SIGNAL ENHANCEMENT
Technologies and implementations for signal enhancement are generally disclosed. In some examples, a method to enhance a signal may include receiving a determined location of a device on a surface of a touch screen, detecting a first signal and a direction of the first signal from the device with two or more wireless signal detectors, and enhancing a second signal from the device with beamforming. Enhancing the second signal may be based, at least in part, on the location of the device and the detected first signal from the device.
Latest Empire Technology Development LLC Patents:
This application is a continuation of pending U.S. patent application Ser. No. 13/700,078, filed Nov. 26, 2012, entitled SIGNAL ENHANCEMENT, U.S. Pat. No. 9,037,090, which is a U.S. national stage filing under 35 U.S.C. §371 of International Application No. PCT/US12/241756, filed on Feb. 7, 2012. The entire disclosures of these documents are incorporated by reference herein.
BACKGROUNDUnless otherwise indicated herein, the approaches described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
Handheld devices such as, but not limited to, tablet computers, mobile phones, handheld gaming devices, etc. have increased data capacity. In order to facilitate sharing or accessing data on the handheld devices, methods of communication with handheld devices have become more important. Some examples may include near field communication, Bluetooth, Wi-Fi, and various other methods to facilitate wireless communication between electronic devices.
SUMMARYThe present disclosure describes example methods, apparatus, and systems related to signal enhancement between electronic devices. Such an apparatus may include a touch screen, a number of wireless signal detectors located approximately around a perimeter of the touch screen, a machine readable non-transitory medium, and a processor. The processor may be communicatively coupled to the touch screen, the machine readable non-transitory medium, and the number of wireless signal detectors. The machine readable non-transitory medium may have stored therein instructions that, if executed by the processor, may operatively enable a computing device to receive an indication of a device on a surface of a touch screen. The computing device may determine a location of the device on the surface of the touch screen, and from the device, a signal may be detected. The signal may be enhanced based, at least in part, on the determined location and the detected signal.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
Subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
In the drawings:
The following description sets forth various examples along with specific details to provide a thorough understanding of claimed subject matter. It will be understood by those skilled in the art, however, that claimed subject matter may be practiced without some or more of the specific details disclosed herein. Further, in some circumstances, well-known methods, procedures, systems, components and/or circuits have not been described in detail in order to avoid unnecessarily obscuring claimed subject matter.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
This disclosure is drawn, inter alia, to methods, apparatus, and systems related signal enhancement.
As discussed above, examples of signal enhancement technology described herein may include utilizing a touch screen and locating a device on the touch screen. Signal from the device may be enhanced base, at least in part, on the location of the device on the touch screen.
In the illustrated example of
In
The device 110 may include a wide variety of devices capable of emitting some form of wireless signal such as, but not limited to, mobile phones, smart type mobile phones, personal digital assistants, tablet computers, and so forth.
In the embodiment illustrated in
As will be described in more detail, in
In
As illustrated in
With continued reference to
The device 210 may be a wide variety of devices capable of emitting some form of wireless signal as previously described, and accordingly, the signal 230 may be a wide variety of wireless signals. The signal 230 may be a wireless signal such as, but not limited to, radio frequency identification (RFID) type signal, near field communication type signal, Infrared Data Association (IrDA) type signal, Bluetooth type signal, or a wide variety of personal area network (PAN) capable signals, and accordingly, is not limited in these respects.
In
In
In the embodiment illustrated in
The processor 308 may represent one or more processors, which may include a wide variety of processors such as, but not limited to a computer, a microprocessor, a microcontroller, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a sequestered thread or a core of a multi-core/multi-threaded microprocessor or a combination thereof.
It should be appreciated by those skilled in the art, that in order to not obscure the disclosed subject matter and to facilitate understanding of the disclosed subject matter, the apparatus 300 (shown in
As illustrated, the process 400 may be implemented for signal enhancement. Processing may begin at an operation 402, “RECEIVE INDICATION OF DEVICE”, where an indication of a device on a surface of a touch screen may be received.
The processing may continue from the operation 402 to an operation 404, “DETERMINE LOCATION OF DEVICE”, where a location of the device on the surface of the touch screen may be determined.
