SEGMENTED BALL WITH LIGHTED SEGMENTS
Embodiments of the instant invention include lighted bounceable toys for play and amusement. Such toys or structures can be made in an infinite number of graceful and useful configurations. Exemplary bounceable ball toys include a light assembly having a power source and a plurality of light emitting elements, and a spherical skeletal structure having a plurality of segments. The spherical skeletal structure defines an open interior cavity, and at least some segments of the skeletal structure include a channel opening that faces toward the interior cavity. Light emitting elements transmit light to the channel openings.
This application is a continuation of U.S. patent application Ser. No. 14/640,620 filed Mar. 6, 2015, which is a continuation U.S. patent application Ser. No. 14/163,987 filed Jan. 24, 2014, which is a continuation of U.S. patent application Ser. No. 13/566,579 filed Aug. 3, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 13/004,818 filed Jan. 11, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 11/957,904 filed Dec. 17, 2007 (now U.S. Pat. No. 7,867,115). U.S. patent application Ser. No. 13/566,579 is also a continuation-in-part of U.S. patent application Ser. No. 29/424,579 filed Jun. 13, 2012. Further, this application is related to U.S. Pat. Nos. 4,509,929, 5,110,315, and 6,086,445, and U.S. patent application Ser. No. 10/744,962 filed Dec. 23, 2003 (now U.S. Pat. No. 7,192,328), Ser. No. 11/015,387 filed Dec. 16, 2004 (now U.S. Pat. No. 7,601,045), Ser. No. 11/152,020 filed Jun. 13, 2005 (now U.S. Pat. No. 7,661,896), and Ser. No. 11/558,350 filed Nov. 9, 2006. The entire contents of each of the above referenced filings are incorporated herein by reference.
BACKGROUND OF THE INVENTIONEmbodiments of the invention relate generally to the field of toys, and in particular to devices and methods that involve lighted segments having curved or angular profiles. Embodiments of the present invention provide toys or objects for use as balls, therapeutic instruments, baby toys, pet toys, beach or pool rafts, and the like.
The incorporation of lighted features has provided the basis for a variety of toys and other useful objects. Although such toys and objects have been generally commercially successful, it would be desirable to provide certain innovations and diversifying features. For these and other reasons, there continues to be a need for improved toy systems and other useful and decorative structures. Embodiments disclosed herein provide solutions to such needs.
BRIEF SUMMARY OF THE INVENTIONEmbodiments of the instant invention address these and other unfulfilled needs by providing systems, devices, and methods involving toys with lighted segments, which provide appealing stimulation to the visual and tactile senses. Such toys or structures can be made in an infinite number of graceful and decorative configurations. Moreover, these objects can function as bounceable, rollable, throwable, inflatable, or floatable devices, as diversion tranquilizers for occupying a user's hands and attention, and as toys for general amusement and artistic inspiration.
In one aspect, embodiments of the present invention include a bounceable ball toy. The toy includes a light assembly having a power source and a plurality of light emitting diodes. The toy also includes a spherical skeletal structure having a plurality of segments, where the spherical skeletal structure defining an open interior cavity. At least some segments of the skeletal structure have a channel opening that faces toward the interior cavity. The light emitting diodes are disposed at least partially within the channel openings. In some cases the spherical skeletal structure defines at least two apertures that provide fluid communication between the open interior cavity and an ambient space disposed outside of an external boundary defined by the skeletal structure. The light assembly may be configured to direct light toward a surface of the channel opening. In some cases, at least some of the segments have a portion that is transparent or translucent to light. Optionally, the light assembly includes a wire that is disposed at least partially within the channel openings.
In another aspect, embodiments of the present invention encompass a bounceable ball toy that includes a light assembly and a skeletal structure. The skeletal structure may include a plurality of segments, and may define an open interior cavity. In some cases, one or more segments of the skeletal structure include a support. The light assembly can be configured to direct light into the supports. A support may include a channel, a lumen, a bulb, a tube, a passage, or the like. In some cases, a support includes a channel having a concave surface that faces toward the open interior cavity. In related cases, the light assembly is configured to direct light toward the concave surface of the channel. Optionally, the support may include a lumen, and the light assembly can have a light emitting element disposed within the lumen.
In still another aspect, embodiments of the present invention include a toy having a light assembly and a skeletal structure. The skeletal structure can have at least one segment, and can define an open interior cavity. The light assembly can be configured to direct light into at least one segment of the skeletal structure or into a core module disposed at least partially within the skeletal structure. In some cases, the light assembly includes a light emitting diode or a glowstick. In some cases, a segment or core module includes a channel, and the light assembly includes a light emitting diode or a glowstick configured to direct light toward or through a surface of the channel. Optionally, a segment or core module can have a lumen, and the light assembly can have a light emitting diode configured to direct light toward or through a surface of the lumen. The skeletal structure may define two or more apertures that provide fluid communication between the open interior cavity and an ambient space disposed outside of an external boundary defined by the skeletal structure. The skeletal structure may also define a shape such as a sphere, a spheroid, a prolate spheroid, an oblate spheroid, an ellipsoid, a toroid, a geodesic sphere, or the like. In some cases, a light assembly may include a processor. In some cases, the skeletal structure may be coupled with a logo plate. The logo plate can include a filter, an aperture, or any of a variety of translucent, transparent, or opaque components or materials. In some embodiments, a core module may have one or more struts. Optionally, a core module may include a platform. In some cases, a skeletal structure includes a thermoplastic resin having a durometer of about 60.
