PACKING MACHINE AND PACKING METHOD FOR PRODUCING AN INNER CONTAINER OF A SLIDE-OPEN PACKAGE OF TOBACCO ARTICLES AND WITH A HINGED LID
Packing machine and packing method for producing an inner container of a slide-open package of tobacco articles and with hinged lid by folding an inner blank about a wrapped group of tobacco articles; by way of a packing conveyor the inner blank is fed along a packing path and through a first work station, wherein portions of the inner blank are folded by way of a folding device provided with a body which is movable in a work direction perpendicular to the packing path; the folding body has a center member, two top side members, and two bottom side members which are arranged in different positions in the first work direction to perform in succession respective folds of the inner blank while the folding body moves with a continuous movement along the first work direction.
Latest G.D. SOCIETA' PER AZIONI Patents:
- Bottle capping station, in particular for products of the pharmaceutical industry
- Method to restore the functional state of an automatic machine for the production or the packaging of consumer products
- Machine and method for the production of a cartridge for an electronic cigarette
- Assembly for transporting different types of articles of the smoking products manufacturing industry and relative plant
- Extraction station for the extraction from a transport system for an at least partially complete cartridge, in particular for an electronic cigarette
The present invention relates to a packing machine and a packing method for producing an inner container of a slide-open package of tobacco articles and with a hinged lid.
PRIOR ARTThe rigid packages of cigarettes with a hinged lid are currently the most widespread cigarette packages in the market as they are of simple construction, easy and practical to use and offer good mechanical protection to the cigarettes contained within.
Besides the aforementioned rigid packages of cigarettes with a hinged lid, packages of cigarettes have been proposed with rigid slide-open (or sliding) covers comprising two containers inserted one inside the other in a separable way. In other words, a package of cigarettes with rigid slide-opening comprises an inner container, which is adapted to accommodate a wrapped group of cigarettes in a wrapping sheet of metalized paper and is housed within an outer container so as to be able to slide with respect to the outer container itself between a closed configuration, wherein the inner container is inserted inside the outer container, and an open configuration, wherein the inner container is extracted from the outer container.
Also proposed was a rigid slide-open package of cigarettes and with a hinged lid, wherein the inner container (or, alternatively, the outer container) is provided with a hinged lid to rotate between a closed-position and an open position of an open top end of the inner container. The lid has a connecting tab that at one end is integral with the lid and at the opposite end is integral with the outer container (or, alternatively, to the inner container) to control “automatically” (i.e. without the user having to touch the lid) the rotation of the lid by sliding the inner container with respect to the outer container.
In particular, in a rigid package of cigarettes of the slide-opening type and with a hinged lid the connecting tab which “automatically” controls the rotation of the lid has a top end that is integral with a top or rear wall of the lid and a bottom end that, during the opening of the package of cigarettes, couples with a coupling tongue integral with a rear wall of the outer container.
It was observed that the known current mode used for producing the packages of cigarettes of the slide-opening type and with a hinged lid does not allow to achieve high productivity (i.e. a high number of packages of cigarettes produced per unit of time), especially if it is necessary to maintain a high quality standard. Consequently, the known packing machines used for producing packages of cigarette of the slide-open type and with a hinged lid are excessively slow and suitable to produce only limited batches for special series.
Additionally, but not less important, the known packing machines used for producing packages of cigarettes of the slide-opening type and with a hinged lid are not “flexible”, i.e. it is very complicated to modify a packing machine which produces a certain type of slide-opening cigarette package (with or without a hinged lid) to produce another type of slide-opening cigarette package (with or without a hinged lid).
The patent application US2011041463A1 describes a packing machine for cigarettes for producing a rigid package with hinged lid. The packing machine is provided with a first packing unit, which is adapted to fold a first blank about a group of cigarettes to form an outer container provided with a hinged lid, and a second packing unit, which is adapted to fold a second blank about the outer container to form a tubular slider arranged about the outer container to slide axially with respect to the outer container itself; the tubular slider is provided with a transmission element, which has a first end integral with the lid, a second end opposite the first end and integral with the slider, and an intermediate portion which is deformable and has an “U” fold arranged between the outer container and the slider.
The patent application WO2013068959A1 describes a slide-open package of tobacco articles and with a hinged lid of the type produced by the packing machine and by the packing method of the present invention.
DESCRIPTION OF THE INVENTIONPurpose of the present invention is to provide a packing machine and a packing method for producing an inner container of a slide-open package of tobacco articles and with a hinged lid, which machine and packing method are free from the drawbacks described above and, in particular, are simple and economical to produce.
According to the present invention, a packing machine and a packing method for producing an inner container of a slide-open package of tobacco articles and with a hinged lid are provided, as claimed in the appended claims.
The present invention will now be described with reference to the accompanying drawings, which illustrate a non-limiting embodiment, wherein:
In
The package 1 of cigarettes shown in
The inner container 3 has a parallelepiped shape with rectangular cross section, is cup-shaped and has an open upper end 5. The inner container 3 comprises a lid 6, which is cup-shaped and is hinged to the inner container 3 along a hinge 7 to rotate, with respect to the inner container 3, between an open position (shown in
As shown more clearly in
The lid 6 is cup-shaped and has a top wall 12 (which, when the lid 6 is in the closed position, is opposite and parallel to the bottom wall 8 of the inner container 3), a rear wall 13 which is connected with the rear wall 10 of the inner container 3 by way of the hinge 7, and two lateral walls 14 parallel one to the other. It is important to note that the lateral walls 14 of the lid 6 are arranged inside the lateral walls 11 of the inner container 3 as is clearly illustrated in
As illustrated in
In the embodiment illustrated in the attached figures, all the edges are straight; according to alternative embodiments not illustrated, some edges (longitudinal and/or transverse) may be beveled or rounded.
