MULTI-LEVEL STORAGE SYSTEM WITH TRANSPORTATION DEVICES MOVABLE IN SUBSTANTIALLY PERPENDICULAR DIRECTIONS AND METHOD OF TRANSFERRING CONTAINERS IN DESIRED SEQUENCE
A storage system having multiple storage sections, each configured for storing containers arranged in multiple rows at various horizontal levels with respect to ground. Multiple lifting transportation devices are configured for moving in a first horizontal direction along pairs of first rails arranged at predetermined horizontal levels in passages between the storage sections so as to take containers stored in the adjacent storage sections and place them to a selected row of the adjacent storage sections. At least one container carriage is configured for moving in a second horizontal direction substantially perpendicular to the first horizontal direction so as to take the containers placed in the selected row and move them in the second horizontal direction.
This disclosure relates to retail logistics, and more particularly, to a multi-level storage system in a warehouse, fulfillment center or retail store using transportation devices movable in substantially perpendicular horizontal directions in different horizontal planes so as to provide point-to-point transfers of containers.
BACKGROUND ARTTypical warehouse operations include handling and storage of products in order to efficiently receive inventory, store it, collect products from different containers to prepare orders, and ship orders to customers. Handling and storage of products in a storage system involve a number of in-storage inventory transfers performed within the warehouse. After containers with products are received and moved to an initial storing location, products are often moved within the facility for storage or order selection. Further, after an order for product shipment is received, it is necessary to collect the required products to fulfill the order and move orders to a shipping area.
Several transfer movements are required in a typical warehouse. First, products are moved from the receiving area to a remote storage location. Additional movements may be required prior to order assembly, depending upon warehouse operating procedures. To fulfill an order, products are usually transferred from a storage area to a picking area. Finally, prepared orders are moved from a picking area to a shipping dock for loading to outbound transportation means.
In traditional storage systems, transfer movements are carried out using a combination of lift trucks, conveyors, and manual processes. However, such transfer operations are slow, and involve complex logistics and substantial labor cost when a large number of orders must be processed.
Therefore, it would be desirable to develop storage systems capable of performing in-storage transfer operations in a quick and efficient manner.
Also, there is a need for transferring containers within a storage system or out of a storage system in a predetermined sequence.
For example, during an order processing procedure when multiple orders are fulfilled at the same time, different orders may require collection of products from different containers. To increase the efficiency of the order fulfillment and the throughput of the storage system, it would be desirable to deliver containers to a picking area in a predefined sequence so as to enable a picking device or operator to pick products required to fulfill processed orders sequentially. For instance, to fulfill the first order, products stored in containers 1 and 2 may be required, to fulfill the second order, products from containers 3 and 4 may be needed, and to fulfill the third order, products from containers 5 and 6 should be delivered. In this case, it would be desirable to produce a sequence of containers in which containers 3 and 4 follow containers 1 and 2, and containers 5 and 6 follow containers 3 and 4.
Also, an order may include multiple products that should be packed in a specific sequence. For example, heavy products need to be placed at the bottom of the container, while lightweight products may be placed after the heavy products. In this case, to efficiently fulfill the order, it would be desirable to deliver containers with the heavy products before containers with the lightweight products.
Further, trucks used for shipping orders from a warehouse or fulfillment center should be loaded in accordance with order destinations so as to make it possible to unload containers delivered to closer destinations without unloading the remaining containers from the truck. In this case, it would be desirable to transfer containers to truck loading ports in an order determined by containers' destinations.
SUMMARY OF THE DISCLOSUREIn accordance with one aspect of the disclosure, the present disclosure offers a storage system having multiple storage sections, each configured for storing containers arranged in multiple rows at various horizontal levels with respect to ground. Multiple lifting transportation devices are configured for moving in a first horizontal direction along pairs of first rails arranged at predetermined horizontal levels in passages between the storage sections so as to have access to containers arranged in the storage sections.
Each lifting transportation device movable along a corresponding pair of the first rails between adjacent storage sections is configured to include a container access mechanism movable in a vertical direction with respect to the corresponding pair of rails so as to take a container stored in the adjacent storage sections and place the container to a selected row of the adjacent storage sections.
At least one container carriage is configured for moving in a second horizontal direction substantially perpendicular to the first horizontal direction. The container carriage is further configured for taking the container placed to the selected row and moving the container in the second horizontal direction.
Each lifting transportation device and the at least one container carriage are configured for moving in different horizontal planes with respect to the ground so as to avoid interferences between the lifting transportation devices and the at least one container carriage.
The selected row of the storage sections is arranged at a horizontal level between a horizontal plane for moving a lifting transportation device and a horizontal plane for moving the at least one container carriage.