In yet another aspect, embodiments of the present invention encompass a method of making a bounceable ball toy. An exemplary method may include coupling a power source holder with a plurality of light emitting diodes to form a light assembly, and coupling the light assembly with a spherical skeletal structure having a plurality of segments. At least some segments of the skeletal structure may have a channel opening that faces toward an open interior cavity defined by the skeletal structure. A light emitting diode may be disposed at least partially within a channel opening. The method may also include placing a power source in operative association with the power source holder. In some methods, a skeletal structure segment may include a material that is transparent or translucent to light. In some methods, a power source holder can be attached with a skeletal structure segment.
According to some aspects, embodiments of the present invention include a method of making a toy that includes, for example, providing a light assembly, and coupling the light assembly with a skeletal structure. The skeletal structure may define an open interior cavity. In some methods, the skeletal structure defines two or more apertures that provide fluid communication between the open interior cavity and an ambient space disposed outside of an external boundary defined by the skeletal structure. In some methods, the skeletal structure includes a channel facing toward the open interior cavity, and the light assembly is configured to direct light toward the channel. Optionally, the skeletal structure may include a lumen, and the light assembly can be configured to illuminate an interior space of the lumen. In some methods, the skeletal structure includes a portion that is transparent or translucent to light. According to certain method embodiments, the light assembly includes a glowstick, or a power source holder having connectivity with a plurality of light emitting elements.
In another aspect, embodiments of the present invention encompass a bounceable spherical ball toy that includes first and second toy body portions and first and second links. The first toy body portion can include a first set of segments and a second set of segments, the first set of segments having a first curved segment and a second curved segment, and the second set of segments having a first curved segment and a second curved segment. The second toy body portion can include a first set of segments and a second set of segments, the first set of segments having a first curved segment, a second curved segment, a third curved segment, and a fourth curved segment, and the second set of segments having a first curved segment, a second curved segment, a third curved segment, and a fourth curved segment. The first link can be coupled with the first set of segments of the first toy body portion and the first set of segments of the second toy body portion. The first link can be disposed at a first end of the ball toy. The second link can be coupled with the second set of segments of the first toy body portion and the second set of segments of the second toy body portion. The second link can be disposed at a second end of the ball toy opposing the first end of the ball toy. The first curved segment of the first set of segments of the first toy body portion can intersect the first and second curved segments of the first set of segments of the second toy body portion, the second curved segment of the first set of segments of the first toy body portion can intersect the third and fourth curved segments of the first set of segments of the second toy body, the first curved segment of the second set of segments of the first toy body portion can intersect the first and second curved segments of the second set of segments of the second toy body portion, and the second curved segment of the second set of segments of the first toy body portion can intersect the third and fourth curved segments of the second set of segments of the second toy body portion. In some cases, the first curved segment of the first set of segments of the first toy body portion is coupled with the first curved segment of the second set of segments of the first toy body portion by a first equatorial segment. In some cases, the first curved segment of the first set of segments of the second toy body portion is coupled with the first curved segment of the second set of segments of the second toy body portion by a second equatorial segment. In some cases, the first equatorial segment is coupled with the second equatorial segment by an equatorial link. In some cases, the first equatorial segment is coupled with the second equatorial segment by three curved equatorial links. In some cases, the first equatorial segment is coupled with the second equatorial segment by an equatorial link, and the equatorial link is positioned along a central circumferential portion of the spherical ball toy. The central circumference portion can be disposed between the first and second ends of the ball toy. In some cases, the first equatorial segment is coupled with the second equatorial segment by a first equatorial link, the first equatorial link is positioned along a central circumferential portion of the spherical ball toy, and the central circumference portion disposed between the first and second ends of the ball toy. In some cases, the first equatorial segment is coupled with the second equatorial segment by a second equatorial link, the second equatorial link is positioned along a first latitudinal circumferential portion of the spherical ball toy, and the first latitudinal circumference portion disposed between the central circumference portion and the first end of the ball toy. In some cases, the first equatorial segment is coupled with the second equatorial segment by a third equatorial link, the third equatorial link is positioned along a second latitudinal circumferential portion of the spherical ball toy, and the second latitudinal circumference portion is disposed between the central circumference portion and the second end of the ball toy. In some cases, the first curved segment of the first set of segments of the second toy body portion is coupled with the first curved segment of the second set of segments of the second toy body portion by a third equatorial segment. In some cases, the first equatorial segment is coupled with the second equatorial segment by a first set of three equatorial links, and the second equatorial segment is coupled with the third equatorial segment by a second set of three equatorial links. In some cases, the first equatorial segment is coupled with the second equatorial segment by a first equatorial link, the second equatorial segment is coupled with the third equatorial segment by a second equatorial link, the first and second equatorial links forming at least a portion of an equatorial loop that is positioned along a central circumferential portion of the spherical ball toy, the central circumference portion disposed between the first and second ends of the ball toy. In some cases, the first equatorial link is curved in a first direction, and the second equatorial link is curved in a second direction opposing the first direction. In some cases, the first equatorial link is curved so as to present a concave side and a convex side, the second equatorial link is curved so as to present a concave side and a convex side, the concave side of the first equatorial link and the convex side of the second equatorial link face toward the first end of the ball toy, and the convex side of the first equatorial link and the concave side of the second