As illustrated in
In the embodiment illustrated in the attached figures, the outer container 4 has a through window 21 that is formed astride the front wall 17 and of a lateral wall 19 and through which the front wall 9 of the container 3 is accessible to allow the application of a thrust to the inner container 3 in order to move the inner container 3 between the closed configuration and the open configuration.
As shown in
As illustrated in
As illustrated in
As illustrated in
As shown in
As illustrated in
When the inner container 3 is in the closed configuration (illustrated in
In other words, the lower edge 35 of the connecting tab 20, together with the lower edge 36 of the window 30, is an “end-of-stroke” that establishes a maximum opening position (i.e. of maximum extraction of the inner container 3 from the outer container 4 and therefore of maximum rotation of the lid 6 about the hinge 7) further blocking the sliding of the inner container 3 (and therefore the further rotation of the lid 6 about the hinge 7) once reaching the maximum opening position thereof.
The containers 3 and 4 of the package 1 of cigarettes shown in
With reference to
In an alternative embodiment, not shown, the inner blank has two longitudinal fold lines and a number of transverse fold lines, which define, between the two longitudinal fold lines, at least one panel which forms the front wall of the inner container, a panel that forms the bottom wall of the inner container, a panel which forms the rear wall of the inner container, a panel which forms the rear wall of the lid, a panel which forms the top wall of the lid. Therefore, in said further embodiment, the blank is similar to the blank 38 of
The panel 9′ has two wings 11′, which form an outer portion of the lateral walls 11 of the inner container 3, are arranged on opposite sides of the panel 9′, and are connected to the panel 9′ by the longitudinal fold lines 40.
The panel 10′ is provided with a window 30 within which the connecting tab 20 is formed; this latter comprises a top portion 31, which top edge is integral with the panel 12′ and which is inclined with respect to said panel 10′ to follow the rotation of the lid 6, an intermediate portion 32, which is connected to the top portion 31 along a transverse fold line 41 and has a central opening, and a bottom portion 33 which is connected to the intermediate portion 32 along a transverse fold line 41, in addition, the bottom portion 33 has a protrusion 34 in correspondence with the opening of the intermediate portion 32. The panel 10′ also has two wings 11″, which form an inner portion of the lateral walls 11 of the inner container 3, are arranged on opposite sides of the panel 10′, and are connected to the panel 10′ by the longitudinal fold lines 40.
The panel 13′ has two wings 14′ which form the lateral walls 14 of the lid 6, are arranged on opposite sides of panel 13′, and are connected to the panel 13′ by the longitudinal fold lines 40. The panel 10″ has two reinforcing wings 11′″ which are gummed to the inside in correspondence to the wings 11″, are arranged on opposite sides of panel 10″, and are connected to panel 10″ by the longitudinal fold lines 40.
Each wing 11″ has a tab 42 which is connected to the wing 11′ by a transverse fold line 41, is folded by 90° with respect to the wing 11″, and is glued to an inner surface of the panel 8′. Each wing 14′ has a tab 43 that is connected to the wing 14′ by a transverse fold line 41, is folded by 90° with respect to wing 14′, and is glued to an inner surface of the panel 12′.
With reference to
The panel 17′ has two wings 19′, which form an outer portion of the lateral walls 19 of the outer container 4, are arranged on opposite sides of the panel 17′, and are connected to the panel 17′ by longitudinal fold lines 44. The panel 18′ has two wings 19″, which form an inner portion of the lateral walls 19 of the outer container 4, are arranged on opposite sides of the panel 18′, and are connected to the panel 18′ by longitudinal fold lines 44.
Each wing 19″ has a tab 46 which is connected to the wing 19′ by a transverse fold line 45, is folded by 90° with respect to the wing 19″, and is glued to an inner surface of the panel 15′.
In
The packing machine 47 comprises a packing unit 48 that produces the wrapped groups 2 of cigarettes, a subsequent packing unit 49 that produces the inner containers 3 by folding the blanks 38 about corresponding wrapped groups 2 of cigarettes received by the packing unit 48, a packing unit 50 that produces the outer containers 4 by folding the blanks 39 about corresponding inner containers 3 received by the packing unit 49, and a transfer unit 51 which receives in input the inner containers 3 from the packing unit 49 in correspondence to an input station 52 and feeds in output the inner containers 3 to the packing unit 50 in correspondence to an output station 53.
As illustrated in
In correspondence to the input station S1, a hopper (not shown) is provided, which houses a stack of inner blanks 38 and cyclically feeds the inner blanks 38 from a bottom outlet towards the packing pockets 55 of the packing conveyor 54; in particular, each inner blank 38 arranged in correspondence to the bottom outlet of the hopper is picked up by a suction gripping head that moves vertically and is supported to an underlying packing pocket 55 of the packing conveyor 54 that stops and waits in the input station S1 in alignment with the bottom outlet.
It is important to note that the packing conveyor 54 feeds each inner blank 38 along the packing path P1 always transversely, i.e. always with the transverse fold lines 41 parallel to the feed direction; in other words, the packing conveyor 54 does not ever vary the orientation of each inner blank 38 with respect to the feed direction, and then in all the points of the packing path P1 each inner blank 38 has always its transverse fold lines 41 parallel to the feed direction (and thus its own longitudinal fold lines 40 perpendicular to the feed direction). Always maintaining a constant orientation of each inner blank 38 along the packing path P1 allows to simplify both the folding operations, and the structure of the packing conveyor 54.
According to a preferred embodiment shown in
As illustrated in
The above-described flexing of the inner blank 38 along the transverse fold line 41 which divides the panel 12′ with respect to the panel 13′ and the tabs 43 from the wings 14′ is very useful to allow the proper formation of the lid 6 described in the following; i.e., without this flexing of the inner blank 38 the formation of the lid 6 described in the following can become problematic, and then determine a significant increase of defective inner containers 3 (due to a malformation of the lid 6) that must be discarded.
