along a base surface, at least when the fastener is in the deployed configuration. In many embodiments, the legs may protrude from the base surface, ideally so that the base surface will correspond to and can extend along the tissue surface through which the legs are advanced. The portion of the base oriented toward the legs may comprise a tissue engagement surface, and the legs may help maintain the base along the tissue surface. For example, the deformation of the base may induce opposing forces between the legs and the tissue to maintain the base surface along the tissue surface.
The first leg may have a first leg axis and the second leg can similarly have a second leg axis, with the first and second leg axes generally defining a leg plane or leg surface. Note that the legs need not be precisely coplanar, but will generally extend from opposed portions of the base in a generally similar orientation so as to allow the fastener to be advanced into the tissue along a deployment plane. The bend of the middle portion of the base typically protrudes from the leg plane.
In exemplary embodiments, the tissue comprises a spherically curving ophthalmic tissue, such as a tissue of the sclera or white of the eye. The base surface may be spherically bent so that the first base axis, second base axis, and middle base axis define a bend or curve along the tissue surface when viewed in the leg plane, and may also define a bend or curve along the tissue surface when viewed normal to the leg plane, with the bends ideally comprising curves corresponding to the tissue curvature.
Optionally, the base may have first and second bends between the legs, with the first bend protruding from a first side of the leg plane, and the second bend protruding from a second side of the leg plane opposed to the first side. Alternative embodiments may have a single bend along the base, or more than two bends. In many embodiments, particularly when the tissue comprises an ophthalmic tissue, the tissue surface may comprise or be disposed adjacent a visible surface of the eye so that the legs penetrate the tissue surface and advance toward an interior of the eye. The visible surface of the eye will often have an ophthalmic color and the base portion may have a color sufficiently corresponding to the ophthalmic color to camouflage the fastener. The color may be selectively applied (for example, along an anteriorly oriented visible surface of the base) or may be disposed generally over the base and/or legs of the fastener.
The legs may be generally straight and may be configured to advance in the tissue so that first and second tissue paths of the first and second legs extend from first and second penetration sites, respectively, to form opposed generally consistent oblique angles with the tissue surface. Deforming of the base may, for such embodiments, comprise changing an angle of the bend during or after insertion of the legs so that a separation distance between the first leg and the second leg changes, optionally while the legs advance through the penetration sites. In some embodiments, the legs may be curved so that first and second tissue paths of the first and second legs extend along arc segments. For such embodiments, the deforming of the base may comprise rotation of the first leg about a first torsional axis of the base adjacent the first leg, and rotation of the second leg about a second torsional axis of the base adjacent the second leg. For both types, the deforming of the base can comprise plastically deforming the base during or after the advancement of the legs; and/or deforming the base may comprise releasing the base from a delivery tool so as to allow the base to urge the legs to advance into the tissue. When the deformation of the base is effected by releasing the base, the base may be constrained by a delivery tool prior to deployment, and may be biased to maintain engagement between the base and the tissue surface after release, with the fastener comprising a resilient metal or polymer, a superelastic metal or polymer, or the like. Some embodiments may employ Nitinol™ superelastic alloys. Still further embodiments may optionally employ shape-memory materials so as to effect changes in configuration.
In some embodiments, the tissue may comprise or supports the iris of an eye, and the fastener may be deployed by advancing a shaft of a deployment tool from an insertion site, across a field of view of the eye, and toward a deployment site of the tissue. The fastener can pierce the tissue surface at the deployment site, with at least one leg oriented and/or advanced along an insertion axes that extends across an axis of the shaft.
When the body or base of the fastener comprises a metal, and when the tissue in which the fastener is deployed comprises a scleral tissue, a white layer or pigmentation of or over a surface of the metal may help camouflage the fastener. When the tissue comprises an iris of the eye, the fastener may be selected from among a plurality of alternative fasteners having differing colors so that the color of the fastener matches a color of the iris of the eye.