In an exemplary embodiment, the container carriage may be movable in the second horizontal direction along a pair of second rails.
The first rails may be arranged above the selected row of the storage sections, and the second rails may be arranged below the selected row.
The container carriage may include a board for carrying the containers, and may be configured for raising the board so as to take the container from the selected row.
Multiple container carriages may be provided in the storage system for carrying containers along respective pairs of the second rails arranged below the selected row of the storage sections.
In accordance with another aspect of the disclosure, a method of transferring containers in a desired order is offered. The method uses multiple lifting transportation devices movable along respective pairs of first rails in a first horizontal direction in passages between storage sections configured for storing containers arranged in multiple rows at various horizontal levels with respect to ground. The method also uses at least one container carriage movable in a second horizontal direction substantially perpendicular to the first horizontal direction.
The following steps are performed to provide a desired sequence of containers:
selecting a group of containers stored in the storage sections for transferring to a predetermined destination in a prescribed order,
controlling lifting transportation devices for moving the containers of the selected group in a vertical direction to the selected row of the storage sections, and
controlling the at least one container carriage for sequentially moving the containers of the selected group from the selected row for delivery to the predetermined destination in the prescribed order.
In accordance with a further aspect, a desired sequence of containers may be provided using multiple container carriages movable in the second horizontal direction.
In this case, the selected group of containers may be divided into a number of subgroups. Lifting transportation devices may be controlled for moving the containers of the subgroups in a vertical direction to the selected row of the storage sections.
A container carriage may be assigned to each of the subgroups. Each assigned container carriage may be controlled to move containers of a corresponding subgroup from the selected row in a direction of the predetermined destination so as to deliver the containers of the selected group in the prescribed order.
Each lifting transportation device and the at least one container carriage may move in different horizontal planes with respect to the ground so as to avoid interferences between the lifting transportation devices and the at least one container carriage.
The selected row of the storage sections may be arranged at a horizontal level between a horizontal plane for moving a lifting transportation device and a horizontal plane for moving the at least one container carriage.
The container carriage may move in the second horizontal direction along a pair of second rails.
The first rails may be arranged above the selected row of the storage sections, and the second rails may be arranged below the selected row.
If the method is implemented using multiple container carriages, each of them may move along respective pairs of the second rails.
Additional advantages and aspects of the disclosure will become readily apparent to those skilled in the art from the following detailed description, wherein embodiments of the present disclosure are shown and described, simply by way of illustration of the best mode contemplated for practicing the present disclosure. As will be described, the disclosure is capable of other and different embodiments, and its several details are susceptible of modification in various obvious respects, all without departing from the spirit of the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as limitative.
The following detailed description of the embodiments of the present disclosure can best be understood when read in conjunction with the following drawings, in which the features are not necessarily drawn to scale but rather are drawn as to best illustrate the pertinent features, wherein:
The present disclosure will be made using exemplary storage environment discussed below. It will become apparent, however, that the concept of the disclosure is applicable to any storage system using transportation devices movable in substantially perpendicular horizontal directions in different horizontal planes.
The storage system 10 may include storage racks 12, 14, 16 and 18, each of which is configured for storing containers arranged in a vertical direction in multiple rows at various horizontal levels with respect to the ground. The containers may be any objects capable of holding goods stored in the storage area, such as cartons, boxes, crates, or pallets.
As shown in
Although
The lifting transportation devices are configured for moving in a horizontal direction along corresponding pairs of rails 20 arranged at multiple horizontal levels in each passage so as to have access to containers arranged in storage racks on both sides of the passage. In particular, the rails 20 provided for the transportation devices A1, B1 and C1 are arranged below the rails 20 provided for the transportation devices A2, B2 and C2, and the rails 20 provided for the transportation devices A3, B3 and C3 are arranged above the rails 20 for the transportation devices A2, B2 and C2.
As discussed in more detail below, each lifting transportation device includes a frame movable along a selected pair of rails and a movable platform configured to move up and down with respect to the frame so as to handle containers provided above and below the corresponding pair of rails 20. In particular, a lifting transportation device may load a container from one selected row of the adjacent storage racks, and may unload that container to another selected row of the storage racks. The container may be unloaded to the same storage rack from which the container is taken. Alternatively, the container may be loaded from one storage section served by the transportation device and unloaded to the other storage rack served by the transportation device.