The processing may continue from the operation 404 to an operation 406, “DETECT SIGNAL FROM DEVICE”, where a signal from the device may be detected.
The processing may continue from the operation 406 to an operation 410, “ENHANCE SIGNAL”, where based, at least in part, on the determined location of the device and the detected signal from the device, the signal may be enhanced.
As previously described, in some embodiments, a direction of the signal from the device may be determined.
It should be appreciated that the above described process 400 may be implemented in a wide variety of manners such as, but not limited to, the various embodiments of the present disclosure and variations thereof.
In some implementations, the signal bearing medium 502 may encompass a non-transitory computer-readable medium 506, such as, but not limited to, a hard disk drive, a Compact Disc (CD), a Digital Versatile Disk (DVD), a digital tape, memory, etc. In some implementations, the signal bearing medium 502 may encompass a recordable medium 508, such as, but not limited to, memory, read/write (R/W) CDs, R/W DVDs, etc. In some implementations, the signal bearing medium 502 may encompass a communications medium 510, such as, but not limited to, a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
Depending on the desired configuration, the one or more processor 610 may be of any type including but not limited to a microprocessor (.mu.P), a microcontroller (μE), a digital signal processor (DSP), or any combination thereof. The one or more processor 610 may include one or more levels of caching, such as a level one cache 611 and a level two cache 612, a processor core 613, and registers 614. The processor core 613 may include an arithmetic logic unit (ALU), a floating point unit (FPU), a digital signal processing core (DSP Core), or any combination thereof. A memory controller 615 may also be used with the one or more processor 610, or in some implementations the memory controller 615 may be an internal part of the one or more processor 610.
Depending on the desired configuration, the system memory 620 may be of any type including but not limited to volatile memory (such as RAM), non-volatile memory (such as ROM, flash memory, etc.) or any combination thereof. The system memory 620 may include an operating system 621, one or more applications 622, and program data 624. The one or more applications 622 may include a signal enhancement algorithm 623 that is arranged to perform the functions as described herein including the functional blocks and/or actions described with respect to the process 400 of
The computing device 600 may have additional features or functionality, and additional interfaces to facilitate communications between the basic configuration 601 and any required devices and interfaces. For example, a bus/interface controller 640 may be used to facilitate communications between the basic configuration 601 and one or more data storage devices 650 via a storage interface bus 641. The one or more data storage devices 650 may be removable storage devices 651, non-removable storage devices 652, or a combination thereof. Examples of removable storage and non-removable storage devices include magnetic disk devices such as flexible disk drives and hard-disk drives (HDD), optical disk drives such as compact disk (CD) drives or digital versatile disk (DVD) drives, solid state drives (SSD), and tape drives to name a few. Example computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data.
The system memory 620, the removable storage devices 651 and the non-removable storage devices 652 are all examples of computer storage media. The computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to store the desired information and which may be accessed by the computing device 600. Any such computer storage media may be a part of the computing device 600.
The computing device 600 may also include an interface bus 642 for facilitating communication from various interface devices (e.g., output interfaces, peripheral interfaces, and communication interfaces) with the basic configuration 601 via the bus/interface controller 640. Example output interfaces 660 may include a graphics processing unit 661 and an audio processing unit 662, which may be configured to communicate to various external devices such as a display or speakers via one or more A/V ports 663. Example peripheral interfaces 670 may include a serial interface controller 671 or a parallel interface controller 672, which may be configured to communicate with external devices such as input devices (e.g., keyboard, mouse, pen, voice input device, touch input device, etc.) or other peripheral devices (e.g., printer, scanner, etc.) via one or more I/O ports 673. An example communication interface 680 includes a network controller 681, which may be arranged to facilitate communications with one or more other computing devices 690 over a network communication via one or more communication ports 682. A communication connection is one example of a communication media. The communication media may typically be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and may include any information delivery media. A “modulated data signal” may be a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared (IR) and other wireless media. The term computer readable media as used herein may include both storage media and communication media.