equatorial link face toward the second end of the ball toy. In some cases, the ball toy may include an equatorial loop that is positioned along a central circumferential portion of the spherical ball toy, the central circumference portion disposed between the first and second ends of the ball toy. In some cases, a ball toy may include a first equatorial loop that is positioned along a central circumferential portion of the spherical ball toy, such that the central circumference portion disposed between the first and second ends of the ball toy, a second equatorial loop that is positioned along a first latitudinal circumferential portion of the spherical ball toy, such that the first latitudinal circumferential portion is disposed between the central circumference portion and the first end of the ball toy, and a third equatorial loop that is positioned along a second latitudinal circumferential portion of the spherical ball toy, such that the second latitudinal circumferential portion disposed between the central circumference portion and the second end of the ball toy. In some cases, the first equatorial loop forms a first undulating pattern. In some cases, the second equatorial loop forms a second undulating pattern. In some cases, the first undulating pattern is synchronous with the second undulating pattern. In some cases, the first undulating pattern is asynchronous with the second undulating pattern. In some cases, the third equatorial loop forms a third undulating pattern, and the third undulating pattern is synchronous with the first undulating pattern and asynchronous with the second undulating pattern.
In another aspect, embodiments of the present invention encompass bounceable ball toys that may include, for example, first and second toy bodies, and one or more equatorial loops. A first toy body portion may include a first set of curved segments and a second set of curved segments, and each curved segment of the first set can be coupled with a respective curved segment of the second set. A second toy body portion can include a first set of curved segments and a second set of curved segments, and each curved segment of the first set can be coupled with a respective curved segment of the second set. A first equatorial loop can be coupled with the first toy body portion and second toy body portion. The first equatorial loop can be positioned along a central circumferential portion of the spherical ball toy, and the central circumference portion can be disposed between first and second ends of the ball toy. The second equatorial loop can be coupled with the first toy body portion and second toy body portion. The second equatorial loop can be positioned along a first latitudinal circumferential portion of the spherical ball toy. The first latitudinal circumferential portion can be disposed between the central circumference portion and the first end of the ball toy. The third equatorial loop can be coupled with the first toy body portion and second toy body portion. The third equatorial loop can be positioned along a second latitudinal circumferential portion of the spherical ball toy. The second latitudinal circumferential portion can be disposed between the central circumference portion and the second end of the ball toy.
In still another aspect, embodiments of the present invention encompass bounceable ball toys that include first and second toy body portions and first and second equatorial links. A first toy body portion can include a first set of segments having two curved segments and a second set of segments comprising two curved segments. A second toy body portion can include a first set of segments having four curved segments and a second set of segments having four curved segments. A first equatorial link can be coupled with the first toy body portion and the second toy body portion. A second equatorial link can be coupled with the first toy body portion and the second toy body portion. The first equatorial link and the second equatorial link can form at least a portion of an undulating equatorial loop that is positioned along a central circumferential portion of the spherical ball toy, and the central circumference portion can be disposed between first and second ends of the ball toy.
In one aspect, embodiments of the present invention encompass bounceable spherical ball toys that include a first end cap disposed toward a first end of the ball toy, a second end cap disposed toward a second end of the ball toy opposing the first end, a plurality of longitudinal segments extending between the first end cap and the second end cap, and a plurality of undulating latitudinal circumference portions or loops disposed between the first and second end caps and intersecting or coupling with the plurality of longitudinal segments. In some cases, the plurality of undulating latitudinal circumference portions include an undulating equatorial loop disposed about a central portion of the ball toy. In some cases, the plurality of undulating latitudinal circumference portions includes a first undulating equatorial loop disposed about a first portion of the ball toy located between the first end cap and a central portion of the ball toy. In some cases, the plurality of undulating latitudinal circumference portions includes a second undulating equatorial loop disposed about a second portion of the ball toy located between the second end cap and a central portion of the ball toy. In some cases, the plurality of undulating latitudinal circumference portions includes a first undulating equatorial loop disposed about a first portion of the ball toy located between the first end cap and a central portion of the ball toy, and a second undulating equatorial loop disposed about a second portion of the ball toy located between the second end cap and the central portion of the ball toy. In some cases, the plurality of undulating latitudinal circumference portions includes a first undulating equatorial loop disposed about a first portion of the ball toy located between the first end cap and a central portion of the ball toy, and a central undulating equatorial loop disposed about the central portion of the ball toy. In some cases, the plurality of undulating latitudinal circumference portions includes a second undulating equatorial loop disposed about a second portion of the ball toy located between the second end cap and a central portion of the ball toy, and a central undulating equatorial loop disposed about the central portion of the ball toy. In some cases, the plurality of undulating latitudinal circumference portions includes a first undulating equatorial loop disposed about a first portion of the ball toy located between the first end cap and a central portion of the ball toy, a second undulating equatorial loop disposed about a second portion of the ball toy located between the second end cap and the central portion of the ball toy, and a central undulating equatorial loop disposed about the central portion of the ball toy. In some cases, the first equatorial loop forms a first undulating pattern, the second equatorial loop forms a second undulating pattern, and the first undulating pattern is synchronous with the second undulating pattern. In some cases, the first equatorial loop forms a first undulating pattern, the second equatorial loop forms a second undulating pattern, and the first undulating pattern is asynchronous with the second undulating pattern. In some cases, the central equatorial loop forms a third undulating pattern, and the third undulating pattern is synchronous with the first undulating pattern and asynchronous with the second undulating pattern.
