Article of Footwear Incorporating Composite Element With a Polymer Connecting Layer
An article of footwear incorporates a composite element that includes a base or textile layer, a thermoplastic polymer material, a thread, and a cover layer. The base layer has a first surface and an opposite second surface. The polymer material is separate from the base layer, extends into the base layer, and is at least partially located at the first surface. The thread has a section lying adjacent to the first surface layer and substantially parallel to the first surface throughout a distance of at least five centimeters, and the thread is bonded to the base layer with the polymer material. The cover layer is located adjacent to the first surface and bonded to the base layer with the polymer material, and the section of the thread is located between the cover layer and the base layer.
This non-provisional patent application is a division of and claims priority to U.S. patent application Ser. No. 13/895,443, entitled “Composite Element With a Polymer Connecting Layer”, which was filed on May 16, 2013, which application is a division of and claims priority to U.S. Pat. No. 8,464,441, filed on Jan. 23, 2012 as U.S. patent application Ser. No. 13/355,832, entitled “Composite Element With a Polymer Connecting Layer”, and issued on Jun. 18, 2013, which application is a continuation of and claims priority to U.S. Pat. No. 8,122,616, filed as U.S. patent application Ser. No. 12/180,235, entitled “Composite Element With A Polymer Connecting Layer”, which was filed in the U.S. Patent and Trademark Office on Jul. 25, 2008 and issued on Feb. 28, 2012, each of which applications being entirely incorporated herein by reference.
BACKGROUNDConventional articles of footwear generally include two primary elements, an upper and a sole structure. The upper is secured to the sole structure and forms a void on the interior of the footwear for comfortably and securely receiving a foot. The sole structure is secured to a lower surface of the upper so as to be positioned between the upper and the ground. In some articles of athletic footwear, for example, the sole structure may include a midsole and an outsole. The midsole may be formed from a polymer foam material that attenuates ground reaction forces to lessen stresses upon the foot and leg during walking, running, and other ambulatory activities. The outsole is secured to a lower surface of the midsole and forms a ground-engaging portion of the sole structure that is formed from a durable and wear-resistant material. The sole structure may also include a sockliner positioned within the void and proximal a lower surface of the foot to enhance footwear comfort.
The upper generally extends over the instep and toe areas of the foot, along the medial and lateral sides of the foot, and around the heel area of the foot. In some articles of footwear, such as basketball footwear and boots, the upper may extend upward and around the ankle to provide support for the ankle. Access to the void on the interior of the upper is generally provided by an ankle opening in a heel region of the footwear. A lacing system is often incorporated into the upper to adjust the fit of the upper, thereby permitting entry and removal of the foot from the void within the upper. The lacing system also permits the wearer to modify certain dimensions of the upper, particularly girth, to accommodate feet with varying dimensions. In addition, the upper may include a tongue that extends under the lacing system to enhance adjustability of the footwear, and the upper may incorporate a heel counter to limit movement of the heel.
Various materials are conventionally utilized in manufacturing the upper. The upper of athletic footwear, for example, may be formed from multiple material layers that include an exterior layer, an intermediate layer, and an interior layer. The materials forming the exterior layer of the upper may be selected based upon the properties of stretch-resistance, wear-resistance, flexibility, and air-permeability, for example. With regard to the exterior layer, the toe area and the heel area may be formed of leather, synthetic leather, or a rubber material to impart a relatively high degree of wear-resistance. Leather, synthetic leather, and rubber materials may not exhibit the desired degree of flexibility and air-permeability for various other areas of the exterior layer of the upper. Accordingly, the other areas of the exterior layer may be formed from a synthetic textile, for example. The exterior layer of the upper may be formed, therefore, from numerous material elements that each impart different properties to the upper. The intermediate layer of the upper is conventionally formed from a lightweight polymer foam material that provides cushioning and enhances comfort. Similarly, the interior layer of the upper may be formed of a comfortable and moisture-wicking textile that removes perspiration from the area immediately surrounding the foot. In some articles of athletic footwear, the various layers may be joined with an adhesive, and stitching may be utilized to join elements within a single layer or to reinforce specific areas of the upper. Accordingly, the conventional upper has a layered configuration, and the individual layers each impart different properties to various areas of the footwear.
SUMMARYA composite element is described below as including a base or textile layer, a thermoplastic polymer material, a thread, and a cover layer. The base layer has a first surface and an opposite second surface, and the base layer stretches at least thirty percent prior to tensile failure. The polymer material is separate from the base layer and extends into the base layer, and the polymer material is at least partially located at the first surface of the base layer. The thread has a section lying adjacent to the first surface of the base layer and substantially parallel to the first surface of the base layer throughout a distance of at least five centimeters, and the thread is bonded to the base layer with the polymer material. The cover layer is located adjacent to the first surface of the base layer and bonded to the base layer with the polymer material, and the section of the thread is located between the cover layer and the base layer.
A method of manufacturing a composite element is also described below. The method includes incorporating a polymer material into a base or textile layer such that the polymer material is located at a first surface and an opposite second surface of the textile layer. The textile layer is embroidered with a thread such that a section of the thread lies adjacent to the textile layer and substantially parallel to the textile layer throughout a distance of at least five centimeters. A cover layer is located adjacent to the first surface of the textile layer such that the section of the thread is located between the textile layer and the cover layer. The polymer material is heated to bond the section of the thread and the cover layer to the textile layer.
The advantages and features of novelty characterizing various aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying drawings that describe and illustrate various embodiments and concepts related to the aspects of the invention.
The foregoing Summary, as well as the following Detailed Description, will be better understood when read in conjunction with the accompanying drawings.
The following discussion and accompanying figures disclose an article of footwear having an upper with an embroidered configuration. In addition, various methods of manufacturing the upper are disclosed. The upper and the methods are disclosed with reference to footwear having a configuration that is suitable for running, and particularly sprinting. Concepts associated with the upper are not limited solely to footwear designed for running, however, and may be applied to a wide range of athletic footwear styles, including baseball shoes, basketball shoes, cross-training shoes, cycling shoes, football shoes, tennis shoes, soccer shoes, walking shoes, and hiking boots, for example. The concepts may also be applied to footwear styles that are generally considered to be non-athletic, including dress shoes, loafers, sandals, and work boots. The concepts disclosed herein apply, therefore, to a wide variety of footwear styles. Additionally, the concepts disclosed herein may be applied to products other than footwear, including apparel, bags and other containers, and athletic equipment, for example.
