LOW COST BURNER
A gas burner comprising a section for mixing combustible gas with air; a cover lid closing the mixing section; and a crenellated wall comprising first segments with a first thickness and one or more second segments with a second thickness greater than the first thickness, the second segment allows the cover lid to be sitting and placed over the wall, and main portholes which are constant for a determined length of said main portholes from an inside towards an outside of the crenellated wall, and near the outside of the crenellated wall, the height of the porthole is decreased by virtue of an α angle; one or more secondary portholes with a size smaller than the main portholes, wherein the at least one secondary porthole has a change in direction in such a way, that the height of the at least one secondary porthole decreases from the inside towards the outside of the crenellated wall according to a β angle until the height of the porthole achieves a constant height near the outside of the wall; and two or more tertiary portholes per each first and second segment with a half cane shape, the diameter of each half cane being equal to the width and depth of said tertiary porthole, wherein said tertiary portholes are of lesser size than the at least one secondary porthole.
Present invention lies in the field of gas burners, particularly burners used in household appliance equipment, such as stoves, kitchens or cooking surfaces.
BACKGROUND OF THE INVENTIONA great variety of burners can be found in the marketplace for use in household appliances or industrial ones based on an atmospheric Bunsen burner; initially, the main objective of these was to provide a flame which would turn on over the utensils to be heated; achieving this without considering efficiency aspects of the combustibles used in the heating or ecologic oriented aspects, heating speed, the shape of the cooking utensils, among others, through time the design of the burners has evolved towards the solving of the above mentioned aspects.
Currently, a considerable amount of burners for use in household appliances exists in the marketplace; initially, the main objective of these was to provide a flame which would turn on over the utensils to be heated without considering efficiency aspects of the combustibles used in the heating or ecologic oriented aspects; through time the design of the burners has evolved towards the solving of the above mentioned aspects, among others.
As background to the present invention, applicant has knowledge of the below discussed documents.
In patent application with publication number EP 0 554 511 an atmospheric gas burner is described which has a primary air pre-mixer, with a ring burner which has exit gas ducts and a cover for the burner, designed should it be appropriate as a single piece with the ring, as a solution proposed for atmospheric burners in particular as the NOx content in the burn gas which is produced, as well as the CO content are both considerably reduced, and particularly within a very broad adjustment range between the open and closed positions. The above is achieved thanks to the central axis of the exit ducts for the gas have a 0° deviation angle in regards to an assigned radius to the respective exit opening.
In U.S. Pat. No. 1,598,996 gas burners for general use are described in which the inner parts are freely accessible, through which the burner is adapted to be easily and quickly cleaned in order to eliminate carbon deposit residues as well as grease and other residues. Similarly this burner is provided with an upper cover lid which can be removed off the burner for the previously described purposes, and at the same time, it is set with a firm connection which seals the body of the burner against any possibility of a combustible leak between the contact surface of the cover lid and the body of the burner. Additionally, the burner is provided with two parts in which the body of the burner is coupled unto a mixing tube which is adapted to be removed in a slideable manner. The burner is provided with means to ensure a mixture of air and combustible prior to ignition and burning of the combustible, in order to decrease the carbon deposits to a minimum and produce a flame at the highest possible intensity.