Moreover, in the work station S3 a folding device 58 is provided having movable parts (i.e. parts that move to perform the folding operation while the inner blank 38 is stopped waiting in the work station S3); the folding device 58 folds by 90°, the actuating tab 23 with respect to panel 9′ and about the fold line 28, with the function of flexing the actuating tab 23 along the fold line 28.
Finally, in the work station S3 a gumming device 59 (typically provided with nozzles that spray gumming glue) which deposits glue points 60 (illustrated in
Between the work station S3 and the work station S5 a folding device 61 is provided having fixed folding profiles (i.e. folding helixes that are devoid of moving parts and perform the folding operation while the inner blank 38 moves in the packing path P1 and thus exploiting the feeding movement of the inner blank 38); the folding device 61 folds by 180° the lifting tab 29 with respect to the panel 9′ and about the fold line 28. In particular, the folding device 61 folds by 90° the lifting tab 29 with respect to the panel 9′ and about the fold line 28 between the work station S3 and work station S4 (i.e. in the work station S4 the lifting tab. 29 is fold by 90° with respect to the panel 9′), and thereafter, the folding device 61 folds by further 90° (for a total of 180°) the lifting tab 29 with respect to the panel 9′ and about the fold line 28 between the work station S4 and the work station S5 (i.e. in the work station S5 the lifting tab 29 is folded by 180° with respect to the panel 9′ and onto the panel 9′ itself to which is glued by the effect of the presence of glue 60).
In the work station S4 a folding device 62 is provided having parts (i.e. parts that move to perform the folding operation while the inner blank 38 is stopped waiting in the work station S4). The folding device 62 folds by 90° the reinforcing wings 11′″ with respect to the panel 10″ and about corresponding longitudinal fold lines 40. The same device 62 folds the bottom portion 33 of the connecting tab 20 by 180° with respect to the intermediate portion 32, about a transverse fold line 41, and onto the intermediate portion 32 itself, forming a hook. Also, when the bottom portion 33 is folded by 180° with respect to the intermediate portion 32, the protrusion 34 is inserted at least partially below the third panel 10′.
Preferably, the above mentioned folds of the reinforcing wings 11′″ and of the bottom portion 33 are made simultaneously by the folding device 62.
It is important to note, that downstream from the folding device 62 the reinforcing wings 11′″ are left free to spring back to their original position; in practice the reinforcing wings 11′″ not exactly return to the initial position perfectly coplanar with the panel 10″, but assume a slightly inclined position with respect to the panel 10″ (as shown in
In the work station S5 a presser device 63 is provided having movable parts (i.e. parts that move to perform the pressing operation while the inner blank 38 is stopped waiting in the work station S5) that locally flattens the inner blank 38 by pressing on the lifting tab 29 to press the folding of the tab 29 again onto the lifting panel 9′.
Between the work station S5 and the work station S6 a rotating presser device 64 is arranged (i.e., consisting of a rotatable drum that by rotating “rolls” an outer surface on the inner blank 38 while the inner blank 38 moves in the packing path P1) that locally flattens the inner blank 38 by pressing on the bottom portion 33 of the connecting tab 20 to press the folding of the bottom portion 33 again onto the intermediate portion 32.
In the work station S6 a folding device 65 is provided having movable parts (i.e. parts that move to perform the folding operation while the inner blank 38 is stopped waiting in the work station S6), the folding device 65 folds by 90° the actuating tab 23 with respect to panel 9′, about the fold line 28 and onto the panel 9′ itself.
In the work station S6 a presser device 66 is provided having movable parts (i.e. parts that move to perform the pressing operation while the inner blank 38 is stopped waiting in the work station S6) that locally flattens the inner blank 38 by pressing on lifting tab 29 to press both the folding of the lifting tab 29 again onto an inner wall of the panel 9′, and the folding of the actuating tab 23 onto an outer wall of the panel 9′.
Between the work station S7 and the work station S8 a rotating presser device 67 is arranged (i.e., consisting of a rotatable drum that by rotating “rolls” an outer surface on the inner blank 38 while the inner blank 38 moves in the packing path P1) that locally flattens the inner blank 38 by pressing on the lifting tab 29 and on the actuating tab 23 to press the folding of the lifting tab 29 and of the actuating tab 23 again onto the panel 9′.
In the work station S9 a gumming device 68 is provided (typically provided with nozzles that spray gumming glue) which deposits glue points 69 (illustrated in
Between the work station S9 and the work station S10 a folding device 70 is provided having fixed folding profiles (i.e. folding helixes that are devoid of moving parts and perform the folding operation while the inner blank 38 moves in the packing path P1 and thus exploiting the feeding movement of the inner blank 38); the folding device 70 folds by 90° the panel 12″ With respect to the panel 12′ and about a corresponding transverse fold line 41.
In the work station S10 a folding device 71 is provided having movable parts (i.e. parts that move to perform the pressing operation while the inner blank 38 is stopped waiting in the work station S10). The folding device 71 is movable in the vertical work direction D1 that is perpendicular to both the packing path P1, and the horizontal work direction D2. The folding device 71 initially folds the tabs 43 by 90° with respect to the wings 14′ and about corresponding transverse fold lines 41, and subsequently at the same time (i.e. together) folds the wings 14′ by 90° with respect to the panel 13′ and about corresponding longitudinal fold lines 40, folds the panel 12′ by 90° with respect to the panel 13′ and about a corresponding transverse fold line 41 (in this way the tabs 43 rest on the panel 12′ to which are glued by the effect of the presence of the glue 69), folds the panel 12″ by 90° with respect to the panel 12′ and about a corresponding transverse fold line 41, and folds the panel 13″ by 90° with respect to panel 12″ and about a corresponding transverse fold line 41.