General Footwear Structure
An article of footwear 10 is depicted in
Sole structure 20 is secured to upper 30 and extends between the foot and the ground when footwear 10 is worn. In addition to providing traction, sole structure 20 may attenuate ground reaction forces when compressed between the foot and the ground during walking, running, or other ambulatory activities. The configuration of sole structure 20 may vary significantly to include a variety of conventional or nonconventional structures. As an example, however, a suitable configuration for sole structure 20 is depicted in
First sole element 21 extends through a longitudinal length of footwear 10 (i.e., through each of regions 11-13) and may be formed from a polymer foam material, such as polyurethane or ethylvinylacetate. Portions of upper 30 wrap around sides of first sole element 21 and are secured to a lower area of first sole element 21. In each of regions 11-13, the lower area of first sole element 21 is exposed to form a portion of a ground-contacting surface of footwear 10. The portions of upper 30 that are secured to the lower area of first sole element 21 are also exposed in regions 12 and 13 and may contact the ground during use. An upper area of first sole element 21 is positioned to contact a lower (i.e., plantar) surface of the foot and forms, therefore, a foot-supporting surface within upper 30. In some configurations, however, a sockliner may be located within upper 30 and adjacent the upper area of first sole element 21 to form the foot-supporting surface of footwear 10.
Second sole element 22 is located in each of regions 11 and 12 and is secured to either or both of first sole element 21 and upper 30. Whereas portions of first sole element 21 extend into upper 30, second sole element 22 is positioned on an exterior of footwear 10 to form a portion of the ground-contacting surface in regions 11 and 12. In order to impart traction, second sole element 22 includes a plurality of projections 23, which may have the configuration of removable spikes. Suitable materials for second sole element 22 include a variety of rubber or other polymer materials that are both durable and wear-resistant.
Upper 30 defines a void within footwear 10 for receiving and securing the foot relative to sole structure 20. More particularly, the void is shaped to accommodate a foot and extends along the lateral side of the foot, along the medial side of the foot, over the foot, and under the foot. Access to the void is provided by an ankle opening 31 located in at least heel region 13. A lace 32 extends through various lace apertures 33 in upper 30 and permits the wearer to modify dimensions of upper 30 to accommodate feet with varying proportions. Lace 32 also permits the wearer to loosen upper 30 and facilitate removal of the foot from the void. Although not depicted, upper 30 may include a tongue that extends under lace 32 to enhance the comfort or adjustability of footwear 10.
The primary elements of upper 30, in addition to lace 32, are a first embroidered element 40 and a second embroidered element 50. First embroidered element 40 forms portions of upper 30 corresponding with lateral side 14, and second embroidered element 50 forms portions of upper 30 corresponding with medial side 15. Accordingly, each of embroidered elements 40 and 50 extend through each of regions 11-13. In general, and as described in greater detail below, upper 30 is substantially assembled by joining edges of embroidered elements 40 and 50 in forefoot region 11 and heel region 13 to impart a general shape of the void. In addition, assembling upper 30 involves incorporating lace 32 and wrapping portions of embroidered elements 40 and 50 around the sides of first sole element 21 and securing the portions to the lower area of first sole element 21.
First Embroidered Element
First embroidered element 40 is depicted individually in
Although base layer 41 is depicted as a single element of material, base layer 41 may be formed from a plurality of joined elements. Similarly, base layer 41 may be a single layer of material, or base layer may be formed from multiple coextensive layers. As an example, base layer 41 may include a connecting layer or other securing element that bonds, secures, or otherwise joins portions of threads 42 to base layer 41.
Base layer 41 defines various edges 43a-43d that are utilized for reference in the following material. Edge 43a extends through each of regions 11-13 and defines a portion of ankle opening 31. Edge 43b is primarily located in forefoot region 11 and forms end points for various threads 42. Edge 43c, which is located opposite edge 43b, is primarily located in heel region 13 and forms an opposite end point for the various threads 42. Edges 43a and 43c respectively join with second embroidered element 50 in forefoot region 11 and heel region 13 during the manufacture of footwear 10. Edge 43d, which is located opposite edge 43a, extends through each of regions 11-13 and wraps around first sole element 21 and is secured to the lower area of first sole element 21. The specific configuration of base layer 41, and the corresponding positions and shapes of edges 43a-43d, may vary significantly depending upon the configuration of footwear 10.
Base layer 41 may be formed from any generally two-dimensional material. As utilized with respect to the present invention, the term “two-dimensional material” or variants thereof is intended to encompass generally flat materials exhibiting a length and a width that are substantially greater than a thickness. Accordingly, suitable materials for base layer 41 include various textiles, polymer sheets, or combinations of textiles and polymer sheets, for example. Textiles are generally manufactured from fibers, filaments, or yarns that are, for example, either (a) produced directly from webs of fibers by bonding, fusing, or interlocking to construct non-woven fabrics and felts or (b) formed through a mechanical manipulation of yarn to produce a woven fabric. The textiles may incorporate fibers that are arranged to impart one-directional stretch or multi-directional stretch, and the textiles may include coatings that form a breathable and water-resistant barrier, for example. The polymer sheets may be extruded, rolled, or otherwise formed from a polymer material to exhibit a generally flat aspect. Two-dimensional materials may also encompass laminated or otherwise layered materials that include two or more layers of textiles, polymer sheets, or combinations of textiles and polymer sheets. In addition to textiles and polymer sheets, other two-dimensional materials may be utilized for base layer 41. Although two-dimensional materials may have smooth or generally untextured surfaces, some two-dimensional materials will exhibit textures or other surface characteristics, such as dimpling, protrusions, ribs, or various patterns, for example. Despite the presence of surface characteristics, two-dimensional materials remain generally flat and exhibit a length and a width that are substantially greater than a thickness.