In another aspect, embodiments of the present invention encompass bounceable spherical ball toys that include a first equatorial loop positioned along a central circumferential portion of the spherical ball toy disposed between first and second ends of the ball toy, a second equatorial loop positioned along a first latitudinal circumferential portion of the spherical ball toy disposed between the central circumference portion and the first end of the ball toy, a third equatorial loop positioned along a second latitudinal circumferential portion of the spherical ball toy disposed between the central circumference portion and the second end of the ball toy, and a plurality of longitudinally extending segments coupled with the first, second, and third equatorial loops. In some cases, the first equatorial loop forms a first undulating pattern. In some cases, the second equatorial loop forms a second undulating pattern. In some cases, the first undulating pattern is synchronous with the second undulating pattern. In some cases, the first undulating pattern is asynchronous with the second undulating pattern. In some cases, the third equatorial loop forms a third undulating pattern, and the third undulating pattern is synchronous with the first undulating pattern and asynchronous with the second undulating pattern. In some cases, at least one of the loops includes a channel or lumen. In some cases, at one of the loops includes a channel having a concave surface that faces toward an open interior cavity of the ball toy. In some cases, the loops and longitudinally extending segments include a thermoplastic resin having a durometer of about 60.
For a fuller understanding of the nature and advantages of the present invention, reference should be had to the ensuing detailed description taken in conjunction with the accompanying drawings.
Turning now to the drawings,
As shown in
As shown here, skeletal structure 210 can be constructed from a first portion 214 and a second portion 216. These portions may be coupled together in any of a variety of ways. For example, first portion 214 can include a plurality of posts 215, and second portion 216 can include a plurality of receptacles 217 that are adapted to receive posts 215. In the embodiment depicted here, first portion 214 and second portion 216 represent two hemispherical components, which form skeletal structure 210 when coupled together.
As shown here, skeletal structure 310 can be constructed from a first portion 314 and a second portion 316. These portions may be coupled together in any of a variety of ways. For example, first portion 314 can include a plurality of posts 315, and second portion 316 can include a plurality of receptacles 317 that are adapted to receive posts 315. In some embodiments, first portion 314 and second portion 316 represent two hemispherical components, which form skeletal structure 310 when coupled together. Toy 300 also includes a platform 370 configured to support or hold light assembly 340. Platform 370 can be coupled with skeletal structure 310 as desired. For example, platform 370 can include a plurality of apertures 372 which are adapted to receive posts 315 therethrough. Light assembly 340 can be configured to direct light 348 into a plurality of supports 322. As noted elsewhere herein, supports 322 can include channels or lumens.
In addition to the shapes depicted in
As shown here, skeletal structure 1110 can be constructed from a first portion 1114 and a second portion 1116. These portions may be coupled together in any of a variety of ways. For example, first portion 1114 can include a plurality of receptacles 1115, and second portion 1116 can include a plurality of posts 1117 that are adapted to insert into receptacles 1115. In some embodiments, first portion 1114 and second portion 1116 represent two components, which form a skeletal structure 1110 having a prolate spheroid shape, such as an American football shape, when coupled together. As shown here, toy 1100 can also include end caps 1103 and a logo plate 1104 which can be coupled with skeletal structure 1110. Toy 1100 also includes a platform 1170 configured to support or hold light assembly 1140. Platform 1170 can include supports 1122 such as channels or lumens. Platform 1170 can be coupled with skeletal structure 1110 as desired. For example, platform 1170 can include one or more struts 1171 that attach with skeletal structure 1110. Optionally, struts 1171 may include one or more apertures 1172 which are adapted to receive posts 1117 therethrough. In some cases, a platform can be constructed of one or more pieces. For example, platform 1170 is depicted here as a composite structure that includes platform top bracket 1170i and platform bottom bracket 1170ii. As shown in
As shown here, skeletal structure 1210 can be constructed from a first portion 1214 and a second portion 1216. These portions may be coupled together in any of a variety of ways. For example, first portion 1214 can include a plurality of receptacles 1215, and second portion 1216 can include a plurality of posts 1217 that are adapted to insert into receptacles 1215. In some embodiments, first portion 1214 and second portion 1216 represent two generally hemigeodesic or semigeodesic components, which form a skeletal structure 1210 having a geodesic shape when coupled together. Toy 1200 also includes a platform 1270 configured to support or hold light assembly 1240. As shown here, platform 1270 can include a removable cap 1273, such as a snap lid. Platform 1270 can include supports 1222 such as channels or lumens. Platform 1270 can be coupled with skeletal structure 1210 as desired. For example, platform 1270 can include one or more struts 1271 that attach with skeletal structure 1210. Optionally, struts 1271 may include one or more apertures 1272 which are adapted to receive posts 1217 therethrough. In some cases, a platform can be constructed of one or more pieces. For example, platform 1270 is depicted here as a composite structure that includes platform top bracket 1270i and platform bottom bracket 1270ii. As shown in