Some or all embodiments of the fasteners described herein may be included in a deployment system having a deployment tool, with the tool releasably supporting the fastener for deployment in exterior tissue surface, a tissue surfaced accessed via a surgical incision or the like, or via a minimally invasive surgical aperture into an eye or other tissue structure of the patient. The deployment tool may have a shaft with a proximal end and a distal end with an axis therebetween. A first grasping element can be disposed adjacent the distal end, the first grasping element having a first grasping surface. A second grasping element can also be disposed adjacent the distal end, the second grasping element having a second grasping surface. The second grasping surface will often be movable between a first configuration and a second configuration, the grasping elements configured to capture and/or grasp the fastener therebetween when the second grasping surface is in the first configuration. A handle may be disposed adjacent the proximal end of the shaft so that movement of the handle can effect movement of the second grasping surface from the first configuration to the second configuration such that, when the legs are aligned with a target deployment location of the tissue surface the movement induces the advancing of the legs within the tissue and release of the fastener from the tool. For example, the second grasping element may slide along an actuation axis, with movement optionally being effected by pushing a surface of the second grasping element (or another structure operatively coupled thereto) against the tissue surface through which the legs will be advanced, with the actuation axis typically extending along (optionally being parallel to) the deployment or leg plane of the fastener. Alternative embodiments may employ actuatable handles operatively coupled with the second grasping element so as to effect movement or the like. In some embodiments, movement of the second grasping element may effect reconfiguration of the base such as by plastically deforming the base, releasing the fastener from a constrained configuration and/or the like; ideally so as to produce or allow a change in a separation distance between relatively straight legs and/or a change in a relative rotational orientation of arcuate legs.
With the known limitations of existing suturing and adhesive tissue closure technology and methods, there exists a need for an alternative. According to various embodiments, an apparatus and method provides an ophthalmic surgeon the versatility of mechanical closure expected of suture along with the efficiency expected with adhesive. This versatility is achieved while also providing the surgeon a more predictable closure according to various embodiments.
Because of the patient's eye positioning, closure and/or fixation may be enabled by providing the ability to both grasp and clip the associated ocular tissue. The ability to also grasp enables the surgeon to a) position the necessary tissue or ocular prosthetic prior to fixation and b) create a manual “one handed” closure method as opposed to two hands required for suturing (i.e., gasper in one, needle in second). Because the duration of the fixation clip can be permanent or temporary, matching the color of the clip with the surrounding tissue would allow for surface exposed clips to be relatively hidden during the healing process, at which point the clip could remain, be removed, or absorb. To address a greater range of ocular tissues and prosthetics, some embodiments of the apparatus may be angled in such a way to provide access to areas where anatomical shallow angles exist.
7 wherein a temporal or superior approach may be through a clear corneal incision that crosses the visual axis within a visual field of the eye. The corneal access incision may be sufficiently small as to be self-healing.
The invention generally provides improved medical devices, systems, and methods. Many embodiments of the invention employ tissue fasteners that can be inserted into and/or through tissue structures underlying a tissue surface, often without having to access opposed surfaces behind the tissue structures. The novel fasteners described herein may employ structures and tissue interactions having some attributes of surgical staples, clips, wires, or even sutures, so that the fasteners may be referenced herein alternatively as clips, staples, or the like. Exemplary embodiments of the fasteners are configured for affixation of and to ophthalmic tissues, such as for apposition and closure of tissue edges bordering incisions and other wounds of (and/or underlying) the sclera, the cornea, the iris, and/or the like. These or related embodiments may also be employed to affix a haptic of an intraocular lens or other prosthetic structure to an iris or other ophthalmic tissue structure. When used for closure of incisions or other wounds, the fastener will often be deployed by inserting first and second legs distally into the tissue on either side of the wound so that the incised edges are near or in contact with each other. A base of the fastener may comprise an arc or other bend protruding laterally from the legs, with the bend generally being configured to reside along the tissue surface through which the legs are inserted. The legs may be inserted along insertion paths that angle toward each other as the legs advance distally, and the bend of the base may be reconfigured so as to provide a predetermined separation between the legs which holds the edges of the tissue together. Alternatively, the bend may be reconfigured to elastically (including super-elastically) urge the edges together, and/or the base may be manually adjusted during or after deployment to provide a leg separation suitable for that particular deployment. Hence, methods and devices for closure and fixation of ophthalmic tissue are provided.
In operation of the exemplary embodiment in
In operation of the exemplary embodiment in
For the exemplary embodiments of the apparatus in
Exemplary clips shown and described with respect to
According to various embodiments, the clips may be produced with pigmentation that camouflage the clip with the tissue that it adjoins. The pigmented clips, pigmented either through natural pigmentation of the base material or through alteration of the surface material, are desirable for cosmetic purposes, e.g., pigmented shades of white to match scleral tissue. Furthermore, pigmented shades of brown, blue, green, and other colors may be used to match iris tissue. Alternatively, transparent clips may be used as camouflage to any surrounding tissue colors.