Portions of threads 42 extend through base layer 41 or lie adjacent to base layer 41. In areas where threads 42 extend through base layer 41, threads 42 are directly joined or otherwise secured to base layer 41. In areas where threads 42 lie adjacent to base layer 41, threads 42 may be unsecured to base layer 41 or may be joined with a connecting layer or other securing element that bonds, secures, or otherwise joins portions of threads 42 to base layer 41. In order to form structural elements in upper 30, multiple threads 42 or sections of an individual thread 42 may be collected into one of various thread groups 44a-44e. Thread group 44a includes threads 42 that extend between edge 43b and edge 43c, thereby extending through each of regions 11-13 of footwear 10. Thread group 44b includes threads 42 that are positioned immediately adjacent to lace apertures 33 and extend radially-outward from lace apertures 33. Thread group 44c includes threads 42 that extend from thread group 44b (i.e., an area that is adjacent to lace apertures 33) to an area adjacent to edge 43d. Thread group 44d includes threads 42 that extend from edge 43c to edge 43d and are primarily located in heel region 13.
Article of footwear 10 is depicted as having the general configuration of a running shoe. During walking, running, or other ambulatory activities, forces induced in footwear 10 may tend to stretch upper 30 in various directions, and the forces may be concentrated at various locations. Each of threads 42 are located to form structural elements in upper 30. More particularly, thread groups 44a-44d are collections of multiple threads 42 or sections of an individual thread 42 that form structural elements to resist stretching in various directions or reinforce locations where forces are concentrated. Thread group 44a extends through the portions of first embroidered element 40 that correspond with regions 11-13 to resist stretch in a longitudinal direction (i.e., in a direction extending through each of regions 11-13 and between edges 43b and 43c). Thread group 44b is positioned adjacent to lace apertures 33 to resist force concentrations due to tension in lace 32. Thread group 44c extends in a generally orthogonal direction to thread group 44a to resist stretch in the medial-lateral direction (i.e., in a direction extending around upper 30). In addition, thread group 44d is located in heel region 13 to form a heel counter that limits movement of the heel. Thread group 44e extends around a periphery of base layer 41 and corresponds in location with edges 43a-43d. Accordingly, threads 42 are located to form structural elements in upper 30.
Threads 42 may be formed from any generally one-dimensional material. As utilized with respect to the present invention, the term “one-dimensional material” or variants thereof is intended to encompass generally elongate materials exhibiting a length that is substantially greater than a width and a thickness. Accordingly, suitable materials for threads 42 include various filaments, fibers, and yarns, that are formed from rayon, nylon, polyester, polyacrylic, silk, cotton, carbon, glass, aramids (e.g., para-aramid fibers and meta-aramid fibers), ultra high molecular weight polyethylene, and liquid crystal polymer. Yarns may be formed from at least one filament or a plurality of fibers. Whereas filaments have an indefinite length, fibers have a relatively short length and generally go through spinning or twisting processes to produce a yarn of suitable length. Although filaments and fibers may have different lengths, for example, the terms “filament” and “fiber” may be used interchangeably herein. With regarding to yarns formed from filaments, these yarns may be formed from a single filament or a plurality of individual filaments grouped together. Yarns may also include separate filaments formed from different materials, or yarns may include filaments that are each formed from two or more different materials. Similar concepts also apply to yarns formed from fibers. Accordingly, filaments and yarns may have a variety of configurations exhibiting a length that is substantially greater than a width and a thickness. In addition to filaments and yarns, other one-dimensional materials may be utilized for threads 42. Although one-dimensional materials will often have a cross-section where width and thickness are substantially equal (e.g., a round or square cross-section), some one-dimensional materials may have a width that is greater than a thickness (e.g., a rectangular, oval, or otherwise elongate cross-section). Despite the greater width, a material may be considered one-dimensional if a length of the material is substantially greater than a width and a thickness of the material.
Second Embroidered Element
Second embroidered element 50 is depicted individually in
Base layer 51 may be formed from any generally two-dimensional material, including any of the two-dimensional materials discussed above for base layer 41. Although base layer 51 is depicted as a single element of material, base layer 51 may be formed from a plurality of joined elements. Similarly, base layer 51 may be a single layer of material, or base layer may be formed from multiple coextensive layers. As an example, base layer 51 may include a connecting layer or other securing element that bonds, secures, or otherwise joins portions of threads 52 to base layer 51. Furthermore, threads 52 may be formed from any generally one-dimensional material, including any of the one-dimensional materials discussed above for threads 42.
Base layer 51 defines various edges 53a-53d that are utilized for reference in the following material. Edge 53a extends through each of regions 11-13 and defines a portion of ankle opening 31. Edge 53b is primarily located in forefoot region 11 and forms end points for various threads 52. Edge 53c, which is located opposite edge 53b, is primarily located in heel region 13 and forms an opposite end point for the various threads 52. Edges 53a and 53c respectively join with second embroidered element 40 in forefoot region 11 and heel region 13 during the manufacture of footwear 10. Edge 53d, which is located opposite edge 53a, extends through each of regions 11-13 and wraps around first sole element 21 and is secured to the lower area of first sole element 21. The specific configuration of base layer 51, and the corresponding positions and shapes of edges 53a-53d, may vary significantly depending upon the configuration of footwear 10.
Portions of threads 52 may extend through base layer 51 or lie adjacent to base layer 51. In areas where threads 52 extend through base layer 51, threads 52 are directly joined or otherwise secured to base layer 51. In areas where threads 52 lie adjacent to base layer 51, threads 52 may be unsecured to base layer 51 or may be joined with a connecting layer or other securing element that bonds, secures, or otherwise joins portions of threads 52 to base layer 51. In order to form structural elements in upper 30, multiple threads 52 or sections of an individual thread 52 may be collected into one of various thread groups 54a-54e. Thread group 54a includes threads 52 located in forefoot region 11 and forward portions of midfoot region 12, and the various threads 52 in thread group 54a extend rearward and in the longitudinal direction from edge 53b. Thread group 54b includes threads 52 that are positioned immediately adjacent to lace apertures 33 and extend radially-outward from lace apertures 33. Thread group 54c includes threads 52 that extend from thread group 54b (i.e., an area that is adjacent to lace apertures 33) to an area adjacent to edge 53d. Thread group 54d includes threads 52 that extend from edge 53c to edge 53d and are primarily located in heel region 13. Thread group 54e includes threads 52 located in heel region 13 and rearward portions of midfoot region 12, and the various threads 52 in thread group 54e extend forward and in the longitudinal direction from edge 53c. Thread group 54f extends around a periphery of base layer 51 and corresponds in location with edges 53a-53d.