As shown here, skeletal structure 1310 can be constructed from a first portion 1314 and a second portion 1316. These portions may be coupled together in any of a variety of ways. For example, first portion 1314 can include a plurality of receptacles 1315, and second portion 1316 can include a plurality of posts 1317 that are adapted to insert into receptacles 1315. In some embodiments, first portion 1314 and second portion 1316 represent two generally hemigeodesic or semigeodesic components, which form a skeletal structure 1310 having a geodesic shape when coupled together. Toy 1300 also includes a platform 1370 configured to support or hold light assembly 1340. As shown here, platform 1370 can include a removable cap 1373, such as a snap lid. Platform 1370 can include supports 1322 such as channels or lumens. Platform 1370 can be coupled with skeletal structure 1310 as desired. For example, platform 1370 can include one or more struts 1371 that attach with skeletal structure 1310. Optionally, struts 1371 may include one or more apertures 1372 which are adapted to receive posts 1317 therethrough. In some cases, a platform can be constructed of one or more pieces. For example, platform 1370 is depicted here as a composite structure that includes platform top bracket 1370i and platform bottom bracket 1370ii. As shown in
Skeletal structure 1410 of toy 1400 defines an open interior cavity 1430. Typically, open interior cavity 1430 is in fluid communication with an ambient space or environment 1460 disposed outside of the toy. As such, at some locations the skeletal structure itself may provide a separation or boundary between interior cavity 1430 and ambient space 1460, whereas in other places there may be no physical barrier provided by the skeletal structure between the cavity and the ambient space. Optionally, open interior cavity 1430 may be in fluid communication with ambient space 1460 via a plurality of apertures 1412 which are defined by skeletal structure 1410. Skeletal structure 1410 can have supports 1422 such as channels or lumens. As shown here, toy 1400 also includes a light assembly 1440 having a power source 1442 and a plurality of light emitting diodes (LEDs) 1444. Light assembly 1440 includes a wire or conducting element 1446 that conducts electricity between power source 1442 and LEDs 1444. Light assembly 1440 can be configured to direct light 1448 into a plurality of supports 1422.
In some embodiments, one or more struts 1471 may include an accordion configuration. As depicted here, a strut 1471 may include an inner segment 1471c, an outer segment 1471d, and a housing segment 1471e disposed between the inner and outer segments. In some cases, housing segment 1471 can be configured to house a light emitting element. Struts and housing elements may also include supports such as lumens, channels, passages, and the like, configured to house or contain various components of a light assembly, including light emitting elements, wires, processors, energy source holders, energy sources, and the like.
Skeletal structure 1510a can present a prolate spheroid shape, such as an American football shape. Toy 1500a can also include end caps 1503a and a logo plate 1504a which can be coupled with skeletal structure 1510a. Toy 1500a also includes a light assembly 1540a that can transmit light toward, onto, or through supports 1522a such as channels or lumens. Toy 1500a may also include platform and strut assemblies, as described elsewhere herein. As shown here, logo plate 1504a includes a contour 1504a′ and a plurality of apertures 1504a″, and is configured to present a shaped outline, template, or silhouette of a logo or other graphic element. The logo or other graphic element can represent any of a variety of companies, brand names, groups, projects, persons, organizations, or any other desired organization, item, devices, process, or the like. As shown here, the combination of the contour and apertures can provide a stylized type, either alone or in conjunction with a graphic representation. Toy 1500a is configured so that light transmitted from or emitted by various light emitting elements can pass through apertures 1504a″, or along the outer edges of contour 1504a′. In this way, toy 1500a can present a variety of light presentations to an toy operator or user, or to any observer. For example, light passing through apertures 1504a″ can provide or present one or more light beams, where the shape of each light beam corresponds to the shape of the individual aperture though which that beam passes, so as to present a toy operator with an image of the word “TANGLE”. Optionally, logo plate 1504a can include supports within the body 1504a′″ of the logo plate, and the supports can transmit light in such a way that light emitted from the body 1504a′″ presents a toy operator with an inverse image of the word “TANGLE”.