Surface pigmentation can be accomplished several ways. For example, tantalum and titanium, and their alloys, can be anodized. Anodizing is process that that forms an oxide layer on the surface of the base material. A wide array of colors can be achieved by varying the thickness of the oxide layer. The color that is visualized represents the wavelength of reflected light from the base material that passes through the oxide layer. Colors relevant to matching eye anatomy can be made with the anodizing process of these metals and their alloys, including shades of off-white to match sclera tissue, and various shades of brown, blue, and green to match iris tissue.
Another approach to provide a desired surface color is by the lamination of a pigmented material onto the surface of the clip. For example, a pigmented polymer such as nylon can be laminated to the surface of the clips in a heat-shrinking process. One way this may be performed is by sliding a pigmented polymer tube over the base material. A second tube of heat-shrinkable material such as polyolefin or fluoropolymer is placed over both the pigmented polymer and the base material. With the application of heat, the polyolefin or fluoropolymer heats, compresses, and flows the underlying pigmented polymer so that it becomes laminated to the base material.
Pigmented polymers are widely available in many colors including those that would be relevant for eye anatomy, including shades of off-white to match sclera tissue, and various shades of brown, blue, and green to match iris tissue.
Referring now to
Referring still to
The clip embodiment shown in
The center axes 118, 120 of the piercing portions are disposed at oblique angles relative to the base surface, and are generally opposed from each other, with these and other exemplary embodiments forming angles that can range from 30-deg to 60-deg to the plane of connecting arc or bend 124 of base 114, optionally so that at least a portion of the paths of these structures within tissue are at a distance which is different than (often being less than) a separation distance of the penetration locations of the legs into the tissue surface. More generally, the legs (or portions thereof) will typically form an oblique angle with the tissue and/or base surfaces, with the oblique angels often being in a range from about 20-deg to about 80-deg. The ends 116 of the piercing portions may be beveled or otherwise sharpened to facilitate tissue penetration. The piercing portions are connected by an arc 124 having a diameter of approximately 0.050-in. The arc resides generally along a plane that is 90-degrees to the plane of the piercing portions such that the arc can rest flat against the tissue surface through which the legs are inserted. The depth of the piercing portions or legs below the plane of the arc may be preferentially configured such that the clip does not penetrate through the full thickness of the tissue in which it is inserted. Rather, the clip is preferably designed for partial thickness tissue penetration. The arc 124 may perform one, some or all of at least three functions. First, the arc can connect the piercing portions, which allows (for example) those portions to hold and appose two tissue edges together. Second, the arc may be adjusted or selectively deformed to control the distance between the two piercing portions. The arc can optionally be provided in one or more pre-set gaps. Alternatively, a clinician can adjust the gap, either intra-operatively or post-operatively, using forceps to pinch or spread the arc at the junctions with the piercing portions. Third, the arc can be used to elastically store energy if mechanically restrained in an open position prior to deployment.
In this embodiment, the wire is spring tempered or hardened such that if stretched within the elastic (or super-elastic) limits of the material, it will return to a preferred shape. The clip 140 shown in
The clip embodiment shown in
In this embodiment, the wire is spring tempered or hardened such that if stretched within the elastic (or super-elastic) limits of the material, the clip 200 will return toward and/or to a preferred shape. The clip 200 shown in
The clip embodiment 300 shown in
The ends of the piercing portions may be beveled or otherwise sharpened to facilitate tissue penetration. The piercing portions are connected by a base 306 comprising an arc having a diameter of approximately 0.050-in. The arc resides in a plane that is 90-degrees to the plane of the piercing portions such that the arc can rest flat against the tissue. The depth of the piercing portions below the plane of the arc may be preferentially designed such that the clip does not penetrate the full thickness of the tissue. The clip is preferably designed for partial thickness tissue penetration.
The arc 306 that connects the piercing portions 302, 304 performs three functions. First, the arc connects the piercing portions, which allows those portions to retain the proximity of two tissue edges. Second, the connecting arc 306 may be adjusted to control the distance between the two piercing portions. The arc can be provided in one or more pre-set gaps. Alternatively, a clinician can adjust the gap, either intra-operatively or post-operatively, using forceps or the like to pinch or spread the connecting arc 306 at the junctions with the piercing portions 302, 304. Third, the connecting arc serves to set the depth of the clip in the tissue and prevent any unwanted ingress of the clip both during deployment and on a post-procedure basis.