As discussed with respect to first embroidered element 40, forces induced in footwear 10 may tend to stretch upper 30 in various directions, and the forces may be concentrated at various locations. Each of threads 52 are located to form structural elements in upper 30. More particularly, thread groups 54a-54e are collections of multiple threads 52 or sections of an individual thread 52 that form structural elements to resist stretching in various directions or reinforce locations where forces are concentrated. Thread group 54a extends through the portions of second embroidered element 50 that correspond with at least forefoot region 11 to resist stretch in a longitudinal direction. Thread group 54b is positioned adjacent to lace apertures 33 to resist force concentrations due to tension in lace 32. Thread group 54c extends in a generally orthogonal direction to thread groups 54a and 54e to resist stretch in the medial-lateral direction (i.e., in a direction extending around upper 30). Thread group 54d is located in heel region 13 to form an opposite side of the heel counter that limits movement of the heel. In addition, thread group 54e is located in at least heel region 13 to resist stretch in a longitudinal direction. Accordingly, threads 52 are located to form structural elements in upper 30.
Structural Elements
As discussed in the Background section above, a conventional upper may be formed from multiple material layers that each impart different properties to various areas of the upper. During use, an upper may experience significant tensile forces, and one or more layers of material are positioned in areas of the upper to resist the tensile forces. That is, individual layers may be incorporated into specific portions of the upper to resist tensile forces that arise during use of the footwear. As an example, a woven textile may be incorporated into an upper to impart stretch resistance in the longitudinal direction. A woven textile is formed from yarns that interweave at right angles to each other. If the woven textile is incorporated into the upper for purposes of longitudinal stretch-resistance, then only the yarns oriented in the longitudinal direction will contribute to longitudinal stretch-resistance, and the yarns oriented orthogonal to the longitudinal direction will not generally contribute to longitudinal stretch-resistance. Approximately one-half of the yarns in the woven textile are, therefore, superfluous to longitudinal stretch-resistance. As a further example, the degree of stretch-resistance required in different areas of the upper may vary. Whereas some areas of the upper may require a relatively high degree of stretch-resistance, other areas of the upper may require a relatively low degree of stretch-resistance. Because the woven textile may be utilized in areas requiring both high and low degrees of stretch-resistance, some of the yarns in the woven textile are superfluous in areas requiring the low degree of stretch-resistance. In each of these examples, the superfluous yarns add to the overall mass of the footwear, without adding beneficial properties to the footwear. Similar concepts apply to other materials, such as leather and polymer sheets, that are utilized for one or more of wear-resistance, flexibility, air-permeability, cushioning, and moisture-wicking, for example.
Based upon the above discussion, materials utilized in the conventional upper formed from multiple layers of material may have superfluous portions that do not significantly contribute to the desired properties of the upper. With regard to stretch-resistance, for example, a layer may have material that imparts (a) a greater number of directions of stretch-resistance or (b) a greater degree of stretch-resistance than is necessary or desired. The superfluous portions of these materials may, therefore, add to the overall mass of the footwear without contributing beneficial properties.
In contrast with the conventional layered construction, upper 30 is constructed to minimize the presence of superfluous material. Base layers 41 and 51 provide a covering for the foot, but exhibit a relatively low mass. Some of threads 42 and 52 (i.e., thread groups 44a, 54a, 44c, 54c, 44d, 54d, and 54e) are located to provide stretch-resistance in particular, desired directions, and the number of threads 42 and 52 are selected to impart only the desired degree of stretch-resistance. Other threads 42 and 52 (i.e., thread groups 44b, 44e, 54b, and 54f) are located to reinforce specific areas of upper 20. Accordingly, the orientations, locations, and quantity of threads 42 and 52 are selected to provide structural elements that are tailored to a specific purpose.
Each of thread groups 44a-44d and 54a-54e are groups of threads 42 and 52 that provide structural elements, as described above. More particularly, however, thread group 44a is located to provide longitudinal stretch-resistance on lateral side 14, and the number of threads 42 in thread group 44a is selected to provide a specific degree of stretch-resistance. Similarly, thread groups 54a and 54e are located to provide longitudinal stretch-resistance in regions 11 and 13 of medial side 15, and the number of threads 52 in thread groups 54a and 54e are selected to provide a specific degree of stretch-resistance in regions 11 and 13. Each of thread groups 44b and 54b reinforce lace apertures 33, and the numbers of threads around each lace aperture 33 is selected to provide specific degrees of reinforcement. Each of thread groups 44c and 54c extend from lace apertures 33 and are selected to provide a specific degree of stretch-resistance in a direction extending around upper 30, and the number of threads 42 in thread groups 44c and 54c is selected to provide a specific degree of stretch-resistance. Furthermore, thread groups 44d and 54d are located to form a heel counter, and the number of threads in thread groups 44d and 54d impart a specific degree of stability to the heel counter. Thread groups 44e and 54f reinforce edges of embroidered elements 40 and 50, including portions of embroidered elements 40 and 50 that form ankle opening 31 and portions of embroidered elements 40 and 50 that are joined to each other or to other portions of footwear 10. Accordingly, the properties imparted by threads 42 and 52 at least partially depend on the orientations, locations, and quantity of threads 42 and 52.