Skeletal structure 1510b can present a prolate spheroid shape, such as an American football shape. Toy 1500b can also include end caps 1503b and a logo plate 1504b which can be coupled with skeletal structure 1510b. Toy 1500b also includes a light assembly 1540b that can transmit light toward, onto, or through supports 1522b such as channels or lumens. Toy 1500b may also include platform and strut assemblies, as described elsewhere herein. As shown here, logo plate 1504b includes a first portion 1504b′ and a plurality of second portions 1504b″, and is configured to present a shaped outline, template, or silhouette of a logo or other graphic element. The logo or other graphic element can represent any of a variety of companies, brand names, groups, projects, persons, organizations, or any other desired organization, item, devices, process, or the like. As shown here, the combination of the first portion and the second portions can provide a stylized type, either alone or in conjunction with a graphic representation. Toy 1500b is configured so that light transmitted from or emitted by various light emitting elements can pass through first portion 1504b′, or through second portions 1504b″. In some cases, first or second portions may include transparent or translucent materials, optionally colored, through which light may pass. In some cases, first or second portions may include opaque materials, through which light may not pass. In this way, toy 1500b can present a variety of light presentations to an toy operator or user, or to any observer. For example, light passing through second portions 1504b″ can provide or present one or more light beams or projections, where the shape of each light beam or projection corresponds to the shape of the individual portion though which that light passes, so as to present a toy operator with an image of the word “TANGLE”. Optionally, logo plate 1504b can include supports within the body 1504b′″ of the logo plate, and the supports can transmit light in such a way that light emitted from the body 1504b′″ presents a toy operator with an inverse image of the word “TANGLE”.
Skeletal structure 1510c can present a prolate spheroid shape, such as an American football shape. Toy 1500c can also include end caps 1503c and a logo plate 1504c which can be coupled with skeletal structure 1510c. Toy 1500c also includes a light assembly 1540c that can transmit light toward, onto, or through supports 1522c such as channels or lumens. Toy 1500c may also include platform and strut assemblies, as described elsewhere herein. As shown here, logo plate 1504c includes a contour 1504c′ and a plurality of filters 1504c″, and is configured to present a shaped outline, template, or silhouette of a logo or other graphic element. In some cases, a filter may include transparent or translucent materials, optionally colored, through which light may pass. In some cases, a filter may include opaque materials, through which light may not pass. The logo or other graphic element can represent any of a variety of companies, brand names, groups, projects, persons, organizations, or any other desired organization, item, devices, process, or the like. As shown here, the combination of the contour and filters can provide a stylized type, either alone or in conjunction with a graphic representation. Toy 1500c is configured so that light transmitted from or emitted by various light emitting elements can pass through filters 1504c″, or along the edges of contour 1504c′. In this way, toy 1500 can present a variety of light presentations to an toy operator or user, or to any observer. For example, light passing through filters 1504c″ can provide or present one or more light beams, where the shape of each light beam corresponds to the shape of the individual aperture though which that beam passes, so as to present a toy operator with an image of the word “TANGLE”. Optionally, logo plate 1504 can include supports within the body 1504c′″ of the logo plate, and the supports can transmit light in such a way that light emitted from the body 1504c′″ presents a toy operator with an inverse image of the word “TANGLE”. In some cases, a filter 1504c″ may include a support having lighting assembly elements contained therein.
Skeletal structure 1610a can present a spherical or geodesic shape, such as an American soccer ball shape. Toy 1600a can also include a logo plate or sheath 1604a which can be coupled with skeletal structure 1610a. Toy 1600a also includes a light assembly 1640a that can transmit light toward, onto, or through supports 1622a such as channels or lumens. Toy 1600a may also include platform and strut assemblies, as described elsewhere herein. As shown here, logo plate or sheath 1604a can include any combination of contours, apertures, portions, filters, and the like, as discussed with regard to
Skeletal structures, segments, struts, platforms, logo plates, sheaths, and other toy elements described herein may be made of any of a variety of materials. In some embodiments, one or more such elements of a toy may include a durable thermoplastic resin (TPR). For example, a toy may include a skeletal structure with a thermoplastic resin having a durometer or hardness value of about 60. It has been discovered that toy embodiments of the present invention provide desired bounce characteristics not found in commonly available toy balls. Exemplary toy embodiments present improved bounceability and resiliency profiles. Bounceability can be characterized, for example, by how high a toy bounces, and how many times the toy bounces, when the toy is dropped from a distance. Resiliency can relate to how much energy is stored in the toy when the toy deforms, and subsequently relaxes, upon bouncing. Toy embodiments of the present invention, when dropped from a distance, can bounce highly and for a long period of time, even when dropped from a short distance. In some embodiments, the incorporation of struts into a toy can enhance or modulate the bounceability or resistance of the toy. In related embodiments, the incorporation of logo plates, patches, or sheaths can enhance or modulate the bounceability or resistance of the toy. In some cases, the bounceability can be modulated by the number of plates, patches, or sheaths on the toy, or by the hardness or elasticity of these elements. According to some embodiments, when a ball is dropped from a height of six feet, it bounces back to a height of at least three feet.
According to embodiments of the present invention, interior structural elements or support modules, such as platforms and struts, can be flexible or depressible. In this way, these interior platforms and struts can provide resilience or deformability to the overall structure of the toy, and the toy structure can bounce. For example, the toy can be thrown against or dropped upon a surface, and spring back or rebound in a lively fashion. Often, an interior or core support module, which may include one or more struts and optionally one or more platforms, can be disposed within the skeletal structure so that it resides at the center of gravity of the toy. An interior support module may include any desired number of struts disposed in any desired orientation. Light from a light emitting element can be transmitted along any desired light path. For example, light can be transmitted from a platform support channel, through a strut support channel, and into a skeletal segment support channel.