Between the work station S10 and the work station S11 a folding device 72 is arranged which is provided with fixed folding profiles (i.e. folding helixes that are devoid of movable parts and perform the folding operation while the inner blank 38 moves in the packing path P1 and thus exploiting the feeding movement of the inner blank 38), the folding device 72 folds the panel 13″ by 90°, with respect to panel 12″ about a corresponding transverse fold line 41 and in the opposite direction to the similar fold made by the folding device 71 in the work station 10. The two folding devices 71 and 72 perform two opposite folding operations (i.e. that cancel each other) between the two panels 12″ and 13″ having the function of flexing (or weakening to considerably reduce the residual spring back force) the inner blank 38 along the corresponding transverse fold line 41.
In the work station S11 a folding device 73 is provided having movable parts (i.e. parts that move to perform the folding operation while the inner blank 38 is stopped waiting in the work station S11), the folding device 73 simultaneously (i.e. together) fold the panel 12″ by 90°, with respect to panel 12′ and about a corresponding transverse fold line 41 (in this way the panel 12″ rests to the panel 12′ to which is glued due to the presence of the glue 69) and folds the panel 13″ by 90° with respect to panel 12″ ‘and about a corresponding transverse fold line 41 (in this way the panel 13″ rests to the’ panel 13′, the panel 10″ rests on the panel 10′ to which is glued due to the presence of the glue 69 and the wings 11′″ overlap with the wings 11″ without resting; in a subsequent work station the wings 11′″ will be glued to the wings 11″ due to the presence of the glue 69).
In the work station S12 a presser device 74 is provided having movable parts (i.e. parts that move to perform the folding operation while the inner blank 38 is stopped waiting in the work station S12) that locally flattens the inner blank 38 by pressing on the panel 10″ to press the folding of the panel 10″ again onto the panel 10′.
In the work station S13 a presser device 75 is provided, identical to the previous presser device 74, which is provided with movable parts (i.e. parts that move to perform the folding operation while the inner blank 38 is stopped waiting in the work station S13) that locally flattens the inner blank 38 by pressing on the panel 10″ to press the folding of the panel 10″ again onto the panel 10′.
As illustrated in
As illustrated in
Therefore, the folding body 83 first folds the tabs 43 by 90°, with respect to the wings 14′ and about corresponding transverse fold lines 41, then folds the wings 14′ by 90°, with respect to the panel 13′ and about corresponding longitudinal fold lines 40, and then folds the panel 12′ by 90°, with respect to the panel 13′ and about a corresponding transverse fold line 41 bringing the panel 12′ in contact with the tabs 43 while the same folding body 83 moves in a continuous motion along the first work direction D1. In this way, the three above mentioned folding operations are performed by moving a single member, namely the folding body 83, simplifying the operations in the machine and consequently reducing the costs. In particular, the plurality of folds is performed by moving the single member along a single direction, allowing to reduce the time needed for the folding operations.
In particular, the folding body 83 has a center member 84, two top lateral members 85 arranged on opposite sides of the center member 84, and two bottom lateral members 86 also arranged on opposite sides of the center member 84. Furthermore the center member 84, the two top lateral members 85, and the two bottom lateral members 86 are arranged in different positions vertically (i.e. along the work direction D1) to execute in succession respective folding of the inner blank 38 while the folding body 83 moves vertically with a continuous movement (i.e. along the work direction D1). Finally, the folding device 71 comprises a contrast body 87. Preferably, the latter comprises a “hoe”-shaped center member 88 and two lateral appendixes 89 arranged on opposite sides of the center member 88 and is mounted to rotate about an axis of rotation 90 parallel to the packing path P1.
What is described for the formation of the inner container is applied, mutatis mutandis, also for the embodiment previously described, not illustrated and not provided, or provided only in part, of the reinforcing panels.
In use, when the inner blank 38 stops at the work station S10, the contrast body 87 rotates about the axis of rotation 90 to arrange the two lateral appendixes 89 above the wings 14′ and close to the tabs 43, to form a contrast for the top lateral members 85 of the folding body 83, and then the folding body 83 moves from the bottom upwards in the vertical work direction D1 so that the two top lateral members 85 fold the tabs 43 by 90°, with respect to the wings 14′ and about corresponding transverse fold lines 41. Subsequently, the contrast body 87 rotates in reverse about the axis of rotation 90 to remove the two appendixes 89 from the wings 14′ and at the same time to rest the center member 88 on the panel 13′, to form a contrast to the center member 84 of the folding body 33, and then the folding body 83 moves further upwards along the vertical work direction D1 so that two bottom lateral members 86 fold the wings 14′ by 90° with respect to the panel 13′ and about corresponding longitudinal fold lines 40 and at the same time the center member 84 fold the panel 12′ by 90°, with respect to the panel 13′ and about a corresponding transverse fold line 41 (in this way the tabs 43 rest on the panel 12′ to which are glued by the effect of the presence of glue 69). Finally, the folding body 82 moves in the horizontal work direction D2 and towards the contrast body 87 to fold the panel 12″ by 90°, and onto the contrast body 87 with respect to the panel 12′ and to fold the panel 13″ by 90°, with respect to the panel 12″ and about a corresponding transverse fold line 41.
As illustrated in
According to a preferred embodiment, better illustrated in
The fact that the folding device 62 folds the reinforcing wings 11′″ by 90°, and subsequently downstream from the folding device 62 the reinforcing wings 11′″ are set free facilitates the fact that the reinforcing wings 11′″ remain slightly raised with respect to the underlying wings 11″.
In a work station arranged downstream from the packing path P1, the wings 11′″ are pressed onto the wings 11″ to complete the gluing between the wings 11″ ‘and the wings 11″ due to the presence of glue 69, simultaneously with the folding of the wings 11″ by 90°, with respect to panel 10’ and about corresponding longitudinal fold lines 40. In other words, the wings 11′″ are glued to the wings 11″ when the wings 11″ are in perpendicular position to the panel 10′ and this cannot happen in a work station of the packing path P1, since along the packing path P1 the wings 11″ always remain coplanar with the panel 10′.