Depending upon the specific configuration of footwear 10 and the intended use of footwear 10, base layers 41 and 51 may be non-stretch materials, materials with one-directional stretch, or materials with two-directional stretch, for example. In general, materials with two-directional stretch provide upper 30 with a greater ability to conform with the contours of the foot, thereby enhancing the comfort of footwear 10. In configurations where base layers 41 and 51 have two-directional stretch, the combination of base layers 41 and 51 and threads 42 and 52 effectively vary the stretch characteristics of upper 30 in specific locations. With regard to first embroidered element 40, the combination of base layer 41 with two-directional stretch and threads 42 forms zones in upper 30 that have different stretch characteristics, and the zones include (a) first zones where no threads 42 are present and upper 30 exhibits two-directional stretch, (b) second zones where threads 42 are present and do not cross each other, and upper 30 exhibits one-directional stretch in a direction that is orthogonal to threads 42, and (c) third zones where threads 42 are present and do cross each other, and upper 30 exhibits substantially no stretch. Similar concepts apply to second embroidered element 50.
The first zones includes areas where no threads are present. Referring to
Transitions between the zones occur at interfaces between areas where the relative numbers and orientations of threads 42 and 52 change. At the interface between zones, upper 30 may change from having two-directional stretch to one-directional stretch, from having two-directional stretch to no stretch, or from having one-directional stretch to no stretch, for example. Given that the difference between zones is the relative numbers and orientations of threads 42 and 52, the transitions between zones may occur abruptly. That is, in the space of a thickness of one of threads 42 and 52, upper 30 may transition from one zone to another zone. Various structures may be employed to decrease the abruptness of a transition between zones. For example, threads 42 and 52 that are adjacent to a zone transition may have stretch characteristics. When transitioning from the first zone to the second zone, for example, the stretch characteristics of threads 42 and 52 at the interface will decrease the abruptness of the transition. Structurally, threads 42 and 52 adjacent to a transition (i.e., near the boundary of a thread group) may have greater stretch than threads 42 and 52 further from the transition (i.e., near the center of a thread group). In addition to stretch, threads 42 and 52 formed from a non-stretch material may have a crimped (i.e., zigzag) shape to permit degrees of stretch at the transition.
Threads 42 and 52 may be utilized to modify properties of footwear 10 other than stretch-resistance. For example, threads 42 and 52 may be utilized to provide additional wear-resistance in specific areas of upper 30. For example, threads 42 and 52 may be concentrated in areas of upper 30 that experience wear, such as in forefoot region 11 and adjacent to sole structure 20. If utilized for wear-resistance, threads 42 and 52 may be selected from materials that also exhibit relatively high wear-resistance properties. Threads 42 and 52 may also be utilized to modify the flex characteristics of upper 30. That is, areas with relatively high concentrations of threads 42 and 52 may flex to a lesser degree than areas with relatively low concentrations of threads 42 and 52. Similarly, areas with relatively high concentrations of threads 42 and 52 may be less air-permeable than areas with relatively low concentrations of threads 42 and 52.
The orientations, locations, and quantity of threads 42 and 52 in
The running style or preferences of an individual may also determine the orientations, locations, and quantity of threads 42 and 52. For example, some individuals may have a relatively high degree of pronation (i.e., an inward roll of the foot), and having a greater number of threads 42 in thread group 44c may reduce the degree of pronation. Some individuals may also prefer greater longitudinal stretch resistance, and footwear 10 may be modified to include further threads 42 in thread group 44a. Some individuals may also prefer that upper 30 fit more snugly, which may require adding more threads 42 and 52 to thread groups 44b, 44c, 54b, and 44c. Accordingly, footwear 10 may be customized to the running style or preferences of an individual through changes in the orientations, locations, and quantity of threads 42 and 52.
Base layers 41 and 51 are depicted as having a configuration that cooperatively covers substantially all of the medial and lateral sides of the foot. As discussed above, base layers 41 and 51 are substrates to which threads 42 and 52 are secured during the embroidery process. In some configurations, however, portions of base layers 41 and 51 may be absent such that threads 42 and 52 are positioned immediately adjacent the foot or a sock worn over the foot. That is, base layers 41 and 51 may be formed with apertures or cut-outs that expose the foot. In other configurations, base layers 42 and 52 or portions thereof may be formed from a water-soluble material that is removed following the embroidery process. That is, upper 30 may be dissolved following securing threads 42 and 52 to base layers 41 and 51. Accordingly, base layers 41 and 51 may be partially or entirely absent in some configurations of footwear 10.
A majority of the overall lengths of threads 42 and 52 lie adjacent to base layers 41 and 51, but are not directly secured to base layers 41 and 51. In order to ensure that threads 42, for example, remain properly-positioned, a connecting layer or other securing element that bonds, secures, or otherwise joins portions of threads 42 to base layer 41 may be utilized. The connecting element or other securing element may be, for example, a sheet of thermoplastic polymer that is located between threads 42 and base layer 41 and heated to bond threads 42 and base layer 41 together. The connecting element or other securing element may also be a sheet of thermoplastic polymer or a textile, for example, that extends over threads 42 and base layer 41 to bond threads 42 and base layer 41 together. In addition, the connecting element or other securing element may be an adhesive that bonds threads 42 and base layer 41 together. In some configurations, additional threads may stitched over threads 42 to secure threads 42 to base layer 41. Accordingly, a variety of structures or methods may be utilized to secure threads 42 to base layer 41. Similar concepts may be applied to join base layer 51 and threads 52.
The portions of threads 42 within the various thread groups 44a, 44c, and 44d may be substantially parallel to each other. As depicted in
Based upon the above discussion, upper 30 is at least partially formed through an embroidery process that forms structural elements from threads 42 and 52. Depending upon the orientations, locations, and quantity of threads 42 and 52, different structural elements may be formed in upper 30. As examples, the structural elements may impart stretch-resistance to specific areas, reinforce areas, enhance wear-resistance, modify the flexibility, or provide areas of air-permeability. Accordingly, by controlling the orientations, locations, and quantity of threads 42 and 52, the properties of upper 30 and footwear 10 may be controlled.