The computing device 600 may be implemented as a portion of a small-form factor portable (or mobile) electronic device such as a cell phone, a personal data assistant (PDA), a personal media player device, a wireless web-watch device, a personal headset device, an application specific device, or a hybrid device that may include any of the above functions. The computing device 600 may also be implemented as a personal computer including both laptop computer and non-laptop computer configurations. In addition, the computing device 600 may be implemented as part of a wireless base station or other wireless system or device.
Some portions of the foregoing detailed description are presented in terms of algorithms or symbolic representations of operations on data bits or binary digital signals stored within a computing system memory, such as a computer memory. These algorithmic descriptions or representations are examples of techniques used by those of ordinary skill in the data processing arts to convey the substance of their work to others skilled in the art. An algorithm is here, and generally, is considered to be a self-consistent sequence of operations or similar processing leading to a desired result. In this context, operations or processing involve physical manipulation of physical quantities. Typically, although not necessarily, such quantities may take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals or the like. It should be understood, however, that all of these and similar terms are to be associated with appropriate physical quantities and are merely convenient labels. Unless specifically stated otherwise, as apparent from the following discussion, it is appreciated that throughout this specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining” or the like refer to actions or processes of a computing device, that manipulates or transforms data represented as physical electronic or magnetic quantities within memories, registers, or other information storage devices, transmission devices, or display devices of the computing device.
The claimed subject matter is not limited in scope to the particular implementations described herein. For example, some implementations may be in hardware, such as employed to operate on a device or combination of devices, for example, whereas other implementations may be in software and/or firmware. Likewise, although claimed subject matter is not limited in scope in this respect, some implementations may include one or more articles, such as a signal bearing medium, a storage medium and/or storage media. This storage media, such as CD-ROMs, computer disks, flash memory, or the like, for example, may have instructions stored thereon, that, when executed by a computing device, such as a computing system, computing platform, or other system, for example, may result in execution of a processor in accordance with the claimed subject matter, such as one of the implementations previously described, for example. As one possibility, a computing device may include one or more processing units or processors, one or more input/output devices, such as a display, a keyboard and/or a mouse, and one or more memories, such as static random access memory, dynamic random access memory, flash memory, and/or a hard drive.
There is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. There are various vehicles by which processes and/or systems and/or other technologies described herein can be affected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a flexible disk, a hard disk drive (HDD), a Compact Disc (CD), a Digital Versatile Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation. Those having skill in the art will recognize that a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable”, to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
Reference in the specification to “an implementation,” “one implementation,” “some implementations,” or “other implementations” may mean that a particular feature, structure, or characteristic described in connection with one or more implementations may be included in at least some implementations, but not necessarily in all implementations. The various appearances of “an implementation,” “one implementation,” or “some implementations” in the preceding description are not necessarily all referring to the same implementations.
While certain example techniques have been described and shown herein using various methods and systems, it should be understood by those skilled in the art that various other modifications may be made, and equivalents may be substituted, without departing from claimed subject matter. Additionally, many modifications may be made to adapt a particular situation to the teachings of claimed subject matter without departing from the central concept described herein. Therefore, it is intended that claimed subject matter not be limited to the particular examples disclosed, but that such claimed subject matter also may include all implementations falling within the scope of the appended claims, and equivalents thereof.
Claims
1. A method to enhance a signal comprising:
- receiving a determined location of a device on a surface of a touch screen, wherein the location is determined based on detection of the device on the surface of the touch screen;
- detecting a first signal and a direction of the first signal from the device with two or more wireless signal detectors, wherein the two or more wireless signal detectors are located on or near the touch screen, and wherein the two or more wireless signal detectors are configured for beamforming; and
- enhancing a second signal from the device with beamforming based, at least in part, on the location of the device and the detected first signal from the device.
2. The method of claim 1, wherein the touch screen in a resistive type touch screen or a capacitive type touch screen.
3. The method of claim 1, wherein the surface of the touch screen includes one or more sensors for detection of the device on the surface of the touch screen.
4. The method of claim 1, wherein the touch screen is part of a table like device.
5. The method of claim 1, wherein the device is a mobile phone or a tablet computer.
6. The method of claim 1, wherein the two or more wireless signal detectors are located approximately around the perimeter of the touch screen.