As illustrated in
At the input station S16, an inner blank 38 partially pre-folded and coming from the packing conveyor 54 is fed into a packing pocket 94 causing a further folding of the inner blank 38 itself. In correspondence to a feed station S17 arranged between the input station S16 and the output station S18, a wrapped group 2 of cigarettes is fed inside a packing pocket 94 to be coupled to the previously fed inner blank 38; in particular, a rear wall of the wrapped group 2 of cigarettes rests on the panel 10′ of the inner blank 38. At the output station S18, the inner container 3 (formed by folding the inner blank 38 about the wrapped group 2 of cigarettes) is extracted from the packing pocket 94 and proceeds towards the packing unit 50. Downstream from the output station S18 a drying conveyor (shown schematically in FIG. 9)′ is arranged that transfers the inner containers 3 to the packing unit 50. As illustrated in
Between the feed station S17 and the output station S18 a folding device 96 is arranged, which folds the panel 9′ by 90°, with respect to panel 8′ and about a corresponding transverse fold line 41. The folding of the inner blank 38 is completed in the output station S18′ simultaneously with the extraction of the inner container 3 from the packing pocket 94: during the extraction of the inner container 3 from the packing pocket 94 a folding device 97 folds the wings 11′ by 90°, with respect to the 9′, onto the wings 11″ and about corresponding longitudinal fold lines 40 completing the formation of the lateral walls 11 of the inner container 3; preferably, a gumming device (not shown) is arranged immediately upstream from the folding device 97 for depositing glue between the wings 11′ and 11″ immediately before folding the wings 11′.
According to a preferred embodiment shown in
According to a preferred embodiment illustrated in the attached figures, the packing conveyor 93 is constituted by a rotating wheel which rotates by steps about a central axis of rotation 100 arranged horizontally. Consequently, the packing path P2 that extends from the input station S16 to the output station S18 has a circular shape.
As illustrated in
According to a preferred embodiment, one inner blank 38 at a time is fed to the packing conveyor 54 in the input station S1 of the packing path P1, and the transfer conveyor 101 transfers two inner blanks 38 at a time from the packing conveyor 54 to the packing conveyor 93; in this embodiment, the packing conveyor 93 at each step treats two inner blanks 38 at a time. According to an alternative embodiment not illustrated, two inner blanks 38 at a time are fed to the packing conveyor 54 in the input station S1 of the packing path P1.
As illustrated in
At the input station S19, a hopper (not shown) is provided, which houses a stack of outer blanks 39 and cyclically feeds the outer blanks 39 from an bottom outlet towards the packing pockets 104 of the packing conveyor 103; in particular, each outer blank 39 arranged at the bottom outlet of the hopper is picked up by a suction gripping head that moves vertically and rests on an underlying packing pocket 104 of the packing conveyor 103 that is stopped waiting in the input station S19 in alignment with the bottom output.
It is important to note that the packing conveyor 103 advances each outer blank 39 along the packing path P3 always transversely, or always with the transverse fold lines 45 parallel to the feed direction, in other words, the packing conveyor 103 does not ever vary the orientation of each outer blank 39 with respect to the feed direction and therefore in all the points of the packing path P3 each outer blank 39 always has its transverse fold lines 45 parallel to the feed direction (and thus their own longitudinal fold lines 44 perpendicular to the feed direction). Always maintaining a constant orientation of each outer blank 39 along the packing path P3 allows to simplify both the folding operations, and the structure of the packing conveyor 103.
According to a preferred embodiment shown in
As illustrated in
At the work station S22 a folding device 106 is provided having fixed folding profiles (i.e. folding helixes that are devoid of moving parts and perform the folding operation while the outer blank 39 moves in the packing path P3 and thus exploiting the feeding movement of the outer blank 39), the folding device 106 of folds the connecting tab 37 by further 90° (for a total of 180°) and simultaneously with respect to the panel 18′ and about a corresponding transverse fold line 45 to rest the connecting tab 37 on the panel 18′ (while the appendix 37′ is folded on the opposite side of the tab 37 with respect to the panel 18′), and the sealing tab 22 with respect to the panel 17′ and about a corresponding transverse fold line 45 to rest the sealing flap 22 on the panel 17′.
Between the work station S23 and the work station S25 a folding device 107 is provided having fixed folding profiles (i.e. folding helixes that are devoid of moving parts and perform the folding operation while the outer blank 39 moves in the packing path P3 and thus exploiting the feeding movement of the outer blank 39); the folding device 107 folds the sealing tab 22 by 180°, with respect to the panel 17′ with opposite direction with respect to the previous folds performed by the folding devices 105 and 106. The folding device 107 and the two folding devices 105 and 106 (when acting on the sealing tab 22) perform two opposite folding operations (i.e. that cancel each other) having a flex function of (i.e. weakening to considerably reduce the residual spring back force) the outer blank 39 along the corresponding transverse fold line 45. Therefore, the function of the folding devices 105, 106 and 107 (when acting on the sealing tab 22) is not to perform an actual folding of the outer blank 39, but to prepare the outer blank 39 for the successive folding operations (described below).
In the work station S26 a folding device 108 is provided having movable parts (i.e. parts that move to perform the folding operation while the inner blank 39 is stopped waiting in the work station S26); the folding device 108 folds the connecting tab 26 by 90°, with respect to the sealing tab 22 and the about a corresponding transverse fold line 45.
In the work station S27 a device 109 for folding is provided having fixed folding profiles (i.e. folding helixes that are devoid of moving parts and perform the folding operation while the outer blank 39 moves in the packing path P3 and thus exploiting the feeding movement of the outer blank 39), the folding device 109 folds the connecting tab 26 by a further 90° (for a total of 180°) with respect to the sealing tab 22 and about a corresponding transverse fold line 45 to rest the connecting tab 26 on the sealing tab 22 (and thus to rest the actuating tab 24 on the panel 17′).