Embroidery Process
An example of a method for manufacturing each of embroidered elements 40 and 50 is depicted in
First embroidered element 40 is at least partially formed through an embroidery process, which may be performed by either machine or hand. With regard to machine embroidery, a variety of conventional embroidery machines may be utilized to form first embroidered element 40, and the embroidery machines may be programmed to embroider specific patterns or designs from one or a plurality of threads. In general, an embroidery machine forms patterns or designs by repeatedly securing a thread to various locations such that portions of the thread extend between the locations and are visible. More particularly, the embroidery machine forms a series of lock-stitches by (a) piercing a first location of base layer 41 with a needle to pass a first loop of thread 42 through base layer 41, (b) securing the first loop of thread 42 with another thread that passes through the first loop, (c) moving the needle to a second location such that thread 42 extends from the first location to the second location and is visible on a surface of base layer 41, (d) piercing the second location of base layer 41 with the needle to pass a second loop of thread 42 through base layer 41, and (e) securing the second loop of thread 42 with the other thread that passes through the second loop. Accordingly, the embroidery machine operates to secure thread 42 to two defined locations and also extend thread 42 between the two locations. By repeatedly performing these steps, embroidery is formed by thread 42 on base layer 41.
Conventional embroidery machines may form patterns or designs on base layer 41 by forming satin-stitches, running-stitches, or fill-stitches, each of which may utilize a lock-stitch to secure thread 42 to base layer 41. Satin-stitches are a series of zigzag-shaped stitches formed closely together. Running-stitches extend between two points and are often used for fine details, outlining, and underlay. Fill-stitches are series of running stitches formed closely together to form different patterns and stitch directions, and fill-stitches are often utilized to cover relatively large areas. With regard to satin-stitches, conventional embroidery machines generally limit satin stitches to twelve millimeters. That is, the distance between a first location and a second location where a thread is secured to a base layer is conventionally limited to twelve millimeters when an embroidery machine is forming satin-stitches. Conventional satin-stitch embroidery, therefore, involves threads that extend between locations separated by twelve millimeters or less. Forming embroidered element 40, however, may require that the embroidery machine be modified to form satin-stitches extending between locations spaced by more than twelve millimeters. In some aspects of the invention, stitches may be spaced by more than five centimeters, for example. That is, a thread may be continuously exposed on a surface of base layer 41 by more than twelve millimeters or by more than five centimeters, for example.
With respect to
Once base layer 41 is secured within hoop 60, an embroidery machine begins locating and securing threads 42 to base layer 41. Initially, the embroidery machine forms an outline of first embroidered element 40, as depicted in
Following the formation of thread group 44e, thread group 44a may be formed. Referring to
Thread group 44c is formed in a manner that is similar to thread group 44a. Referring to
In some configurations, the ends of thread group 44c may abut a perimeter of thread group 44b. As depicted in the figures, however, thread group 44c extends beyond a perimeter of thread group 44b. That is, thread group 44c may extend over the thread 42 that forms thread group 44b, or thread group 44b may extend over the thread 42 that forms thread group 44c. More particularly, the thread 42 from each of thread groups 44b and 44c may be intertwined. When lace 32 extends through lace apertures 33 and is tensioned, thread group 44b reinforces lace apertures 33 and thread group 44c distributes the tensile force along the sides of upper 30. By intertwining thread groups 44b and 44c, forces upon lace apertures 33 are more effectively transmitted to thread group 44c.
Thread group 44d is formed in a manner that is similar to thread groups 44a and 44c. Referring to
Once thread group 44d is completed, lace apertures 33 may be formed through base layer 41 in areas that correspond with the centers of thread groups 44b. In addition, first embroidered element 40 may be cut from portions of base layer 41 that are outside of thread group 44e, thereby forming edges 43a-43d, as depicted in
The general procedure described above and depicted in
Second embroidered element 50 is formed through an embroidery process that may be similar to the process for forming first embroidered element 40. With reference to
Footwear Assembly
Footwear 10 is assembled once embroidered element 40 and 50 are formed in the manner discussed above. An example of one manner in which footwear 10 may be assembled is depicted in
Following the completion of upper 30, sole elements 21 and 22 are positioned, as depicted in
Second sole element 22 is then secured (e.g., with an adhesive) to first sole element 21 and embroidered elements 40 and 50, as depicted in
Securing Element
Each segment of thread 42 (e.g., portions 42a-42g) have two end points and a central portion extending between the end points. The end points are secured with a lock-stitch, and the central area (i.e., the area of a segments other than the end points) lies adjacent to base layer 41 and is unsecured to base layer 41. In order to secure the central area to base layer 41, a connecting layer that bonds, secures, or otherwise joins portions of threads 42 to base layer 41 may be utilized. The following discussion presents various methods by which a connecting layer or other securing agent may be added to first embroidered element 40. Similar concepts also apply to second embroidered element 50.
One procedure for securing portions of threads 42 to base layer 41 is depicted in
Connecting layer 70 is a sheet of a thermoplastic polymer material with a thickness between one-thousandth of a millimeter and three millimeters, for example. Suitable polymer materials for connecting layer 70 include polyurethane and ethylvinylacetate, for example. In order to heat connecting layer 70 and bond connecting layer 70 to first embroidered element 40, connecting layer 70 and first embroidered element 40 are placed between a pair of platens 71 and 72 of a heated press, as depicted in
Connecting layer 70 ensures that thread group 44a remains intact following the removal of first embroidered element 40 from the extraneous portions of base layer 41. In addition, connecting layer 70 ensures that portions of thread groups 44c and 44d, for example, remain properly positioned relative to base layer 41. Although end portions of the various segments of thread 42 that form thread groups 44c and 44d are secured to base layer 41 with lock-stitches, the central portions are unsecured to base layer 41 without the presence of connecting layer 70. Accordingly, connecting layer 70 effectively bonds each of threads 42 to base layer 41.