In this embodiment, the wire is sufficiently malleable such that permanent mechanical deformation is readily possible via plastic deformation of the wire. The clip 300 shown in
A spring may optionally be placed between the clip hammer and anvil so that when the system is at rest, the clip is held securely between these two components. Additionally, the spring may be used to produce a deployment force that corresponds to a minimum desired input force into the handpiece by the clinician.
The clip embodiment 400 shown in
Note that the clip delivery device is illustrative only. A variety of mechanisms could be used to move the jaws away from each other to release a clip.
The clip embodiment 500 shown in
The arcs of the base of the clip embodiment 500 of
Fifth, the presence of dual arcs on the surface of the tissue will prevent any unwanted rotation of the clip.
The clip embodiment 700 shown in
The arcs of clip 700 can perform five functions. First, the arcs connect the piercing portions, which allow those portions to hold and appose two tissue edges together. Second, the arcs may be individually adjusted to control the distance between the two piercing portions. The arcs can also be provided in one or more pre-set gaps. Alternatively, a clinician can adjust the gap, either intra-operatively or post-operatively, using forceps to pinch or spread the arcs at the junctions with the piercing portions. Third, the arc can be used to elastically store energy if mechanically restrained in an open position until time of deployment. Fourth, the connecting arc serves to set the depth of the clip in the tissue and prevent any unwanted ingress of the clip both during deployment and on a post-procedure basis. Fifth, the presence of dual arcs on the surface of the tissue will prevent any unwanted rotation of the clip.
In addition to closing tissue and fixating ophthalmic prostheses, the clips may provide additional benefits, including drug elution or administration. Such beneficial drugs include, but are not limited to: anti-biotics, anti-inflammatories, steroids, anti-coagulates, anti-vegf (vessel growth factor), and antifibrotics. Clips may be coated with drugs in some embodiments. Alternatively, clips may be designed hollow or porous in order to elute or administer drugs.
The clips may also administer adhesive. As discussed in the background, adhesives are sometimes used to close the edges of incisions or wounds in ophthalmic tissue. A hollow or porous clip maybe used to elute or administer adhesive for superior strength. Furthermore, a hollow or porous clip maybe used to place adhesive underneath tissue structures to mitigate concerns of irritation with surrounding tissue structures.
The embodiments discussed herein are illustrative. As these embodiments are described with reference to illustrations, various modifications or adaptations of the methods and/or specific structures described may become apparent to those skilled in the art.
In the foregoing specification, the invention is described with reference to specific embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features and aspects of the above-described invention can be used individually or jointly. Further, the invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive. It will be recognized that the terms “comprising,” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art.
Claims
1. An ophthalmic tissue fixation device for fixation of a first tissue edge with a second tissue edge of a wound, the ophthalmic tissue fixation device comprising:
- a handle configured to be held by an operator;
- an anvil coupled with a distal end of the handle and configured to restrain a tissue fastener having a first leg, a second leg, and a base supporting the first and second legs; and
- a driver coupled with the handle and configured to be driven to deploy the tissue fastener restrained by the anvil;
- wherein the anvil and the driver cooperate to deploy the tissue fastener during actuation of the driver;
- wherein the first leg of the tissue fastener is advanceable through a tissue surface and within the tissue underlying the tissue surface at a first penetration site on a first side of the wound;
- wherein the second leg of the tissue fastener is advanceable through the tissue surface and within the tissue underlying the tissue surface at a second penetration site on a second side of the wound and spaced apart from the first penetration site by a distance;
- wherein the base is reconfigurable during the advancement of the first leg and the second leg such that the distance between the first penetration site and the second penetration site is retained after tissue fastener deployment by the cooperation between the driver and anvil and such that a proximity between the first tissue edge and the second tissue edge is also retained after tissue fastener deployment by the cooperation between the driver and anvil.
2. The ophthalmic tissue fixation device of claim 1, further comprising the tissue fastener, and wherein the tissue fastener comprises a metal material with an anodized oxide layer formed on a surface of the metal material.
3. The ophthalmic tissue fixation device of claim 1, further comprising the tissue fastener, and wherein the tissue fastener comprises a polymer laminated to a surface of the fastener.
4. The ophthalmic tissue fixation device of claim 1, wherein the anvil includes channels for restraining legs of the tissue fastener.