In some embodiments, toys may include a processor or light module CPU that controls a light assembly of the toy. A processor or CPU of the toy can also be configured to contain data or information that can be emitted through small speakers in the toy. The toy may also include positional or motion sensors, accelerometers, and the like. The toy can include a data storage medium for storing data from such sensors. The processor can be configured to access such data, and to also include voice recognition processing elements. For example, a processor can be programmed to recognize a question spoken by the toy user, such as “Ball, how many feet did you go?” The processor can be programmed to calculate a traveled distance, and to emit the answer in an audible format via the speakers. Optionally, a processor can be programmed to recognize spoken statistical questions, and to process such questions by accessing a statistical database. Hence, a user can ask the toy “Ball, who won the Soccer World Cup in 1966?” and the processor controls the speakers to emit the answer in an audible fashion.
Embodiments of the present invention provide toys with skeletal structures and boundary envelopes having any of a variety of shapes. For example, such shapes may include spheres, spheroids, prolate spheroids, oblate spheroids, ellipsoids, toroids, geodesic spheres, and the like. Toys may be shaped as any desired useful or functional object, including without limitation bats, balls, lawn lacrosse stick nets, bowling balls, hockey sticks and pucks, flying discs, basketballs, basketball nets, soccer balls, soccer nets, paddles, rackets, paddles with tethered balls, lawn darts, pool toys, dive toys, bulls eye hoops, lariats, stationary and school supplies, lunch pails, cups, pet toys, teething toys, toddler toys, sandbox toys, puzzles, games, bag danglers, bag clips, drink cozies, sandals, and the like.
Skeletal structures, light assemblies, or portions thereof may be constructed of or include in-molded sections of any desired material. Exemplary materials, include soft touch paint, molded textures that match retail features such as leather patterns, glow in the dark plastics, glitter material, scented plastics, multi-colored plastics, metallic finishes, in mold decoration (IMD) graphics, and the like. Skeletal structures, segments, and other aspects of toy embodiments may include features described in U.S. Pat. Nos. 4,509,929, 5,110,315, 6,086,445, and 7,192,328, and in U.S. patent application Ser. No. 11/015,387 filed Dec. 16, 2004, Ser. No. 11/152,020 filed Jun. 13, 2005, and Ser. No. 11/558,350 filed Nov. 9, 2006. The content of each of these filings is incorporated herein by reference.
Toys may include auxiliary features combined with or integrated with the skeletal structures or light assemblies. For example, a toy can include a sound device or an internal ball or structure. In some cases, light assemblies, sound devices, and other toy features may be motion-activated. For example, such toy features may be activated when the entire body of the toy is moved or translated in any direction in three dimensions. Relatedly, such toy features may be activated when the body of the toy is compressed or deformed. Toys may include motions sensors that detect motion, or compression or stress sensors that detect deformation.
In some embodiments, one or more toy segments may be coupled with or incorporate a writing instrument or other tool, or may include a therapeutic element or surface, as described in previously incorporated U.S. patent application Ser. No. 11/152,020 filed Jun. 13, 2005. For example, a toy segment may include or be coupled with a ball point pen, retractable pen, pencil, colored pencil, charcoal pencil, mechanical pencil, fountain pen, dip pen, quill pen, paint brush, gel pen, marker, highlighter, stylographs, crayon, and the like. Similarly, therapeutic elements may include resilient coatings, rotatable or slidable elements on the surface of the segments, heating or cooling of the segments, vibratable elements, encased gels or liquids, various textured surfaces, colors and/or lights, varying sizes, thicknesses and/or levels of resilience, therapeutic magnets, surfaces that move up and down or in and out, various natural or synthetic materials, such as fabrics, leather, features, fibers, seeds, other plants and the like, scented materials, herbs, flavored materials, sticky surfaces, raised or lowered images (including brail), lotions, ointments, medicines, lubricants, sponges, porous materials, foams, rubbers, bendable tabs, extensions, spikes, clays or putty, electrical stimulation elements, and the like. Segments can also be configured as a holder for a writing instrument body. In some cases, the segments can be arranged so as to prop the writing instrument body at an angle, disposed above the desk. Alternatively, the segments can be arranged so as to support the writing instrument body in a horizontal position on the desk. In related cases, the segments will be easily removable or detachable so that if the user does not want the segments on the toy body, he or she can simply pull them off or otherwise disconnect them. Toy segments can be fabricated from or include any of a variety of desired materials, such as metals, polymers, and natural substances such as wood or bamboo. Segments may be hollow, solid, porous, fibrous, and the like. Segments can include a rubber coating, a rubber coating with raised nodules, a silicone gel coating, a chemical composite coating, or a compressible rubber coating. In some cases, the segments can include or be coated with materials of varying hardness, including thermoplastic rubber, synthetic rubber, and the like. Embodiments of the present invention encompass stress relief devices, performance balls, and pet toys. In some cases, embodiments include baby toys for grasping and teething.