Document U.S. Pat. No. 7,731,493 by Sartine et al describes a circular Bunsen burner for household use, which comprises a pattern of a main porthole through a secondary porthole and through this be able to form the porthole crown of a circular wall, wherein thanks to this highly simplistic design, it presents the serious problem that the speed at the portholes is very high, especially at the main porthole, this, such as the document itself indicates, creates flame detachment or a poor anchoring of the flame dart on the crown of the burner, which causes a poor combustion in addition to the flame of the crown has a high tendency to shut itself off; to partially solve this problematic aspect the inventor relates that he set a step on the periphery of the crown of the burner for enlarging the lower diameter of the crown of portholes; with such luck that the discussed peripheral step is in fluid contact with the porthole, preferably with the main portholes, with the end purpose of lengthening the duct of the main porthole in some manner, through the implementation of the referred to peripheral step, with this the inventor attempts to lower the speed of the mixture within the porthole, which clearly seems to have low functionality, impractical and inefficient, knowing that a better porthole design is required in order to avoid the flame from tending to detach, given that as the inventor points out himself in the document under discussion, the stability of a flame is a function of: i) the speed of combustion of the air-combustible mixture; ii) the mass reason of the air-combustible mixture; iii) the total area of porthole of the crown of the burner; which ends up being a bit contradictory upon studying the discussed document that the inventor knows the theory but upon implementing his burner to practice, he completely ignores said principles by creating completely straight portholes without any means whatsoever for efficiently controlling the speed of the air-combustible mixture which flows through the portholes, thereby being forced to use a widely known solution in the field to create a little extra friction which will allow for a small decrease in the speed of the air-combustible mixture, by means of the referred to peripheral step through which means it can in a palliative manner poorly anchor the flame dart onto the crown; continuing on with the study of the referred to crown, it can also be seen that the design proposed by the inventor of the document under discussion alleges and presumes that his design allows him to use a cover lid of almost the same diameter of that of the crown, which seems obvious that such a design stimulates the separation of the flame dart from the crown, which leads us to think that the burner in reference lacks all usefulness or practical functionality.
Regarding the burners contained in the above cited documents, none of them has the structural and operational features of the burner in present invention, for example, none of the prior burners possesses at least two air-combustible mixture sections which would allow the adequate mixing or combining of the air with the combustible, also the referred to mixture sections allow for the creation of a desirable mass flow towards the portholes in order that the speed of the flow of the mixture be such that it avoids the detaching of the flame, the dart remaining anchored to the burner furthermore encouraging an efficient combustion; also none of the prior documents references a particular design for the portholes which changes the direction of the mass flow of the air-combustible mixture, decreasing the speed of the referred to mass flow within the porthole, in addition to strategically directing it towards the utensils to be heated which are set on the burner; thereby guaranteeing correct anchoring of the flame dart to the body of the burner as well as optima combustion.
One aspect of present invention may be to provide a burner with at least two mixture sections, a pre-mixing area precisely at the end of the Venturi tube which helps in the mixing of the air-combustible which has been dragged by means of the Venturi tube, also said pre-mixing chamber helps to uniformly dosage the determined mass flow to the mixture chamber which surrounds the pre-mixture chamber, in this second chamber the possible flow variations which could occur when functioning as a buffer area are homogenized, helps continue the air-combustible mixture towards the porthole section, with such luck that the speed of the liquid within the portholes be uniform and within a determined parameter which avoids flame detachment.
Another aspect of the present invention may be constituted by providing a burner which on its main portholes contain a change of direction which allow for the decreasing and controlling of the mass flow of the air-combustible mixture which flows within this in addition to strategically directing the flame dart, avoiding the detachment of flame and thus favoring a correct as well as an efficient combustion, in addition to helping achieve a better contact of the flame darts with the utensils to be heated which are set over the burner.
Another aspect of present invention may be to provide a burner with a peculiar design for the cover lid of the burner which allows interacting with the novel porthole design, helping to correctly anchor the flame darts to the body of the burner.
Another aspect of the present invention may be to provide a burner with good energy efficiency, as well as low carbon monoxide levels, be easy to manufacture and have a low cost.
Yet another aspect of the present invention may be to provide the burner with at least one air ring on the lower part of the burner, precisely under the porthole for improving the secondary air mass flow towards the base of the flames.