Further, the system 10 includes container carriages 22 movable in a horizontal direction substantially perpendicular to the horizontal direction in which the lifting transportation devices move. For example, the container carriages 22 may be configured for moving along corresponding pairs of rails 24 that may be arranged in the same horizontal plane in a horizontal direction substantially perpendicular to the direction of the rails 20. The pairs of rails 24 may be arranged below a selected row of the storage racks 12, 14, 16 and 18 so as to enable the container carriage 22 to access containers held in the selected row. Also, the container carriage 22 may be configured to move along a single rail 24, or to move without rails at all. As discussed in more detail below, each container carriage 22 may have a board for carrying containers. The board may be raised with respect to the rails 24 so as to take a container from the selected row or to place the container to the selected row.
For example, the rails 24 may be arranged on the floor of the storage facility. Multiple pairs of rails 24 may be arranged in parallel so as to provide access of the respective container carriages 22 to containers held in the selected row above the respective pairs of rails 24.
To avoid interferences between the container carriages 22 and the lifting transportation devices A1-A3, B1-B3 and C1-C3, the pairs of rails 24 and the pairs of rails 20 are arranged on different horizontal planes with respect to the ground so as to provide movement of each container carriage 22 and each lifting transportation device in different horizontal planes with respect to the ground.
Each of the lifting transportation devices A1-A3, B1-B3 and C1-C3 is configured to take a container stored in any row of the adjacent storage racks and place the container to a selected row accessible by the container carriages 22. The selected row is arranged at a horizontal level between a horizontal plane for moving a lifting transportation device and a horizontal plane for moving a container carriage. For example,
The storage system 10 provides a point-to-point transfer of a container using a lifting transportation device to transfer the container from a point in which the container is stored in the storage section to a transit storage point in a selected row, and then using a container carriage to transfer the container from the transit point in the selected row to a desired destination point. For example, containers may be transferred to a picking area in which a picking device or operator collects required products from the containers to fulfill an order.
The point-to-point transfer of the present disclosure makes it possible to transfer containers without using expensive container transferring systems such as a conveyor system. In addition, the point-to-point container transfer of the present disclosure substantially reduces the time required to transfer containers between various points in the storage system.
Although
The frame 102 may hold a movable platform 106 that can be used for carrying containers. For example, the platform 106 may be a rectangular metal plate configured to accommodate containers. Side walls 108 may be provided on the frame 102 to support loading and carrying containers.
The platform 106 may move in a vertical direction up and down with respect to the frame 102 so as to access containers arranged in rows above and below the level at which the rails 20 are arranged. A platform lifting mechanism 110 may be arranged at the side walls 108 to move the platform 106 in a vertical direction. The platform lifting mechanism 110 may be implemented using any well-known mechanisms for moving a plate up and down. For example, a telescopic mechanism can be utilized.
One or more handling elements 112 may be mounted on the platform 106 and configured for operating with containers. The handling elements 112 may take one or more containers from one row of the storage rack, place the container onto the transportation unit 100 for carrying to another row, and remove the container from the transportation device 100 for placing it at a selected row. The handling elements 112 may be extended in a horizontal direction from one or both sides of the transportation device 100 so as to handle containers arranged at one storage rack or both storage racks served by the transportation device 100. For example, the handling elements 112 may be implemented as a metal plate, spade, fork or pulling device.
The operations of each lifting transportation device 100 may be controlled by a controller that may include a data processor responsive to external commands for processing the commands and producing various control signals. The controller may communicate with various elements of the lifting transportation unit 100 to supply control signals to the elements of the transportation unit 100 and receive responses.
Due to ability of transportation devices to move the platform 106 up and down in a horizontal direction, adjacent transportation devices arranged at the same passage between storage racks can simultaneously operate with containers arranged at the same row. For example, the transportation device A1 may load one or more container from a row in the storage section 12. At the same time, the transportation device A2 may unload one or more containers to the same row. To avoid interference between the transportation devices A1 and A2 when both of them cross the same point, the platform 106 of the transportation device A1 may be moved down and/or the platform 106 of the transportation device A2 may be moved up. As a result, the storage system 10 can provide a high-speed transfer of containers from any slot of the storage racks to another slot in a selected row of the storage racks accessible to the container carriage 22.
The frame 220 may hold a board 260 that can be used for carrying containers. For example, the board 260 may be a rectangular metal plate configured to accommodate containers. A pantograph mechanism 280 may be provided on the frame 220 to raise the board 260 with respect to the frame 220 in order to place containers on the board 260, or to move the board 260 down to a folded position so as to enable the container carriage 22 to move under the row of containers.
As shown in
As shown in
As shown in
As shown in
Then, as shown in
Hence, the storage system 10 of the present disclosure may provide a point-to-point transfer of a selected container 300 from a starting point at which the container 300 is stored to a transit point at a selected row of a selected storage rack, and from the transit point to a destination point at the selected row of a storage rack which is not adjacent to the storage rack from which the container 300 is delivered.