In the work station S29 a rotating presser device 110 is arranged (i.e. consisting of a rotatable drum that by rotating “rolls” an outer surface on the inner blank 38 while the inner blank 38 moves in the packing path P3) that locally flattens the outer blank 39 by pressing on the connecting tab 26 to press the folding of the connecting tab 26 again onto the sealing tab 22.
As illustrated in
At the input station S34, an outer blank 39 partially pre-folded and coming from the packing, conveyor 103 is fed into a packing pocket 112 causing a further folding of the outer blank 39 itself. At a feed station S35 arranged between the input station S34 and the output station S36, an inner container 3 is fed into a packing pocket 112 to be coupled to the outer blank 39 previously feed; in particular, the rear wall 10 of the inner container 3 rests to the panel 18′ of the outer blank 39. At the output station S36, the outer container 4 (formed by folding the outer blank 39 about the inner container 3) almost completely full is extracted from the packing pocket 112 and proceeds along a further packing path P5 and a drying path P6 arranged in succession, and then through two more work stations S37 and S38 arranged downstream from the packing conveyor 111. The drying path P6 is defined by a drying conveyor (shown schematically in
As illustrated in
Between the feed station S35 and the output station S36 a folding device 114 is arranged, which folds the panel 17′ by 90° with respect to panel 15′ and about a corresponding transverse fold line 45. The folding of the outer blank 39 is completed in the work station S37 after the extraction of the outer container 4 from the packing pocket 112 (i.e. downstream from the output station S36); in the work station S37 a folding device 115 folds by 90° the wings 19′ with respect to the panel 17′, onto the wings 19″ and about corresponding longitudinal fold lines 44 completing the formation of the lateral walls 19 of the outer container 4; preferably, a gumming device (not shown) is arranged immediately upstream from the folding device 115 for depositing glue between the flanges 19′ and 19″ immediately before the folding of the wings 19′.
According to a preferred embodiment illustrated in the attached figures, the packing conveyor 111 is constituted by a rotating wheel which rotates by steps about a horizontally arranged central axis of rotation 116. Consequently, the packing path P4 that extends from the input station S34 to the output station S36 has a circular shape. The packing path P5 and the subsequent drying path P6 are rectilinear and arranged perpendicularly one to the other.
As illustrated in
According to a preferred embodiment, an outer blank 39 at a time is fed to the packing conveyor 103 in the input station S19 of the packing path P3, and the transfer conveyor 117 transfers two outer blanks 39 at a time from the packing conveyor 103 to the packing conveyor 111, in this embodiment, the packing conveyor 111 treats at each step two outer blanks 39 at a time. According to an alternative embodiment not illustrated, two outer blanks at a time 39 are fed to the packing conveyor 103 in the input station S19 of the packing path P3.
As illustrated in
According to a preferred embodiment shown in
In
The through window 21 of the wing 19′ of the outer blank 39 adapted to allow the user to apply the necessary thrust to slide the inner container 3 with respect to the outer container 4 (
The packing method and the corresponding packing machine 47 described above have many advantages as they allow to produce the slide-open packages 1 with a hinged lid with high productivity (i.e. with a high number of packages 1 of cigarettes produced per unit of time) while maintaining a high quality standard. This result is obtained thanks to the conformation of the packing units 49 that by completing the formation of the lid 6 in the packing conveyor 54 (i.e. before coupling the inner blank 38 to the wrapped group 2 of cigarettes) allows to form the lid 6 in a simple and effective way and simultaneously allows to greatly simplify the folding of the inner blank 38 about the wrapped group 2 of cigarettes. In particular, the formation of the lid 6 is easier (and therefore simple and fast) along a straight packing path (as, indeed, is the packing path P1 of the packing conveyor 54), while the folding of the inner blank 38 about the wrapped group 2 of cigarettes is easier (and therefore simple and fast) along a circular packing path (as, indeed, is the packing path P2 of the packing conveyor 93). So, thanks to the conformation of the packing units 49 all the folding operations can be performed in the most favorable situation, and therefore can be performed quickly (i.e. with a high productivity of the packing process) while ensuring a high quality standard.
Additionally, but not less important, the packing method and the corresponding packing machine 47 described above are extremely “flexible”, i.e. allow to vary quickly and simply the type of slide-open packages 1 of cigarettes that are produced (with the hinged lid 6 comprised in the inner blank 38 or comprised in the outer blank 39 or without hinged lid). Among other things, the high flexibility is provided by the fact that in each packing unit 49 or 50 there is a first packing conveyor 54 or 103 wherein a preliminary folding of the inner blank 38 or outer blank 39 is performed and a second packing conveyor 93 or 111 wherein the preliminary folding of the inner blank 38 or outer blank 39 is completed; in fact, thanks to the presence of the first packing conveyor 54 or 103 it is relatively simple to perform the preliminary folding of the inner blank 38 or outer blank 39 to form a lid, and once the lid is formed the final folding of the inner blank 38 or outer blank 39 is “conventional” (i.e. analogous to the folding of a standard blank) and therefore devoid of particular complications.
Finally, it is important to observe that the two packing units 49 and 50 are very similar to each other: both-packing units 49 and 50 have the same structure that comprises a first packing conveyor (the packing conveyors 54 and 103) consisting in a conveyor belt and intended to produce a preliminary folding of the blank, a second packing conveyor (the packing conveyors 93 and 111) consisting in a wheel and intended to fold the blank (already partially folded) about the content, and a transfer conveyor (the transfer conveyors 101 and 117) that connects the two packing conveyors. Furthermore, the two second packing conveyors (the packing conveyors 93 and 111) of the two packing units 49 and 50 perform almost all the packing operations in the same way and in the same areas. Finally, the two packing units 49 and 50 can share between one another a large number of components, i.e. the same identical component is frequently present in both packing units 49 and 50 (in particular, the two packing units 49 and 50 can have in common at least 70-80% of the components); in this way, it is possible to break down in a very significant way the production, assembly and maintenance cost of the packing machine 47.