BRIEF DESCRIPTION OF THE INVENTIONPresent invention lies in the field of gas burners, particularly Bunsen burners used in household appliance equipment, such as stoves, kitchens or cooking surfaces; if there is a large variety of these burners both in the marketplace as well as in the state of the art, these are quite difficult to conceive and put into practice, given that they require extensive laboratory tests as well as advanced knowledge in the areas of combustion, fluids, heat transfer and mechanics among others; having a burner which works is an art in itself, and even more difficult is making a burner which functions in an efficient manner, and even further difficult is achieving all this at a low cost, as this implies advanced knowledge of manufacturing processes. So that given the above described, it is evident that the burner of present invention has been particularly difficult to conceive, put into practice and commercialize, as it has been optimized in all of its aspects, as it renders both good energy combustion efficiency, it is easy to manufacture, the construction materials have been optimized to achieve a burner with low cost materials, in addition to being visually attractive.
The burner object of present invention is formed on a base of some metallic material preferably aluminum, or with an alloy which contains aluminum, the body of the burner is achieved by injection or forging; the cover lid by die cutting or casting iron, forging, sintering, among others, which preferably is manufactured with steel, the burner does not have any moving parts, nor does it require another assembly other than the cover lid which is only set on the peripheral crenellated wall of the cylindrical wall of the portholes.
On the lower part of the burner an inlet is set through which the combustible being expulsed is allowed out, the inlet is directed towards a Venturi tube set on the lower central part of the burner, the referred to Venturi tube drags the primary air found surrounding this and suctions it towards the inside part of the tube to lead in a fluid manner, the primary air which has been dragged by the combustible towards the pre-mixing chamber which helps mix the air-combustible which has been dragged by means of the Venturi tube. Said pre-mixing chamber also helps to uniformly dosage a determined mass flow to the mixture chamber which surrounds the pre-mixture chamber. In this second chamber the possible flow variations which could occur upon homogenizing the volume of the air-combustible mixture before entering the portholes become uniform, knowing that a type of peripheral ring is formed, which homogenously distributes the air gas mixture to the portholes, it also regulates the energy of the fluid of said air-combustible mixture, thus homogenously dosing a mass flow towards the portholes which helps to continue with the mixing of the air-combustible, dosing the mixture of the air-combustible towards the porthole section, with such luck that the speed of the fluid within the portholes be uniform and within a determined parameter which avoids flame detachment; the main portholes on their part are set with a peculiar design, knowing that the referred to portholes change direction of the mass flow of the air-combustible mixture which emanates from the mixture chamber which forces a decrease in the speed of the referred to mass flow within the porthole, in addition to strategically directing it towards the utensils to be heated set on the burner; thereby guaranteeing correct anchoring of the dart flame to the body of the burner as well as optimal combustion. Precisely under the portholes, on the lower part or outer base of the body of the burner, present invention can be set with an air ring, said air ring allows for the improving of the secondary air flow towards the base of the flame.
The illustrated embodiment may be described referencing the accompanying figures, which:
All figures have been drawn to help ease the basic explanation of the teachings of present invention. The Figure extensions, regarding their number, position, relation and dimensions of the parts to form the preferred embodiment(s) shall be explained or will lie within skillfulness of the art once having read and understood the teachings of present invention. Additionally, the exact dimension and dimensional proportions to grant strength, weight and specific requirements will also be within the skillfulness of the art after having read and understood the teachings of present invention.
DETAILED DESCRIPTION OF THE INVENTION DefinitionsThe use of the term “approximately” provides an additional determined range. The term is defined in the following manner: the additional range set by the term is approximately ±10%. By way of example, but not in a limitative way, if the term reads “approximately 8 cm”, the exact range lies within 7.2 to 8.8 millimeters.
Now then,
The lower face of the burner 25 is set with some feet 31 which lend the burner 25 support over the upper face of the volcano 28, allowing for the creation of a gap or space between the lower face of the burner 25 and the upper face of the volcano 28, which allows for free air flow, which partly aids in cooling the base of the burner 25 as well as being able to supply air in a uniform manner to the base of the burner 37. The burner 25 is also set with a spark plug 22 set on a particular point of its periphery, with such luck that the burner 25 has been provided with a grommet 38 which is to house the spark plug 22; the referred to spark plug 22 is fastened in place by means of a safety 38 and support 41 in “U” shape; the complete burner 25 assembly discussed above is crowned with the cover lid 10, which itself is placed only on the crenellated wall or porthole wall 26.