The transfer procedures may be controlled by a control unit including a data processor responsive to external commands for processing the commands and producing various control signals.
Referring to
As shown in
Referring to
Thereafter, as shown in
As shown in
As illustrated in
Then, the container carriage 22 with container C4 may be moved below the rack 14 to a position below the storage location where container C3 is held, so as to position container C4 in the passage between the racks 12 and 14 (
As shown in
As shown in
Referring to
As shown in
Thereafter, as shown in
Referring to
As shown in
Referring to
As shown in
The foregoing description illustrates and describes aspects of the present invention. Additionally, the disclosure shows and describes only preferred embodiments, but as aforementioned, it is to be understood that the invention is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein, commensurate with the above teachings, and/or the skill or knowledge of the relevant art.
The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments and with the various modifications required by the particular applications or uses of the invention. Accordingly, the description is not intended to limit the invention to the form disclosed herein.
Claims
1. A storage system comprising:
- multiple storage sections, each configured for storing containers arranged in multiple rows at various horizontal levels with respect to ground;
- multiple lifting transportation devices configured for moving in a first horizontal direction along pairs of first rails arranged at predetermined horizontal levels in passages between the storage sections so as to have access to containers arranged in the storage sections, each lifting transportation device movable along a corresponding pair of the first rails between adjacent storage sections being configured to include a container access mechanism movable in a vertical direction with respect to the corresponding pair of rails so as to take a container stored in the adjacent storage sections and place the container to a selected row of the adjacent storage sections; and
- at least one container carriage configured for moving in a second horizontal direction substantially perpendicular to the first horizontal direction, the container carriage being configured for taking the container placed in the selected row and moving the container in the second horizontal direction,
- wherein each lifting transportation device and the at least one container carriage are configured for moving in different horizontal planes with respect to the ground so as to avoid interferences between the lifting transportation devices and the at least one container carriage, and
- the selected row of the storage sections is arranged at a horizontal level between a horizontal plane for moving a lifting transportation device and a horizontal plane for moving the at least one container carriage.
2. The system of claim 1, wherein the at least one container carriage is movable in the second horizontal direction along one or more second rails.
3. The system of claim 2, wherein the first rails are arranged above the selected row of the storage sections, and the second rails are arranged below the selected row.
4. The system of claim 3, wherein the at least one container carriage includes a board for carrying the containers, and the container carriage is configured for raising the board so as to take the container from the selected row.
5. The system of claim 4 including multiple container carriages movable along respective pairs of the second rails arranged below the selected row of the storage sections.
6. A method of transferring containers in a desired order using multiple lifting transportation devices movable along respective pairs of first rails in a first horizontal direction in passages between storage sections configured for storing containers arranged in multiple rows at various horizontal levels with respect to ground, and using at least one container carriage movable in a second horizontal direction substantially perpendicular to the first horizontal direction, the method comprising the steps of:
- selecting a group of containers stored in the storage sections for transferring to a predetermined destination in a prescribed order,
- controlling lifting transportation devices for moving the containers of the selected group in a vertical direction to the selected row of the storage sections, and
- controlling the at least one container carriage for sequentially moving the containers of the selected group from the selected row for delivery to the predetermined destination in the prescribed order.
7. The method of claim 6, wherein the containers are transferred using multiple container carriages movable in the second horizontal direction.
8. The method of claim 7, further comprising:
- dividing the selected group of containers into a number of subgroups,
- controlling lifting transportation devices for moving the containers of the subgroups in a vertical direction to the selected row of the storage sections,
- assigning a container carriage to each of the subgroups, and
- controlling each assigned container carriage to move containers of a corresponding subgroup from the selected row in a direction of the predetermined destination so as to deliver the containers of the selected group in the prescribed order.
9. The method of claim 6, wherein each lifting transportation device and the at least one container carriage are movable in different horizontal planes with respect to the ground so as to avoid interferences between the lifting transportation devices and the at least one container carriage.
10. The method of claim 9, wherein the selected row of the storage sections is arranged at a horizontal level between a horizontal plane for moving a lifting transportation device and a horizontal plane for moving the at least one container carriage.
11. The method of claim 10, wherein the at least one container carriage is movable in the second horizontal direction along a pair of second rails.
12. The method of claim 11, wherein the first rails are arranged above the selected row of the storage sections, and the second rails are arranged below the selected row.
13. The method of claim 8, wherein the container carriages are movable along respective pairs of the second rails.
Type: Application
Filed: Feb 11, 2014
Publication Date: Aug 13, 2015
Inventor: Sergey N. RAZUMOV (Moscow)
Application Number: 14/178,024