One or more equatorial links (e.g. 2003, 2007) can form at least a portion of an equatorial loop 2020 that is positioned along a central circumferential portion 2030 of the spherical ball toy, where the central circumference portion 2030 is disposed between the first and second ends 2003, 2004 of the ball toy. As shown here, equatorial link 2003 is curved in a first direction (e.g. downward), and equatorial link 2007 is curved in a second direction (e.g. upward) opposing the first direction. The equatorial links 2003, 2007 can have concave and convex sides, as discussed herein with regard to any of
With returning reference to
Although certain system, device, and method embodiments have been disclosed herein, it will be apparent from the foregoing disclosure to those skilled in the art that variations, modifications, alternative constructions, and equivalents of such embodiments may be made without departing from the true spirit and scope of the invention. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
Claims
1. A football toy, comprising:
- a first conically shaped end cap comprising a solid surface defining a first hollow chamber, the first conically shaped end cap having a first end cap edge;
- a second conically shaped end cap comprising a solid surface defining a second hollow chamber, the second conically shaped end cap having a second end cap edge; and
- a skeletal structure defining an open interior cavity, the skeletal structure having a plurality of ribs, wherein: the skeletal structure is coupled with the first end cap edge and the second end cap edge, the ball toy has a prolate spheroid shape defined by the first conically shaped end cap, the second conically shaped end cap, and the skeletal structure, and at least a portion of the skeletal structure comprises a channel opening that faces toward the interior cavity.
2. The football toy of claim 1, wherein:
- at least some of the plurality of ribs are coupled with both the first conically shaped end cap and the second conically shaped end cap.
3. The football toy of claim 2, wherein:
- the plurality of ribs comprises a plurality of connector ribs extending between the at least some of the plurality of ribs.
4. The football toy of claim 1, wherein:
- the skeletal structure comprises at least one plate.
5. The football toy of claim 1, further comprising:
- a light assembly having a power source and a plurality of light emitting diodes, the light assembly being coupled with the skeletal structure.
6. The football toy of claim 5, wherein:
- the light assembly comprises a member selected from the group consisting of a motion sensor and an accelerometer.
7. The football toy of claim 1, further comprising:
- a light assembly having a power source and a plurality of light emitting diodes, wherein the skeletal structure comprises at least one plate, and wherein the light assembly directs light toward the at least one plate.
8. A ball toy, comprising:
- a first conically shaped end cap comprising a solid surface defining a first hollow chamber;
- a second conically shaped end cap comprising a solid surface defining a second hollow chamber; and
- a skeletal structure having a plurality of ribs, wherein: the ball toy has a prolate spheroid shape defined by the first conically shaped end cap, the second conically shaped end cap, and the skeletal structure, at least a portion of the skeletal structure comprises a channel opening that faces toward the interior cavity, and the plurality of ribs comprises a plurality of longitudinal ribs extending between the first conically end cap and the second conically shaped end cap.
9. The football toy of claim 8, wherein:
- the skeletal structure comprises at least one plate.
10. The football toy of claim 8, further comprising:
- a light assembly having a power source and a plurality of light emitting diodes, the light assembly being coupled with the skeletal structure.
11. The football toy of claim 10, wherein:
- the skeletal structure comprises at least one plate; and
- the light assembly directs light toward the at least one plate.
12. The football toy of claim 10, wherein:
- the light assembly comprises a member selected from the group consisting of a motion sensor and an accelerometer.
13. The football toy of claim 8, wherein:
- the plurality of ribs further comprises a plurality of circumferential ribs extending around at least a portion of an outer periphery of the skeletal structure.
14. A football toy, comprising:
- a first conically shaped end cap comprising a solid surface defining a first hollow chamber;
- a second conically shaped end cap comprising a solid surface defining a second hollow chamber; and
- a skeletal structure defining an open interior cavity, the skeletal structure comprising: a plurality of longitudinal ribs extending between the first conically end cap and the second conically shaped end cap; a plurality of circumferential ribs extending around at least a portion of an outer periphery of the skeletal structure; and at least one plate, wherein: the ball toy has a prolate spheroid shape defined by the first conically shaped end cap, the second conically shaped end cap, and the skeletal structure, and at least a portion of the skeletal structure comprises a channel opening that faces toward the interior cavity.
15. The football toy of claim 14, wherein:
- the first conically shaped end cap and the second conically shaped end cap comprise a plurality of channels that are configured to receive at least a portion of the skeletal structure.
16. The football toy of claim 14, further comprising:
- a light assembly having a power source and a plurality of light emitting diodes, the light assembly being coupled with the skeletal structure.
17. The football toy of claim 16, wherein:
- the light assembly directs light toward the at least one plate.
18. The football toy of claim 16, wherein:
- the light assembly comprises a member selected from the group consisting of a motion sensor and an accelerometer.
19. The football toy of claim 16, wherein:
- the light assembly is coupled with the at least one plate.
20. The football toy of claim 14, wherein:
- the plurality of ribs further comprises a plurality of circumferential ribs extending around at least a portion of an outer periphery of the skeletal structure.
Type: Application
Filed: May 13, 2015
Publication Date: Sep 3, 2015
Inventor: Richard E. Zawitz (South San Francisco, CA)
Application Number: 14/711,496