5. The ophthalmic tissue fixation device of claim 1, further comprising the tissue fastener, and wherein the base of the tissue fastener is configured to extending along the tissue surface after deployment of the tissue fastener.
6. The ophthalmic tissue fixation device of claim 5, wherein the base has a tissue contacting side and a top side opposite the tissue contacting side, and wherein the top side of the tissue fastener is configured to be at least flush with the tissue surface after deployment of the tissue fastener.
7. The ophthalmic tissue fixation device of claim 5, wherein the tissue fastener comprises a wire having a diameter between 0.002-0.006 inches.
8. The ophthalmic tissue fixation device of claim 5, wherein an axis of the first leg and an axis of the second leg of the tissue fastener define a leg deployment plane and wherein a surface of the base is spherically bent when viewed normal to the leg deployment plane, wherein the spherically bent base corresponds to a spherical curvature of the tissue.
9. The ophthalmic tissue fixation device of claim 5, wherein an axis of the first leg and an axis of the second leg of the tissue fastener define a leg deployment plane; wherein the base of the tissue fastener includes a bend protruding from the leg deployment plane; and wherein the anvil and the driver cooperate to reconfigure the base by deforming the bend of the base in a plane transverse to the leg deployment plane during advancement of the first leg and the second leg.
10. The ophthalmic tissue fixation device of claim 1, wherein the anvil and the driver cooperate to reconfigure the base of the tissue fastener to urge the first and second legs together while maintaining the distance between the first penetration site and the second penetration site.
11. The ophthalmic tissue fixation device of claim 1, wherein the distance does not change during tissue fastener deployment.
12. The ophthalmic tissue fixation device of claim 1, wherein the proximity between the first and second tissue edges does not change during tissue fastener deployment.
13. A tissue fixation device, the device comprising:
- a handle configured to be held by an operator;
- an anvil coupled with a distal end of the handle and having channels configured to restrain a first leg and a second leg of a surgical fastener, the surgical fastener including a base supporting the first and second legs; and
- a driver coupled with the handle and configured to be driven distally to deploy the surgical fastener restrained by the anvil;
- wherein the anvil and the driver cooperate to deploy the surgical fastener during actuation of the driver;
- wherein the first leg of the surgical fastener is advanceable through a tissue surface and within the tissue underlying the surface at a first penetration site;
- wherein the second leg of the surgical fastener is advanceable through the tissue surface and within the tissue at a second penetration site and spaced apart from the first penetration site by a distance;
- wherein the base is reconfigurable during the advancement of the first leg and the second leg such that the distance between the first penetration site and the second penetration site is retained after surgical fastener deployment by the cooperation between the driver and anvil.
14. The fixation device of claim 13, further comprising the surgical fastener, and wherein the base of the surgical fastener is configured to extending along the tissue surface after deployment of the surgical fastener.
15. The fixation device of claim 14, wherein the base has a tissue contacting side and a top side opposite the tissue contacting side, and wherein the top side of the tissue fastener is configured to be at least flush with the tissue surface after deployment of the tissue fastener.
16. The fixation device of claim 14, wherein the surgical fastener comprises a wire having a diameter between 0.002-0.006 inches.
17. The fixation device of claim 14, wherein an axis of the first leg and an axis of the second leg of the surgical fastener define a leg deployment plane and wherein a surface of the base is spherically bent when viewed normal to the leg deployment plane.
18. The tissue fixation device of claim 13, wherein the distance does not change during tissue fastener deployment.
19. A fastener system for ophthalmic surgical fixation, the fastener system comprising:
- a surgical fastener having a first leg and a second leg with a base supporting the first leg and the second leg; and
- a fastener deployment system comprising: a handle configured to be held by an operator; an anvil coupled with a distal end of the handle and having a first cavity and a second cavity within the anvil, the first cavity of the anvil configured to seat the first leg of a surgical fastener and the second cavity of the anvil configured to seat the second leg of the surgical fastener with the base of the surgical fastener supporting the first leg and the second leg; a driver coupled with the handle and configured to be driven distally to deploy the surgical fastener seated in the anvil; and a distal tissue penetrating end extending distally from the anvil configured to pierce the tissue prior advancement of the first leg and the second leg through the tissue; wherein the anvil and the driver cooperate to deploy the tissue fastener during actuation of the driver; wherein the first leg of the surgical fastener is simultaneously advanceable with the second leg of the surgical fastener in the distal direction; wherein the surgical fastener is simultaneously reconfigured from a seated configuration when the first leg and the second leg are seated in the first cavity and the second cavity of the anvil, respectively, to a deployed configuration concurrently with the advancement of the first leg of the surgical fastener in the distal direction tissue and the second leg of the surgical fastener in the distal direction.