Now we turn our attention to
Now turning our attention the main portholes 20 whose cross cut is illustrated in
In an alternative embodiment of the present invention on the base or the lower part of the body of the burner 11 exactly below the lowest part of the exits of the main portholes 20 set over the outer face of the crenellated wall 26, an air ring 36 can be placed, which (such as can be seen in
Having described present invention with sufficient detail, it is found as having an inventive grade, novelty and its industrial application being obvious, and taking into account that a person skilled in the art could infer changes to the burner object of present invention hereby described, where said changes would be comprised within the protection scope of the following claims.
Claims
1. A gas burner comprising:
- a mixing tube which allows the mixture of a combustible gas with air;
- a pre-mixture chamber which receives the mixture of the mixing tube, the pre-mixture chamber mixes the combustible gas with the air;
- an inner crown which forms a barrier between the pre-mixture chamber and a mixing chamber, the mixing chamber formed by an outer wall of the inner crown, an inner face of a wall opposite to the outer wall and by the upper face of the gas burner;
- a crenellated wall along the length of the periphery of the burner, the wall comprising
- a plurality of first segments with a first thickness and at least a second segment with a second thickness greater than the first thickness, the second segment allows that a cover lid be seated and placed over the crenellated wall thereby covering the mixing tube, the pre-mixture chamber, the inner crown and the mixing chamber, and
- a plurality of main portholes which are constant for a determined length of said main portholes from the inside towards the outside of the crenellated wall, and near to the outer part of the crenellated wall, the height of the porthole is decreased by virtue of an α angle;
- at least one secondary porthole with a smaller size than that of the main portholes, wherein the at least one secondary porthole has a change of direction in such a way that the height of the at least one secondary porthole decreases from the inside towards the outside of the crenellated wall according to a β angle until the height of the porthole achieves a constant height near the outer part of the wall; and
- at least two tertiary portholes per each first and second segment in a half cane shape, the half cane diameter is equal to the width and depth of said tertiary porthole, wherein said tertiary portholes are a smaller size than the at least one secondary porthole.
2. The burner according to claim 1, wherein the burner comprises some feet which lend the burner support over the face of a cover lid of a stove, providing a space between said burner and said face, thus allowing for free air flow.
3. The burner according to claim 1, wherein the inner crown has a height which is greater than the pre-mixture chamber and the mixing chamber, decreasing the distance between the base of the pre-mixture chamber and an inner face of the cover lid, thus the inner crown doses a mass flow of the mixture towards the mixing chamber.
4. The burner according to claim 1, wherein the segments are separated from each other by a main porthole or a secondary porthole.
5. The burner according to claim 1, wherein the first thickness varies between approximately 5 mm to 8 mm and wherein a second thickness varies between approximately 8 mm to 10 mm, allowing that said second thickness protrudes in relation to the remainder of the crenellated wall, in such a way that the cover lid is adjusted over the crenellated wall and has a set according to the crenellated wall.
6. The burner according to claim 1, wherein the diameter of the half cane of the tertiary portholes varies between approximately 0.8 mm to 3 mm and wherein the half cane has a cross cut section selected from amongst straight, curved, squared, rectangular or oval.
7. The burner according to claim 1, wherein the β angle varies between 45° to 85°, wherein the height of the constant part of the secondary porthole is between approximately 1 mm to 2 mm in height and wherein the length of the constant part of the secondary porthole is not greater than 75% of the total length of said secondary porthole.
8. The burner according to claim 7, wherein the flow of the mixture which passes through an outer part of the secondary porthole collapses against a bezel of the cover lid, anchoring the flame dart provided by the secondary porthole upon creating a turbulence area under said bezel.
9. The burner according to claim 1, wherein the constant length of the main porthole is approximately 50% to 75% of the total length of the main porthole, wherein α varies between 45° to 85°, where a mass flow which travels through said main porthole loses energy.