Base layer 41 may exhibit an air-permeable structure that allows perspiration and heated air to exit upper 20. The addition of connecting layer 70 may, however, decrease the degree to which upper 20 is air-permeable. Whereas connecting layer 70 is depicted in
Another procedure for securing portions of threads 42 to base layer 41 is depicted in
Yet another procedure for securing portions of threads 42 to base layer 41 is depicted in
Layered Configuration
The primary elements of first embroidered element 40 are base layer 41, threads 42, and connecting layer 70. In some configurations of footwear 10, however, additional elements or layers may be utilized to enhance the durability, comfort, or aesthetic properties of footwear 10. Referring to
Base layer 81 may be any of the generally two-dimensional materials discussed above for base layer 41. As an example, base layer 81 may be a textile that stretches at least thirty percent prior to tensile failure, and may include a relatively high spandex (also referred to as elastane) content to impart the stretch. Thread sections 82 are arranged in the general configuration of threads 42 and may be any of the generally one-dimensional materials discussed above for threads 42. Connecting layer 83 is a thermoplastic polymer material that is bonded with, is joined to, infiltrates, or is otherwise incorporated into base layer 81. Examples of suitable materials for connecting layer 83 include thermoplastic polymer sheets, hot melt materials, and thermoplastic polyurethane layers. Cover layer 84 and backing layer 85 may also be any of the generally two-dimensional materials discussed above for base layer 41, including textiles and polymer sheets.
Referring to
Embroidery processes are often performed on relatively stiff or non-stretchable materials to limit the degree to which the material warps, bends, wrinkles, or otherwise deforms as a result of the embroidery process. As noted above, base layer 81 may be a textile that stretches at least thirty percent prior to tensile failure. As a result, embroidering directly onto base layer 81 with thread sections 82 may induce base layer 81 to warp or otherwise deform. Prior to embroidering, however, connecting layer 83 may be joined, bonded, or otherwise secured to base layer 81 in order to impart stability or otherwise limit the degree to which base layer 81 deforms. Accordingly, connecting layer 83 may be utilized to effectively stabilize base layer 81 during the embroidery process.
In addition to stabilizing base layer 81 during the embroidery process, connecting layer 83 secures the positions of thread sections 82 and joins both cover layer 84 and backing layer 85 to base layer 81. That is, connecting layer 83 bonds the various elements of embroidered element 80 together. As noted above, connecting layer 83 is a thermoplastic polymer sheet or other thermoplastic polymer material that infiltrates or otherwise extends into the structure of base layer 81. When heated, connecting layer 83 will bond with, join to, infiltrate, or otherwise incorporate into base layer 81. When heated, connecting layer 83 will also bond with, join to, infiltrate, or otherwise incorporate into each of thread sections 82, cover layer 84, and backing layer 85, thereby securing thread sections 82, cover layer 84, and backing layer 85 to base layer 81. Accordingly, connecting layer 83 has the advantages of (a) stabilizing base layer 81 during the embroidery process and (b) securing the positions of thread sections 82 and joining both cover layer 84 and backing layer 85 to base layer 81.
The general process for manufacturing or otherwise making embroidered element 80 involves joining or otherwise combining connecting layer 83 with base layer 81, embroidering or otherwise lying thread sections 82 upon the combination of base layer 81 and connecting layer 83, joining thread sections 82 to base layer 81 with connecting layer 83, and joining either or both of cover layer 84 and backing layer 85 to base layer 81 with connecting layer 83. Although a variety of general methods may be utilized to manufacture or otherwise make embroidered element 80, an example process is shown in
Referring to
Utilizing press 90 provides an example of a method by which base layer 81 and connecting layer 83 are heated and compressed in order to combine the materials into a single strata. A variety of other methods may also be utilized. for example, either or both of base layer 81 and connecting layer 83 may be heated within an oven or other heating device prior to being compressed by press 90. In some configurations, the polymer material of connecting layer 83 may be sprayed or otherwise deposited upon base layer 81, or base layer 81 may be immersed within a molten or uncured bath of the polymer material forming connecting layer 83. In further configurations, connecting layer 83 may be formed from two sheets of polymer material that are located adjacent to opposite surfaces of base layer 81, and then compressed between the platens of press 90. Accordingly, a variety of methods may be utilized to combine base layer 81 and connecting layer 83.
Once base layer 81 and connecting layer 83 are effectively combined, thread sections 82 may be embroidered or otherwise laid upon base layer 81, as depicted in
At this point in the process for manufacturing or otherwise making embroidered element 80, thread sections 82 are secured the combination of base layer 81 and connecting layer 83. More particularly, end points of the various thread sections 82 may extend through the combination of base layer 81 and connecting layer 83 to secure the positions of thread sections 82. Areas of thread sections 82 between the end points, however, lie adjacent to a surface of base layer 81 and substantially parallel to the surface of base layer 81. In order to further secure the positions of thread sections 82, base layer 81, thread sections 82, and connecting layer 83 may be heated and compressed (e.g., with press 90) to bond or otherwise join thread sections to base layer 81 with connecting layer 83. That is, the thermoplastic polymer material forming connecting layer 83 may be softened or melted to secure thread sections 82 to base layer 81. In some configurations, areas of thread sections 82 between the end points may remain unsecured.
Once thread sections 82 are embroidered or otherwise laid upon base layer 81, cover layer 84 and backing layer 85 may be positioned on opposite sides of base layer 81, as depicted in
In order to join cover layer 84 and backing layer 85, press 90 or another press is then utilized to heat and compress the components, as depicted in
As noted above, connecting layer 83 may be present on both surfaces of base layer 81. Referring to
By incorporating the polymer material of connecting layer 83 into base layer 81 prior to embroidering, the polymer material is utilized to limit the degree to which the base layer 81 warps, bends, wrinkles, or otherwise deforms as a result of the embroidery process. Incorporating the polymer material of connecting layer 83 into base layer 81 also has an advantage of providing a material that bonds with, joins to, infiltrates, or otherwise incorporates into each of thread sections 82, cover layer 84, and backing layer 85, thereby securing thread sections 82, cover layer 84, and backing layer 85 to base layer 81. Accordingly, the general process discussed above utilizes connecting layer 83 to (a) stabilize base layer 81 during the embroidery process and (b) secure the positions of thread sections 82 and join both cover layer 84 and backing layer 85 to base layer 81.