20. The fastener system of claim 19, wherein the surgical fastener comprises a wire having a diameter between 0.002-0.006 inches.
21. An ophthalmic fastener system for tissue fixation of a first tissue edge with a second tissue edge of an ophthalmic wound, the tissue fixation system comprising:
- a handle configured to be held by an operator;
- an anvil coupled with a distal end of the handle and restraining a tissue fastener having a first leg, a second leg, and a base supporting the first and second legs, the base having a tissue contacting side and a top side opposite the tissue contacting side; and
- a driver coupled with the handle and configured to be driven to deploy the tissue fastener restrained by the anvil;
- wherein the anvil and the driver cooperate to deploy the tissue fastener during actuation of the driver;
- wherein the first leg of the tissue fastener is advanceable through a tissue surface and within the tissue underlying the tissue surface at a first penetration site on a first side of the wound;
- wherein the second leg of the tissue fastener is advanceable through the tissue surface and within the tissue underlying the tissue surface at a second penetration site on a second side of the wound and spaced apart from the first penetration site by a distance;
- wherein the tissue fastener reconfigures to a deployed configuration during the advancement of the first leg and the second leg such that the top side of the base is at least flush with a tissue surface when the tissue fastener is reconfigured in the tissue to the deployed configuration.
22. The ophthalmic fastener system of claim 21, wherein the fastener is manufactured from bio-absorbable materials.
23. The ophthalmic fastener system of claim 22, wherein the bio-absorbable material is configured to elute or administer pharmaceuticals.
24. The ophthalmic fastener system of claim 21, wherein a proximity between the first tissue edge and the second tissue edge is retained after tissue fastener deployment by the cooperation between the driver and anvil.
25. The ophthalmic tissue fixation device of claim 24, wherein the distance does not change during tissue fastener deployment.
26. The ophthalmic tissue fixation device of claim 24, wherein the proximity between the first and second tissue edges does not change during tissue fastener deployment.
27. An ophthalmic fixation device, the device comprising:
- a handle configured to be held by an operator;
- an anvil coupled with a distal end of the handle and having channels configured to restrain a first leg and a second leg of a surgical fastener, the surgical fastener including a base supporting the first and second legs; and
- a driver coupled with the handle and configured to be driven distally to deploy the surgical fastener restrained by the anvil;
- wherein the anvil and the driver cooperate to deploy the surgical fastener during actuation of the driver;
- wherein the first leg of the surgical fastener is advanceable through a tissue surface at a first penetration site and within the tissue underlying the surface along a first path;
- wherein the second leg of the surgical fastener is advanceable through the tissue surface at a second penetration site and within the tissue along a second path, the first and second paths forming opposed oblique angles with the tissue surface and the first path and the second path extending along a leg deployment plane, the first and second paths having a path separation different than a penetration site separation between the first and second penetration sites, wherein the base of the surgical fastener comprises an elongate body having an axis extending between the legs, the axis having a bend protruding from the leg deployment plane and along a base surface extending across the leg deployment plane;
- wherein the base of the surgical fastener is reconfigurable by deforming the bend of the base in a plane transverse to the leg deployment plane, thereby inhibiting withdrawal of the first and second legs along the first and second paths, respectively, and to maintain the base surface along the tissue surface such that the surgical fastener is affixed to the tissue adjacent the first and second legs.
28. The ophthalmic fixation device of claim 27, wherein the surgical fastener comprises a wire having a diameter between 0.002-0.006 inches.
29. The ophthalmic fixation device of claim 27, wherein a distance between the first and second penetration sites is retained after surgical fastener deployment.
30. The ophthalmic fixation device of claim 29, wherein the distance does not change during surgical fastener deployment.
Type: Application
Filed: Apr 23, 2015
Publication Date: Aug 13, 2015
Patent Grant number: 10016197
Inventors: Steven D. Vold (Bentonville, AR), Kenneth A. Peartree (Danville, CA), Timothy D. Buckley (Alamo, CA), Aaron Feustel (Claremont, NH)
Application Number: 14/694,546