10. The burner according to claim 9, wherein a mass flow which passes through an outer part of the secondary porthole collapses against a bezel of the cover lid, anchoring the flame dart provided by the main porthole upon creating a turbulence area under said bezel.
11. The burner according to claim 1, wherein the burner under the portholes set on the crenellated wall, an air ring is placed, which drags the secondary air emanating from the lower part of the burner.
12. A gas burner comprising:
- a section for mixing the combustible gas with air;
- a cover lid closing the mixing section; and
- a crenellated wall comprising a plurality of first segments with a first thickness and at least a second segment with a second thickness greater than the first thickness, the second segment allows the cover lid to be sitted and placed over the wall, and a plurality of main portholes which are constant for a determined length of said main portholes from the inside towards the outside of the crenellated wall, and near to the outer part of the crenellated wall, the height of the porthole is decreased by virtue of an α angle; at least one secondary porthole with a smaller size than that of the main portholes, wherein the at least one secondary porthole has a change of direction in such a way that the height of the at least one secondary porthole decreases from the inside towards the outside of the crenellated wall according to a β angle until the height of the porthole achieves a constant height near the outer part of the wall; and at least two tertiary portholes per each first and second segment in a half cane shape, the half cane diameter is equal to the width and depth of said tertiary porthole, wherein said tertiary portholes are a smaller size than the at least one secondary porthole.
13. The burner according to claim 12, wherein the inner crown has a height greater than the pre-mixture chamber and the mixing chamber, decreasing the distance between the base of the pre-mixture chamber and an inner face of the cover lid, so that the inner crown doses a mass flow of the mixture towards the mixing chamber.
14. The burner according to claim 12, wherein the first thickness varies between approximately 5 mm to 8 mm and wherein a second thickness varies between approximately 8 mm to 10 mm, allowing that said second thickness protrudes in relation to the remainder of the crenellated wall, in such a way that the cover lid is adjusted over the crenellated wall and has a set according to the crenellated wall.
15. The burner according to claim 12, wherein the diameter of the half cane of the tertiary portholes varies between approximately 0.8 mm to 3 mm and wherein the half cane has a cross cut section selected from amongst straight, curved, squared, rectangular or oval.
16. The burner according to claim 12, wherein the β angle varies between 45° to 85°, wherein the height of the constant part of the secondary porthole is between approximately 1 mm to 2 mm in height and wherein the length of the constant part of the secondary porthole is not greater than 75% of the total length of said secondary porthole and wherein the mass flow which passes through an outer part of the secondary porthole collapses against a bezel of the cover lid, anchoring the flame dart provided by the secondary porthole upon creating a turbulence area under said bezel.
17. The burner according to claim 12, wherein the constant length of the main porthole is approximately 50% to 75% of the total length of the main porthole, wherein α varies between 45° to 85°, where a mass flow which travels through said main porthole loses energy and wherein the mass flow which passes through an outer part of the main porthole collapses against a bezel of the cover lid, anchoring the flame dart provided by the main porthole upon creating a turbulence area under said bezel.
18. The burner according to claim 12, wherein the burner under the portholes set on the crenellated wall, an air ring is placed, which drags the secondary air emanating from the lower part of the burner.
19. A stove, kitchen or cooking surface comprising the burner of any of the prior claims, wherein the stove, kitchen or cooking surface additionally comprise a grill set over the burner, and wherein the at least one secondary porthole emits a flame dart which has a greater size than that of a flame dart from the main porthole, in such a way that the flame dart of the secondary port hole does not collapse against the grill.
20. The stove, kitchen or cooking surface according to claim 19, wherein the design of the grill determines the number of secondary portholes found in the crenellated wall of the burner.
Type: Application
Filed: May 28, 2015
Publication Date: Dec 3, 2015
Inventor: Roberto CABRERA BOTELLO (Santiago de Queretaro)
Application Number: 14/723,878