Following the manufacturing process discussed above, embroidered element 80 and similar embroidered elements may be incorporated into an article of footwear, such as footwear 10. More particularly, embroidered element 80 may, for example, replace embroidered element 40 and an embroidered element formed through a similar process may replace embroidered element 50. In some configurations, cover layer 84 may form an exterior surface of upper 30 of footwear 10, whereas backing layer 85 may form an interior surface that contacts the foot when footwear 10 is worn. In other configurations, cover layer 84 may form the interior surface of upper 30, whereas backing layer 85 may form the exterior surface.
CONCLUSIONBased upon the above discussion, upper 30 is at least partially formed through an embroidery process that forms structural elements from threads 42 and 52. Depending upon the orientations, locations, and quantity of threads 42 and 52, different structural elements may be formed in upper 30. As examples, the structural elements may impart stretch-resistance to specific areas, reinforce areas, enhance wear-resistance, modify the flexibility, or provide areas of air-permeability. Accordingly, by controlling the orientations, locations, and quantity of threads 42 and 52, the properties of upper 30 and footwear 10 may be controlled.
The invention is disclosed above and in the accompanying drawings with reference to a variety of embodiments. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to aspects of the invention, not to limit the scope of aspects of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the embodiments described above without departing from the scope of the invention, as defined by the appended claims.
Claims
1. An article of footwear having an upper and a sole structure secured to the upper, at least a portion of the upper incorporating a composite element, the composite element comprising:
- a textile layer with a first surface and an opposite second surface;
- a thermoplastic polymer material separate from the textile layer, the thermoplastic polymer material extending into and infiltrating the textile layer, at least a portion of the thermoplastic polymer material extending through the textile layer to be located at both the first surface and the second surface;
- a thread having a section laying adjacent to the first surface of the textile layer and substantially parallel to the first surface of the textile layer throughout a distance of at least five centimeters; and
- a cover layer located adjacent to the first surface of the textile layer and secured to the textile layer with the thermoplastic polymer material, the section of the thread being located between the cover layer and the textile layer.
2. The article of footwear recited in claim 1, wherein the thread is secured to the textile layer with the thermoplastic polymer material.
3. The article of footwear recited in claim 1, wherein the thread extends from a first area of the upper to a second area of the upper, the first area including a lace aperture for receiving a lace, and the upper being secured to the sole structure in the second area.
4. The article of footwear recited in claim 1, wherein the thread extends from a first area of the upper to a second area of the upper, the first area being a forefoot region of the upper, and the second area being a heel region of the upper.
5. The article of footwear recited in claim 1, wherein the section of the thread is located between portions of the thread that extend through the textile layer.
6. The article of footwear recited in claim 1, wherein an end of the section of the thread is located at an edge of the textile layer.
7. The article of footwear recited in claim 1, wherein the thread includes a plurality of additional sections that lay adjacent to the first surface of the textile layer and are substantially parallel to the first surface of the textile layer throughout the distance of at least five centimeters.
8. The article of footwear recited in claim 7, wherein the additional sections are oriented to be substantially parallel to each other.
9. The article of footwear recited in claim 7, wherein the additional sections are oriented to cross each other.
10. The article of footwear recited in claim 1, wherein a portion of the thermoplastic polymer material being located at the first surface of the textile layer is approximately equal to a portion of the thermoplastic polymer material being located at the second surface.
11. The article of footwear recited in claim 1, wherein the thermoplastic polymer material infiltrates the first surface of the textile layer and passes through the textile layer to be located at the second surface of the textile layer.
12. The article of footwear recited in claim 1, wherein the thermoplastic polymer material comprises at least two sheets of thermoplastic polymer material.
13. The article of footwear recited in claim 12, wherein the at least two sheets of thermoplastic polymer material are located adjacent to the first surface and the opposite second surface of the textile layer.
14. The article of footwear recited in claim 1, the composite element further comprising a backing layer; and
- wherein the backing layer is located adjacent to the second surface of the textile layer and secured to the textile layer with the thermoplastic polymer material.
15. The article of footwear recited in claim 14, wherein the backing layer forms at least a portion of an interior surface of the upper of the article of footwear.
16. An article of footwear having an upper and a sole structure secured to the upper, at least a portion of the upper incorporating a composite element, the composite element comprising:
- a textile layer with a first surface and an opposite second surface, the textile layer defining a lace aperture;
- a thermoplastic polymer material separate from the textile layer, the thermoplastic polymer material infiltrating the first surface of the textile layer and passing through the textile layer such that at least a first portion of the thermoplastic polymer material is located at the first surface of the textile layer and at least a second portion of the thermoplastic polymer material is located at the second surface of the textile layer;
- a plurality of thread sections laying adjacent to the first surface of the textile layer and substantially parallel to the first surface of the textile layer throughout a distance of at least five centimeters, the thread sections extending from an area proximal to the lace aperture to an area where the sole structure is secured to the upper;
- a cover layer forming at least a portion of an exterior surface of the article of footwear, the cover layer being located adjacent to the first surface of the textile layer and secured to the textile layer with the first portion of the thermoplastic polymer material, and the thread sections being located between the cover layer and the textile layer; and
- a backing layer forming at least a portion of an interior surface of the article of footwear, the backing layer being located adjacent to the second surface of the textile layer and secured to the textile layer with the second portion of the thermoplastic polymer material.
17. The article of footwear recited in claim 16, wherein the thread sections are secured to the textile layer with the thermoplastic polymer material.
18. The article of footwear recited in claim 16, wherein the first portion of the thermoplastic polymer material being located at the first surface of the textile layer is approximately equal to the second portion of the thermoplastic polymer material being located at the second surface.
19. The article of footwear recited in claim 16, wherein the thermoplastic polymer material comprises at least two sheets of thermoplastic polymer material.
Type: Application
Filed: Jun 9, 2015
Publication Date: Sep 24, 2015
Inventors: James C. Meschter (Portland, OR), Jeffrey L. Johnson (Taichung), Lia Uesato (Beaverton, OR), Tina M. Casillas (Portland, OR)
Application Number: 14/734,126