HEATER FOR THE PASSENGER OR DRIVER COMPARTMENT OF A TRAIN CAR
A system for heating a compartment of a rail car having a heat-generating engine with a cooling-water system has system has a heat pump having a compressor, a condenser, an evaporator, and an expansion valve connected in a closed circuit, and a waste-air fan and ductwork feeding a stream of gas carrying waste heat generated by or in the rail car through the evaporator.
The present invention relates to a heating system. More particularly this invention concerns a heater for a passenger or driver compartment of a train car.
OBJECT OF THE INVENTIONThe object of the present invention is to use the generated waste heat of a railroad car for heating the passenger compartment and/or the driver's cab of the car.
SUMMARY OF THE INVENTIONA system for heating a compartment of a rail car having a heat-generating engine with a cooling-water system has system has according to the invention a heat pump having a compressor, a condenser, an evaporator, and an expansion valve connected in a closed circuit, and a waste-air fan and ductwork feeding a stream of gas carrying waste heat generated by or in the rail car through the evaporator.
Thus according to the invention the waste heat is not applied directly to the stream of air fed into the compartment to cool it, but is used to raise the heat-pump temperature in general.
Atte the rail car has a motor with a water-cooling system. The system further has a radiator juxtaposed with the condenser and connected in the water-cooling system of the motor, and a fan in the heat pump blowing air through the radiator and the condenser. Thus the heat generated, for example, by the electric motors of the train car is transferred to the air stream blown through the condenser to heat the compartment. This radiator is between the condenser and the fan of the heat pump.
The above and other objects, features, and advantages will become more readily apparent from the following description, reference being made to the accompanying drawing in which:
As seen in
While still a liquid and pressurized, the heat-exchange fluid passes through an expansion valve 10 that abruptly drops its pressure. This not only results in a temperature reduction of the heat-exchange fluid, but also gasifies it. The gasified and cooled heat-exchange medium then passes through an external heat exchanger 3 acting as evaporator. In the evaporator, the heat-exchange agent is warmed by ambient air passed through it by a fan 7 until it is completely evaporated.
A separate heat exchanger or radiator 4 is provided immediately upstream of the internal heat exchanger 2 in the direction of air flow through it from the fan 6 to receive heat therefrom, that is between the upstream side of the condenser 2 and the fan 6. This radiator 4 is connected in the cooling-water system used to heat the two electric motors 5 of the rail car 15. Thus the water pumped through these motors 5 to cool them, as well as around the brakes of the rail car 15 if desired, is pumped through the radiator 4. The waste heat from the motors 5 at least is therefore also used to heat the condenser 2 and the rail-car compartment. The waste heat is utilized as a result of the integration of the separate cooling water heat exchanger 4 that operates independently from the circuit of the heat pump 1. In the motor-cooling circuit, standard engine cooling liquids, is typically mainly water, are used as the heat-exchange fluid or medium to carry energy.
In this system, cool fresh or cool mixed air is sucked in by the fan 6 and is passed through both heat exchangers 2 and 4. If sufficient waste heat from the engine is available, the air can be heated only via the cooling water heat exchanger 4 and can be blown into the passenger compartment 14. The heat pump 1 and thus the internal heat exchanger 2 acting as condenser can be switched off and therefore remain without function. The cooling water heat exchanger 4 is provided in the feed air flow upstream of the condenser 2. The reason for this is that, if not enough waste heat from the engine is available, the heat pump 1 is also operated in order to heat the air preheated by the cooling water heat exchanger 4 to the desired temperature before entering the condenser 2.
The waste heat of many subsystems (traction converter, auxiliary converter, brake resistor) can be used. Apart from the existing waste heat, also a stream 11 of warm air from the compartment 13 of the rail car 14 can be used and its thermal energy can be recovered. Also a combination from both sources is possible.
If no engine waste heat is available at all, the heat pump 1 takes over the heating of the feed air on its own by the condenser 2, and the cooling-water heat exchanger 4 remains without function.
In addition, if the operating mode of the heat pump is reversed to air conditioning, the cooling water heat exchanger 4 can also be used as an anti-freezing protector for the internal heat exchanger 2 in this case serving as evaporator during air conditioning operation. As a result, the use of an energy-intensive bypass as anti-freezing protection is not necessary.
All of these processes are connected to a common controller 9.
In the embodiment according to
If the heat pump 1 is switched to air conditioning operation, the air ducts that carry the waste heat to the outside heat exchanger 3 during heat-pump operation, may be provided with flaps 13, so that during air conditioning operation, the waste heat does not go to the outside heat exchanger or condenser 3.
As a function of the thermal energy that can be supplied to the heat pump, energy-intensive anti-freezing protection can also be overridden or greatly reduced when ambient temperatures are low.
A large number of modifications are possible within the scope of the invention. For example, as was explained at the beginning, instead of the heat pump 1 or the condenser 2 thereof an electric heater may be provided, e.g. an electrically powered resistive heating coil.
Claims
1. A system for heating a compartment of a rail car having a heat-generating engine with a cooling-water system, the system comprising:
- a heat pump having a compressor, a condenser, an evaporator, and an expansion valve connected in a closed circuit; and
- a waste-air fan and ductwork feeding a stream of gas heated by the rail car through the evaporator.
2. The heating system defined in claim 1, wherein the rail car has a motor with a water-cooling system, the system further comprising:
- a radiator juxtaposed with the condenser and connected in the water-cooling system of the motor; and
- a fan in the heat pump blowing air through the radiator and the condenser.
3. The heating system defined in claim 2, wherein the radiator is between the condenser and the fan of the heat pump.
Type: Application
Filed: May 6, 2015
Publication Date: Nov 12, 2015
Inventor: MATTHIAS WEISS (Wien)
Application Number: 14/705,444