Claims
1. A packing machine (47) for producing an inner container (3) by folding an inner blank (38) about a wrapped group (2) of tobacco articles;
- wherein the inner container (3) comprises a lid (6);
- wherein the inner blank (38) has two longitudinal fold lines (40) and a number of transverse fold lines (41) which define, between the two longitudinal fold lines (40), at least one first panel (9′) forming a front wall (9) of the inner container (3); a second panel (8′) forming a bottom wall (8) of the inner container (3); a third panel (10′) forming a rear wall (10) of the inner container (3); a fourth panel (13′) forming a rear wall (13) of the lid (6); a fifth panel (12′) forming a top wall (12) of the lid (6);
- wherein the fourth panel (13′) has two first wings (14′) which form respective lateral walls (14) of the lid (6), are arranged on opposite sides of the fourth panel (13′), and are connected to the fourth panel (13′) by the longitudinal fold lines (40); and
- wherein each wing (14′) has a tab (43) which is connected to the wing (14′) by a transverse fold line (41);
- the packing machine (47) comprises:
- a packing conveyor (54) which has a packing pocket (55) and feeds the inner blank (38) along a packing path (P1) and through a first work station (S10); and
- a first folding device (71) which is arranged at the first work station (S10) to fold portions of the inner blank (38);
- the packing machine (47) is characterized in that:
- the first folding device (71) comprises a first folding body (83) which is movable in a first direction (D1) perpendicular to the packing path (P1) for folding portions of the inner blank (38); and
- said first folding body (83) first folds the tabs (43) by 90°, with respect to the first wings (14′) and about a corresponding transverse fold line (41), then folds the wings (14′) by 90°, with respect to the fourth panel (13′) and about corresponding longitudinal fold lines (40), and then folds the fifth panel (12′) by 90°, with respect to the fourth panel (13′) and about a corresponding transverse fold line (41) bringing the fifth panel (12) in contact with the tabs (43) while the first folding body (83) moves with a continuous movement in the first work direction (D1).
2. The packing machine (47) according to claim 1, wherein in the inner blank (38) the transverse fold lines (41) further define, between the two longitudinal fold lines (40), a sixth reinforcing panel (12″) which is glued to the inside of the fifth panel (12′), a seventh reinforcing panel (13″) which is glued to the inside of the fourth panel (13′), and an eighth reinforcing panel (10″) which is glued to the inside of the third panel (10′).
3. The packing machine (47) according to claim 1, wherein the first folding body (83) comprises a center member (84), two top side members (85), and two bottom side members (86) which are arranged in different positions in the first work direction (D1).
4. The packing machine (47) according to claim 3, wherein as the first folding body (83) moves continuously in the first work direction (D1), the top side members (85) first fold the tabs (43) by 90°, with respect to the first wings (14′) and about corresponding transverse fold lines (41), the two bottom side members (86) then fold the first wings (14′) by 90°, with respect to the fourth panel (13′) and about corresponding longitudinal fold lines (40), and the center member (84) folds the fifth panel (12′) by 90°, with respect to the fourth panel (13′) and about a corresponding transverse fold line (41) bringing the fifth panel (12′) in contact with the tabs (43).
5. The packing machine (47) according to claim 2, wherein:
- the first folding device (71) comprises a second folding body (82) which has an L-shaped cross section and is movable in a second work direction (D2) perpendicular to the packing path (P1) and to the first work direction (D1); and
- as the first folding body (83) completes its movement in the first work direction (D1), the second folding body (82) moves in the second work direction (D2) to fold the sixth panel (12″) by 90° with respect to the fifth panel (12′) and about a corresponding transverse fold line (41) and to fold the seventh panel (13″) by 90° with respect to the sixth panel (12″) and about a corresponding transverse fold line (41).
6. The packing machine (47) according to claim 5, wherein:
- the first folding device (71) comprises a contrast body (87); and
- the second folding body (82) moves in the second work direction (D2) and towards the contrast body (87) to fold the sixth panel (12″) by 90° and onto the contrast body (87), with respect to the fifth panel (12′) and fold the seventh panel (13″) by 90°, with respect to the sixth panel (12″) and about a corresponding transverse fold line (41).
7. The packing machine (47) according to claim 6, wherein the contrast body (87) comprises a “hoe”-shaped center member (88) and two lateral appendixes (89) on opposite sides of the center member (88) and is mounted to rotate about an axis of rotation (90) parallel to the packing path (P1).
8. The packing machine (47) according to claim 3, wherein:
- the first folding device (71) comprises a contrast body (87) which has a “hoe”-shaped center member (88) and two lateral appendixes (89) on opposite sides of the center member (88), and is mounted to rotate about an axis of rotation (90) parallel to the packing path (P1);
- when the inner blank (38) stops at the first work station (S10), the contrast body (87) rotates about the axis of rotation (90) to arrange the two lateral appendixes (89) on the first wings (14′) and close to the tabs (43), to form a contrast for the top side members (85) of the first folding body (83); and
- the contrast body (87) then rotates in the opposite direction about the axis of rotation (90) to remove the two appendixes (89) from the first wings (14′) and simultaneously bring the center member (88) to rest on the fourth panel (13′), to form a contrast for the center member (84) of the first folding body (83).
9. The packing machine (47) according to claim 2 and comprising a second work station (S11) downstream from the first work station (S10) and provided with a second folding device (73) comprising a third folding body (91) which is movable in the first work direction (D1); when the inner blank (38) stops at the second work station (S11), the third folding body (91) moves in the first work direction (D1) to fold the sixth panel (12″) by 90° with respect to the fifth panel (12′) and about a corresponding transverse fold line (41) and to simultaneously fold the seventh panel (13″) by 90°, with respect to the sixth panel (12″) and about a corresponding transverse fold line (41).