7. The method of claim 1, wherein the two or more wireless signal detectors include one or more antennas to facilitate scanning.
8. The method of claim 1, wherein the first signal or the second signal is a radio frequency identification (RFID) type signal, a near field communication type signal, an infrared data association (IrDA) type signal, a Bluetooth type signal, or a personal area network (PAN) type signal.
9. A machine readable non-transitory medium having stored therein instructions that, when executed by one or more processors, operatively enable a computing device to:
- receive a determined location of a device on a surface of a touch screen, wherein the location is determined based on detection of the device on the surface of the touch screen;
- detect a first signal and a direction of the first signal from the device with two or more wireless signal detectors, wherein the two or more wireless signal detectors are located on or near the touch screen, and wherein the two or more wireless signal detectors are configured for beamforming; and
- enhance a second signal from the device with beamforming based, at least in part, on the location of the device and the detected first signal from the device.
10. The machine readable non-transitory medium of claim 9, wherein the touch screen in a resistive type touch screen or a capacitive type touch screen.
11. The machine readable non-transitory medium of claim 9, wherein the surface of the touch screen includes one or more sensors for detection of the device on the surface of the touch screen.
12. The machine readable non-transitory medium of claim 9, wherein the touch screen is part of a table like device.
13. The machine readable non-transitory medium of claim 9, wherein the device is a mobile phone or a tablet computer.
14. The machine readable non-transitory medium of claim 9, wherein the two or more wireless signal detectors are located approximately around the perimeter of the touch screen.
15. The machine readable non-transitory medium of claim 9, wherein the two or more wireless signal detectors include one or more antennas to facilitate scanning.
16. The machine readable non-transitory medium of claim 9, wherein the first signal or the second signal is a radio frequency identification (RFID) type signal, a near field communication type signal, an infrared data association (IrDA) type signal, a Bluetooth type signal, or a personal area network (PAN) type signal.
17. A system comprising:
- a touch screen having a surface;
- a plurality of wireless signal detectors located approximately around a perimeter of the touch screen; and
- a processor communicatively coupled to the touch screen and the plurality of wireless signal detectors, the processor being configured to: receive a determined location of a device on a surface of a touch screen, wherein the location is determined based on detection of the device on the surface of the touch screen; detect a first signal and a direction of the first signal from the device with two or more wireless signal detectors, wherein the two or more wireless signal detectors are located on or near the touch screen, and wherein the two or more wireless signal detectors are configured for beamforming; and enhance a second signal from the device with beamforming based, at least in part, on the location of the device and the detected first signal from the device.
18. The system of claim 17, wherein the touch screen in a resistive type touch screen or a capacitive type touch screen.
19. The system of claim 17, wherein the surface of the touch screen includes one or more sensors for detection of the device on the surface of the touch screen.
20. The system of claim 17, wherein the touch screen is part of a table like device.
21. The system of claim 17, wherein the device is a mobile phone or a tablet computer.
22. The system of claim 17, wherein the two or more wireless signal detectors are located approximately around the perimeter of the touch screen.
23. The system of claim 17, wherein the two or more wireless signal detectors include one or more antennas to facilitate scanning.
24. The system of claim 17, wherein the first signal or the second signal is a radio frequency identification (RFID) type signal, a near field communication type signal, an infrared data association (IrDA) type signal, a Bluetooth type signal, or a personal area network (PAN) type signal.
25. A method to enhance a signal comprising:
- receiving a determined location of a device on a surface of a touch screen, wherein the location is determined based on detection of the device on the surface of the touch screen;
- detecting a first signal and a direction of the first signal from the device with two or more wireless signal detectors, wherein the two or more wireless signal detectors are located on or near the touch screen, and wherein the two or more wireless signal detectors are configured for independent component analysis; and
- enhancing a second signal from the device with independent component analysis based, at least in part, on the location of the device and the detected first signal from the device.
Type: Application
Filed: Apr 30, 2015
Publication Date: Sep 17, 2015
Patent Grant number: 9430075
Applicant: Empire Technology Development LLC (Wilmington, DE)
Inventor: Seungil Kim (Seoul)
Application Number: 14/701,460