10. The packing machine (47) according to claim 9, wherein:
- the second folding device (73) comprises a fourth aligning body (92) movable in a third work direction (D3) which is not parallel neither to the first work direction (D1), to the second work direction (D2) nor to the packing path (P1); and, when the third folding body (91) completes its movement, the fourth aligning body (92) moves in the third work direction (D3) to rest and press on the end edge of the eighth panel (10″), and to hold down the end edge of the eighth panel (10″) as the inner blank (38) moves along the packing path (P1) downstream from the second work station (S11).
11. The packing machine (47) according to claim 10, wherein:
- the third panel (10′) has two second wings (11″) which form respective lateral walls (11) of the inner container (3), are arranged on opposite sides of the third panel (10′), and are connected to the third panel (10′) by the longitudinal fold lines (40);
- the eighth panel (10″) has two reinforcing third wings (11′) which are gummed to the inside in correspondence of the second wings (11″), are arranged on opposite sides of the eighth panel (10″), and are connected to the eighth panel (10″) by the longitudinal fold lines (40); and
- the fourth aligning body (92) keeps the third wings (11′″) raised slightly with respect to the underlying second wings (11″) while the eighth panel (10″) rests completely on the underlying third panel (10′).
12. The packing machine (47) according to claim 9 and comprising a third folding device (72) which is arranged between the first work station (S10) and the second work station (S11), and which folds the seventh panel (13″) by 90°, with respect to the sixth panel (12″), about a corresponding transverse fold line (41) and in the opposite direction to the similar fold made by the first folding device (71) at the first work station (S10).
13. The packing machine (47) according to claim 1 and comprising at least one fourth folding device (56, 57) which is arranged upstream from the first work station (S10) and which simultaneously folds the fifth panel (12′) by 90°, with respect to the fourth panel (13′) and the tabs (43) by 90° with respect to the first wings (14′), about the same transverse fold line (41), and in one direction and then in the opposite direction, to flex the inner blank (38) along the corresponding transverse fold line (41) itself.
14. The packing machine (47) according to claim 2, wherein:
- the eighth panel (10″) has two reinforcing third wings (11′) which are arranged on opposite sides of the eighth panel (10″) and are connected to the eighth panel (10″) by the longitudinal fold lines (40);
- a fifth folding device (62) which is arranged upstream from the first work station (S10) and folds the reinforcing third wings (11′″) by 90°, with respect to the eighth panel (10″) and about corresponding longitudinal fold lines (40) is provided; and
- downstream from the fifth folding device (62) the reinforcing third wings (11′) are left free to spring back to their original position.
15. The packing machine (47) according to claim 1, wherein:
- a fifth folding device (62) is provided;
- the blank (38) has a window (30) in correspondence of the third panel (10′), inside of which the connecting tab (20) is formed;
- the connecting tab (20) comprises a top portion (31), in which the top edge is integral with the fifth panel (12′) and that is tilted with respect to said third panel (10′) to follow the rotation of the lid (6), an intermediate portion (32), which is connected to the top portion (31) along a transverse fold line (41) and has a central opening, and a bottom portion (33) that is connected to the intermediate portion (32) along a transverse fold line (41);
- the bottom portion (33) has a protrusion (34) at the opening of the intermediate portion (32); and
- the fifth folding device (62) folds the bottom portion (33) by 180° with respect and onto the intermediate portion (32), about the transverse fold line (41) to form a hook.
16. The packing machine (47) according to claim 15, wherein,
- when the bottom portion (33) is folded with respect to the intermediate portion (32) by 180°, the protrusion (34) is inserted at least partially below the third panel (10′).
17. A packing method for producing an inner container (3) by folding an inner blank (38) about a wrapped group (2) of tobacco articles; wherein the inner container (3) comprises a lid (6);
- wherein the inner blank (38) has two longitudinal fold lines (40) and a number of transverse fold lines (41) which define, between the two longitudinal fold lines (40), at least one first panel (9′) forming a front wall (9) of the inner container (3); a second panel (8′) forming a bottom wall (8) of the inner container (3); a third panel (10′) forming a rear wall (10) of the inner container (3); a fourth panel (13′) forming a rear wall (13) of the lid (6); a fifth panel (12′) forming a wall (12) of the lid (6);
- wherein the fourth panel (13′) has two first wings (14′) which form respective lateral walls (14) of the lid (6), are arranged on opposite sides of the fourth panel (13′), and are connected to the fourth panel (13′) by the longitudinal fold lines (40); and
- wherein each wing (14′) has a tab (43) which is connected to the wing (14′) by a transverse fold line (41);
- the packing method comprises the steps of:
- feeding the inner blank (38) along a packing path (P1) and through a work station (S10) by means of a packing conveyor (54) having a packing pocket (55);
- folding portions of the inner blank (38) by means of a folding device (71) which is arranged at the work station (S10);
- the packing method is characterized in that:
- the folding device (71) is provided with a first folding body (83) which is movable in a first work direction (D1) perpendicular to the packing path (P1) for folding portions of the inner blank (38); and
- said first folding body (83) in succession folds the tabs (43) by 90°, with respect to the first wings (14′) and about corresponding transverse fold lines (41); folds the first wings (14′) by 90°, with respect to the fourth panel (13′) and about corresponding longitudinal fold lines (40); and folds the fifth panel (12′) by 90°, with respect to the fourth panel (13′) and about a corresponding transverse fold lines (41) bringing the fifth panel (12′) in contact with the tabs (43) while the first folding body (83) moves with a continuous movement along the first work direction (D1).
Type: Application
Filed: Dec 23, 2013
Publication Date: Nov 26, 2015
Applicant: G.D. SOCIETA' PER AZIONI (Bologna)
Inventors: Luca Cavazza (Bologna), Valeria Capelli (Casalecchio di Reno), Cristian Dakessian (Bologna), Michele Squarzoni (Ferrara)
Application Number: 14/653,306